高频软开关电镀电源的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电镀镀槽是一种特殊的负载,它要求电镀电源提供可调节的直流低电压大电流,以满足不同镀件的工艺要求。本文在分析了电镀电源发展历程和研究现状以后,结合开关电源的基本原理,设计了单台输出容量为12V/600A,可多台并联输出的高频软开关电镀电源。
     传统的开关电源采用的是可控硅整流,其体积和重量大,纹波大,稳定性不高,效率低,电源效率一般约为70%;单台电源不能长期无故障工作,无冗余系统来保证稳定性。而采用高频软开关技术设计的软开关电源能够极大的提升整体电源的性能。
     在参阅了大量国内外文献的基础上,本文通过对几种典型功率变换电路拓扑的分析与比较,选择全桥零电压脉宽调制(FBZVS PWM)软开关电路拓扑作为主电路拓扑。
     采用UC3875作为主控制器,实现对输出电压和电流的调节。采用倍流整流技术,在变压器原边加入隔直电容,原边超前桥臂和滞后臂保持较宽范围的零电压开通条件;副边的倍流整流输出方式,两个二极管实现了自然换流,两个输出电感交错并联的方式,大大减小了系统电流纹波,减小了电感的尺寸,从而减小系统的体积和重量;运用均流控制芯片UC3907设计了电源模块的均流控制电路,实现了多模块并联组成大功率的电镀电源系统,提高了电源输出性能。
     最后给出了结论,参与研制的高频开关电镀电源达到了预期的技术指标,为提高电源性能所做的工作达到了预期要求。
The paper firstly introduces the characteristic, historical and present situation of electroplate power supply. Then it briefly introduces the topology of power circuit of the high frequency switching electroplate power supply.The traditional DC power-supply has big bulk and weight, high ripple coefficient of output voltage, low stability and efficiency.It is hard-switch to transit which make efficiency fall to 70% around and single power is hard to keep working for a long time without redundancy system.
     It presents the design of a high-frequency soft switching electroplating power supply. The 7.2 kW (600A/12V) power is developed with phase-shift and current-doubter rectifier applied. In the primary side of the transformer, a blocking capacitor and a saturable inductor are used. The leading-leg is operating in zero voltage on over wide load range; In the secondary side of the transformer, current-doubter rectifier, two diodes turned off naturally, and two output inductors connected in an interleaving way, which makes the current ripple significantly reduced, and decreases the size of inductors. Therefore, the size and weight of the system can be decreased significantly. The current-sharing controller UC3907 is adopted to design the current-sharing circuit for power supply. It can realize parallel multi-module to compose high power supply system, while improving power output performance.
     Finally, the conclusion is the development of high-frequency switching power supply plating had met the technical specifications. The work we have done in order to improve the power performance achieves the desired requirements.
引文
[1]向荣.21世纪我国电镀设备面临的挑战与对策[J].电镀与精饰,1999(9):1-3.
    [2]郑鸥,毛海荣.电镀电源的发展.电镀与涂饰,1996,15(3):47-51.
    [3]曲永印.电力电子变流技术.北京:冶金工业出版社,2002:30-36.
    [4]ivo Barbi,J.C.Bolacell,D.C.Martins,et alo BUCK QUASi-RESONANT CONVERTER OPERATiNG AT CONSTANT FREQUENCY:ANALYSiS,DESIGN AND EXPERiMENTATiON,1989 IEEE.
    [5]L.H.Mweene,C.A.Wright,and M.F.Schlecht.A 1 kW,500 kHz front-end converter for a distributed power supply system.Proc.IEEE APEC' 89 Conference,1989:423-432.
    [6]O.B.Dalal.A 500 kHz multi-output converter with zero voltage switching.Proc.IEEE APEC' 90 Conference,1990:265-274.
    [7]R.Red1,N.O.Sokal,and L.Balogh.A novel soft-switching full-bridge dc/dc converter:analysis,design considerations,and experimental results at 1,5 kW,100 kHz.Proc.IEEE PESC' 90 Conference,1990:162-172.
    [8]W.Chen,F.C.Lee,M.M.Jovanovich,and J.A.Sabaté.A comparative study of a class of full bridge zero-voltage-switched PWM converters.Proc.IEEE APEC' 95 Conference,1995:893-899.
    [9]Sabate Ja.Design Considerations for High Voltage,High Power,Full-Bridge,Zero Voltage Switched PWM Conveter[A]IEEE APEC' 90 Proc[c],1990:275-284.
    [10]阮新波,严仰光.移相控制全桥变换器的分析.南京航空航天大学学报第30卷第3期,1998年6月.
    [11]丁志刚,胡育文.ZVSDC/DC全桥变换器的研究.电力电子技术第37卷第3期,第39-42页,2003年6月.
    [12]Hua,G.Lee,F.C.Jovanovic,M.M.;An improved full-bridge zero-voltage-switched PWM converter using a saturable inductor.Power Electronics,IEEE Transactions on,Volume:8,issue:4,Oct.1993.
    [13]Kutkut,N.H.Divan,D.M.Gascoigne,R.W.Animproved full-bridge zero-voltage switching PWM converter using a two-inductor rectifier,industry Applications,IEEE Transactions on,Volume:31,issue:1,Jan.-Feb.1995:119-126.
    [14]Xinbo Ruan,Jiangang Wang.An improved Current-Doubler-Rectifier ZVS PWM Full-Bridge Converter.Power Electronics Specialists Conference,2001.PESC.2001 IEEE 32nd Annual Volume 4,17-21 June 2001 Page(s):1749-1754 vol.4.
    [15]Crouse G B.Electrical Filter.U.S.Patent 1:920-948.
    [16]Mao Ye,Peng Xu,Fred C.Lee,et al.Study of three topology candidates for 48V VRM,CPES'2001:271-280.
    [17]Glenn C,Waechner.Switching power supply common output filter.U.S.Patent 3,1975:286-350.
    [18]Xu P,Lee F.Design of high-input voltage regulator modules with a novel integrated magnetics.IEEE-APEC,2001:262-267.
    [19]Peng C,Hannigan M,Seiersen O.A new efficient high frequency rectifier circuit,HFPC 1991:236-243.
    [20]Xu Peng,Wu Qiaoqiao,Wong Pit-Leong,et al.A novel integrated current doubler rectifier.IEEE-APEC,2000:735-740.
    [21]Chert Wei,Hua Guichao,Oan Sable,et al.Design of high efficiency,low profile,low voltage converter with integrated magnetics.IEEE VPEC,1997:14-20.
    [22]Xu Peng,Wu Qiaoqiao,Wong Pit-Leong,et al.A novel integrated current doubler rectifier.IEEE-APEC,2000:735-740.
    [23]W.Chen,F.C.Lee,X.Zhou and P.Xu,integrated Planar inductor Scheme for Multi-Module interleaved Quasi-Square-Wave(QSW) DC/DC Converter.IEEE-PESC,1999:759-763.
    [24]David Ki-Wai Cheng,Leung-Pong Wong,Yim-Shu Lee.Design,Modeling,and Analysis of integrated Magnetics for Power Converter.IEEE-PESC,2000:320-325.
    [28]Leung-Pong Wong,Yim-Shu Lee,David Ki-Wai Cheng.A New Approach to the Analysis and design of lnterated Magnetics.IEEE-PESC,2001:1196-1202.
    [25]Ed Bloom.Multi-charred planar magnetic design techniques.IEEE-PESC,2000:295-301.
    [26]蔡宣三,龚邵文.高频功率电子学.第1版.北京:科学出版社,1993.
    [27]Hamill,D.C.Gyrator-capacitor modeling:a better way of understanding magnetic components.Applied Power Electronics Conference and Exposition,1994.APEC'94.Conference Proceedings 1994:326-332.
    [28]Liang Yah,Lehman,B.A capacitor modeling method for integrated magnetic components in DC/DC converters.IEEE Transactions on Power Electronics,Sept.2005:987-996.
    [29]Hamill,D.C.Lumped equivalent circuits of magnetic components:the gyrator-capacitor approach.IEEE Transactions on Power Electronics,April 1993:97-103.
    [30]A.Pietkiewicz and D.Tollik.Coupled-inductor current-doubler topology in phase-shifted full-bridge dc-dc converter.Proc.iNTELEC' 98 Conf.,1998:2-3.
    [31]J.Sun and V.Mehrotra.Unified analysis of half-bridge converters with current-doubler rectifier.Proc.IEEE Applied Power Electronics Conference,2001:514-520.
    [32]R.Severns.Circuit reinvention in power electronics and identification of prior work.Proc.IEEE Applied Power Electronics Conference(APEC' 97),1997:3-9.
    [33]Ed Bloom,Rudy Sevems.The generalized use of integrated magnetics and zero-ripple techniques in switch mode power converters.IEEE-PESC,1984:15-33.
    [34]G.E.Bloom,Rudy Severns.Modern DC-to-DC Switch mode Power Converter Circuits.published in 1984 by Van Norstrand Reinhold inc,pp.262-325.
    [35]R.Petkov.Optimum design of a high-power,high-frequency transformer.IEEE Trans.Power Electronics,Vol.11,No.1,Jan.1996:33-42.
    [36]M.Sippola,R.E.Sepponen.Accurate prediction of high-frequency power transformerlosses and temperature rise.IEEE Trans.Power Electronics,Vol.17,No.8,Sept.2002:835-847.
    [37]赵修科.实用电源技术手册一磁性元器件分册,第一版.上海:辽宁科学技术出版社,2002.
    [38]杨玉岗.现代电力电子的磁技术,第一版.北京:科学出版社,2003.
    [39]R.Radys,J.Hall,J.Hayes.Optimizing AC and DC winding losses in ultra-compact.high-frequency,high-power transformers,Proc.IEEE,APEC,1999:1188-1195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700