mtTFA基因甲基化在慢性阻塞性肺疾病肺血管内皮细胞凋亡中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:检测COPD患者肺组织中mtTFA. COXⅡ的表达、肺血管内皮细胞凋亡的变化,分析它们之间的关系,探讨mtTFA在COPD发病机制中的可能作用。
     方法:2007年9月至2008年8月在中南大学湘雅二医院胸外科行肺叶切除术或肺段切除术的周围型肺癌患者病例21例,根据COPD诊断标准将其分成两组:非COPD组10例,COPD组(稳定期)11例。TUNEL法检测肺血管内皮细胞凋亡指数,分光光度法检测COX活性,普通RT-PCR和real-time RT-PCR检测mtTFA mRNA. COXⅡmRNA表达,免疫组织化学法和western-blot检测mtTFA蛋白的分布和表达,western-blot检测COXⅡ蛋白表达。使用SPSS 13.0统计软件包进行数据分析,正态分布的各组计量资料以(x±s)表示,两组间均数比较采用独立样本t检验,变量间相关性分析采用单因素直线相关分析(Pearson), P<0.05为差异有统计学意义。
     结果:COPD组吸烟指数[(33.6±12.0)包年]较非COPD组[(12.1±8.9)包年]高(P<0.01);COPD组肺血管内皮细胞凋亡指数[(13.8±1.9)%]较非COPD组[(5.9±1.0)%]增高(P<0.01)。COPD组肺组织mtTFA mRNA. mtTFA蛋白的相对表达量分别为(0.59±0.07)和(0.32±0.07),非COPD组肺组织mtTFA mRNA. mtTFA蛋白的相对表达量分别为(0.78±0.06)和(0.55±0.09),COPD组肺组织mtTFA mRNA、mtTFA蛋白表达均较非COPD组明显下降(均P<0.01)。COPD组肺组织COX活性、COXⅡmRNA、COXⅡ蛋白的相对表达量分别为[(4.4±0.9)×10-1]U/mg、(0.72±0.12)和(0.62±0.06),非COPD组肺组织COX活性、COXⅡmRNA、COXⅡ蛋白的相对表达量分别为[(7.6±0.4)×10-1]U/mg、(0.86±0.16)和(0.89±0.13),COPD组肺组织COX活性、COXⅡmRNA和COXⅡ蛋白表达均较非COPD组明显下降(P<0.01,P<0.05,P<0.01)。相关分析显示肺血管内皮细胞凋亡指数与FEV1/FVC、FEV1%Pre呈负相关(r=-0.796,r=-0.827,均P<0.01),与吸烟指数呈正相关(r=0.703,P<0.01);肺组织COX活性与肺血管内皮细胞凋亡指数呈负相关(r=-0.756,P<0.01);肺组织mtTFA蛋白表达与FEV1%Pre、COXⅡ蛋白表达、COX活性均呈正相关(r=0.892,r=0.810,r=0.854,均P<0.01),与肺血管内皮细胞凋亡指数、吸烟指数均呈负相关(r=-0.749,r=-0.763,均P<0.01)。
     结论:(1) COPD患者肺血管内皮细胞凋亡增加。(2) COPD患者肺组织mtTFA、COXⅡ表达下降,COX活性下降。(3)吸烟可能通过抑制mtTFA表达,从而影响COX活性而参与COPD患者肺血管内皮细胞凋亡。
     目的:探讨COPD患者肺组织mtTFA基因启动子区甲基化状态。
     方法:2007年9月至2008年8月在中南大学湘雅二医院胸外科行肺叶切除术或肺段切除术的周围型肺癌患者病例21例,根据COPD诊断标准将其分成两组:非COPD组10例,COPD组(稳定期)11例。收集患者术中肺组织标本,提取肺组织基因组DNA,亚硫酸氢钠基因组测序法(BSP)检测mtTFA基因启动子区甲基化状态。使用SPSS 13.0统计软件包进行数据分析,计量资料以(x±s)表示,两组间均数比较采用独立样本t检验。P<0.05为差异有统计学意义。
     结果:非COPD患者肺组织mtTFA基因启动子区不存在甲基化的CpG位点,而COPD患者肺组织mtTFA基因启动子区存在多个甲基化的CpG位点,平均甲基化率为(27.8±3.6)%。
     结论:COPD患者肺组织mtTFA基因启动子区存在甲基化的CpG位点。
     目的:研究CSE诱导HUVEC凋亡的可能机制,探讨mtTFA在其中的作用,并了解mtTFA基因甲基化是否参与其中。
     方法:体外培养HUVEC,给予不同浓度(0%-10%)和不同时间(0h-24h)的CSE处理,TUNEL法检测细胞凋亡,分光光度法检测caspase-3的活性。将HUVEC分为四个处理组:空白组,AZA组,CSE(2.5%)组,AZA+CSE组,分别给予不同的干预,检测各组细胞的凋亡指数和COX活性;普通RT-PCR和real-time RT-PCR检测mtTFA、COXⅡmRNA表达,western-blot检测mtTFA、COXⅡ蛋白表达。提取各组细胞基因组DNA, BSP法检测各组mtTFA基因启动子区甲基化状态。用SPSS 13.0统计软件包进行数据分析,计量数据用(x±s)表示,多组间比较采用单因素方差分析(One-Way ANOVA)。变量间相关分析采用单因素直线相关法(Pearson)。P<0.05为差异有统计学意义。
     结果:CSE诱导的HUVEC凋亡呈浓度依赖和时间依赖。1%CSE组即出现HUVEC凋亡增加[(26.0±2.1)%],2.5%CSE时凋亡指数达到(42.6±2.6)%。此后随着CSE浓度继续增加,虽然凋亡仍在增加,但细胞坏死也逐渐明显。10%CSE干预24 h后HUVEC凋亡达到最高峰(49.5±0.7)%。2.5%CSE干预HUVEC,随着干预时间的延长凋亡逐渐增多。与凋亡相反,随着CSE干预浓度和时间的增加,COX活性下降愈明显,同样呈浓度依赖和时间依赖。10%CSE干预24h后,COX活性下降约25.6%。在较低CSE干预浓度(0.5%-2.5%)时caspase-3活性随着CSE浓度增加而增加,2.5%CSE组达到最大值(255.0±24.2)%。而在较高CSE浓度(5%-10%)干预时,caspase-3活性出现回降,10%CSE组降至(68.6±3.7)%,低于空白对照组。相关分析显示,HUVEC凋亡与COX活性呈负相关(r=-0.884,P<0.01),而与caspase-3活性无关(r=-0.236,P>0.05)。与空白对照组和其他干预组相比,CSE组HUVEC凋亡[(44.0±3.6)%]增加(P<0.01);而COX活性[(5.94±0.36)×10-1U/mg]、COXⅡmRNA表达(0.82±0.06)、COXⅡ蛋白表达(0.73±0.05)均下降(均P<0.05);mtTFA mRNA表达(0.40±0.02)和mtTFA蛋白表达(0.39±0.06)也下降(均P<0.01)。而AZA组、AZA+CSE组与对照组比较差异无显著性(P>0.05)。BSP发现CSE组mtTFA基因启动区有多个甲基化CpG位点,平均甲基化率为(26.5±2.4)%。而空白对照组、AZA组、AZA+CSE组mtTFA基因启动区未发现甲基化CpG位点。
     结论:(1)CSE诱导HUVEC凋亡呈浓度依赖和时间依赖性,该凋亡为非caspase-3-依赖,并由COX介导。(2)CSE可能通过诱导mtTFA甲基化而下调mtTFA表达,从而抑制COXⅡ表达和COX活性,导致HUVEC凋亡增加。
Objective:To observe the pulmonary vascular endothelial cell apoptosis, mitochondrial transcription factor A(mtTFA) and COX subunitⅡ(COXⅡ) expression in COPD patients and analysis the relationship among them. To investigate the possible role of them in COPD pathogenesis.
     Methods:According to the latest COPD diagnostic criteria,21 patients underwent pneumonectomy were divided into 2 groups: non-COPD group and COPD group (stable stage). TUNEL assay was used to assess cell apoptosis of pulmonary vascular endothelial cells. COX activity was measured by spectrophotometry. Semi-quantitative and real-time reverse transcription polymerase chain reaction (RT-PCR and real-time RT-PCR) were used to measure mtTFA mRNA and COXⅡmRNA expression. Moreover, immunohistochemistry and western-blot were used to detect mtTFA protein expression respectively. Western-blot was used to measure COXⅡprotein. Data were presented as Means±SD. Statistical analysis were performed using SPSS version 13.0 and differences were considered significant if P<0.05.
     Results:The smoking index of COPD group[(33.6±12.0)pack year] was much higher than that in non-COPD group[(12.1±8.9)pack year]. Difference between the two groups was of great significance (P<0.01). The apoptotic index of pulmonary vascular endothelial cells in COPD group[(13.8±1.9)%] was much higher than that in non-COPD group[(5.9±1.0)%]. Difference between the two groups was of great significance (P<0.01). mtTFA mRNA and mtTFA protein were lower in COPD group[(0.59±0.07) and (0.32±0.07)] than those in non-COPD group[(0.78±0.06) and (0.55±0.09)](all P<0.01). COX activity, COXⅡmRNA and COXⅡprotein in COPD group [(4.4±0.9)×10-1U/mg、(0.72±0.12) and (0.62±0.06)]were lower than those in non-COPD group[(7.6±0.4)×10-1U/mg、(0.86±0.16) and (0.89±0.13)] (P<0.01, P <0.05, P<0.01). The correlation analysis showed that the apoptotic index was negatively correlated with FEV1/FVC and FEV1%pre (r=-0.796, r=-0.827, all P<0.01), but positively correlated with smoke index (r=0.703, P<0.01). COX activity was negatively correlated with apoptotic index (r =-0.756, P<0.01). mtTFA potein was positively correlated with FEV1% pre, COXⅡprotein and COX activity(r=0.892, r=0.810, r=0.854, all P<0.01), but negatively correlated with apoptotic index and smoke index (r=-0.749, r=-0.763, all P<0.01).
     Conclusions:(1) Pulmonary vascular endothelial cell apoptosis is increased in COPD patients. (2) mtTFA expression, COXⅡexpression and COX activity are inhibited in COPD patients. (3)Cigarette smoking may be related with pulmonary vascular endothelial cell apoptosis in COPD through inhibiting mtTFA and COX II expression.
     Objective:To investigate whether there is aberrant mtTFA methylation in the lung tissue of COPD patients.
     Methods:Lung tissue of 21 patients underwent pneumonectomy was collected and divided into 2 groups:non-COPD group and COPD group. Genome DNA of lung tissue was extracted and mtTFA methylation satus was detected using Bisulfite DNA sequence (BSP). Statistical analysis were performed using SPSS version 13.0 and differences were considered significant if P<0.05.
     Results:Several methylated CpGs were found in mtTFA of the lung tissue of COPD group but no methylated CpG was found in non-COPD group. The methylation rate of mtTFA in COPD patients is (27.8±3.6) %.
     Conclusions:There is aberrant mtTFA methylation in the lung tissue of COPD patients.
     Objective:To investigate whether mtTFA methylation is involved in CSE-induced HUVEC apoptosis.
     Methods:Cultured HUVECs were exposed to CSE at various concentrations and for different durations. TUNEL assay was used to detect apoptosis. COX activity and caspase-3 activity were measured by spectrophotometry. Then, HUVECs were divided into 4 groups:Control group; AZA group; CSE group and AZA+CSE group. Apoptotic index and COX activity were assessed in each group. Real-time RT-PCR was used to detect mtTFA mRNA and COXⅡmRNA. Western-blot and immunocytochemistry were used to detect mtTFA protein. Western-blot was used to detect COXⅡprotein. Moreover, DNA was extracted and mtTFA methylation status was detected by BSP. Data were presented as Means±SD. Statistical analysis were performed using SPSS version 13.0 and differences were considered significant if P<0.05.
     Results:CSE-induced HUVEC apoptosis increased in a dose and time dependent manner with obvious cell death in 5% and 10% CSE-treated groups. COX activity decreased paralleled to CSE concentration and duration. Caspase-3 activity increased with CSE at a lower concentration of 0.5% to 2.5%, but suddenly decreased after 5% and 10% CSE-treatment. This CSE-induced apoptosis in HUVEC was found negatively correlated with COX activity (r=-0.884, P<0.01), but independent of caspase-3 activity (r=-0.236, P>0.05). Compared with the other three groups, apoptotic index increased in CSE-treated group [(44.0±3.6)%](P<0.01). While mtTFA mRNA, mtTFA protein, COX activity, COXⅡmRNA and COXⅡprotein decreased in CSE-treated group(P<0.01, P<0.01, P<0.05, P<0.05, P<0.05). Nevertheless, no significant differences between the control group, AZA group and AZA+CSE group were found (P>0.05). After BSP, several methylated CpGs were found in CSE-treated group but no methylated CpG was found in control group, AZA group and AZA+CSE group.The methylation rate of mtTFA in CSE group is (26.5±2.4)%.
     Conclusions:(1) CSE induces HUVEC apoptosis in a dose and time dependent manner. This apoptosis is independent of caspase-3 activation and is mediated by COX. (2) mtTFA methylation may contribute to CSE inducing HUVEC apoptosis.
引文
[1]Larsson K. Aspects on pathophysiological mechanisms in COPD. J Intern Med, 2007,262(3):311-340.
    [2]Demedts IK, Demoor T, Bracke KR, et al. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res,2006,7(53):1-10.
    [3]Taraseviciene-Stewart L, Scerbavicius R, Choe KH, et al. An animal model of autoimmune emphysema. Am J Respir Crit Care Med,2005,171(7):734-742.
    [4]陈剑波,陈平,蔡珊,等.烟雾暴露慢性阻塞性肺疾病大鼠肺内细胞凋亡和增殖的变化.中华结核和呼吸杂志,2007,30(9):709-710.
    [5]张程,陈平,蔡珊,等.重组人Ⅱ型肿瘤坏死因子受体-抗体融合蛋白对慢性阻塞性肺疾病大鼠肺功能的影响.中华结核和呼吸杂志,2007,30(6):532-534,537.
    [6]Cai S, Chen P, Zhang C, et al. Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology,2009,14 (3):354-359
    [7]Lesnefsky EJ, Hoppel CL. Ischemia-reperfusion injury in the aged heart:role of mitochondria. Arch Biochem Biophys,2003,420(2):287-297.
    [8]Cardellach F, Alonso JR, Lopez S, et al. Effect of smoking cessation on mitochondrial respiratory chain function. J Toxicol Clin Toxicol,2003,41(3): 223-238.
    [9]Alonso J-R, Cardellach F, Casademont J, et al. Reversible inhibition of mitochondrial complex IV activity in PBMC following acute smoking. Eur Respir J, 2004,23:214-218.
    [10]Jeng JY, Yeh TS, Lee JW, et al.Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth. J Cell Biochem,2008,103(2):347-357.
    [11]Wang J, Silva JP, Gustafsson CM, et al.Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci USA,2001, 98(7):4038-4043.
    [12]Ikeuchi M, Matsusaka H, Kang D, et al. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation,2005,112(5):683-690.
    [13]Remels AH, Schrauwen P, Broekhuizen R, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J,2007,30(2):245-252.
    [14]Sawalha AH. Epigenetics and T-cell immunity. Autoimmunity,2008,41(4): 245-252.
    [15]Januchowski R, Prokop J, Jagodzinski PP. Role of epigenetic DNA alterations in the pathogenesis of systemic lupus erythematosus. J Appl Genet,2004,45(2): 237-248.
    [16]Soria JC, Rodriguez M, Liu DD, et al. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res, 2002,62(2):351-355.
    [17]Kikuchi S, Yamada D, Fukami T, et al. Hypermethylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in primary nonsmall cell lung carcinoma. Cancer,2006,106(8):1751-1758.
    [18]杨敏,陈平,彭红,等.细胞色素C氧化酶在慢性阻塞性肺疾病中的表达及其与肺血管内皮细胞凋亡的关系.中华结核和呼吸杂志.(已修回)
    [19]Choi YS, Kim S, Lee HK, et al. In vitro methylation of nuclear respiratory factor-1 binding site suppresses the promoter activity of mitochondrial transcription factor A. Biochem biophys Res Commun,2004,314(1):118-122.
    [1]中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007修订版).中华结核和呼吸杂志,2007,30(1):8-17.
    [2]曹国强,钱桂生,林莉,等.慢性阻塞性肺疾病大鼠肺组织细胞凋亡和增殖的化.中华结核和呼吸杂志,2005,28(3):169-172.
    [3]Liebow AA. Pulmonary emphysema with special reference to vascular changes. Am Rev Respir Dis,1959,80(1):67-93.
    [4]Tang K, Rossiter HB, Wagner PD, et al. Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol,2004,97(4):1559-1566.
    [5]Segura-Valdez L, Pardo A, Gaxiola M, et al. Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest,2000, 117(3):684-694.
    [6]Kasahara Y, Tuder RM, Cool CD, et al. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med,2001,163(3 Pt 1): 737-744.
    [7]Hodge S, Hodge G, Holmes M, et al. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J,2005,25(3): 447-454.
    [8]Hodge S, Hodge G, Scicchitano R, et al. Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol,2003,81(4):289-296.
    [9]Vandivier RW, Fadok VA, Hoffmann PR, et al.Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest,2002,109(5):661-670.
    [10]Vandivier RW, Ogden CA, Fadok VA, et al. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro:calreticulin and CD91 as a common collectin receptor complex. J Immunol,2002,169(7):3978-3986.
    [11]Keatings VM, Collins PD, Scott DM, et al. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med,1996,153(2):530-534.
    [12]Lacoste JY, Bousquet J, Chanez P, et al. Eosinophilic and neutrophilic inflammation in asthma, chronic bronchitis, and chronic obstructive pulmonary disease.J Allergy Clin Immunol,1993,92(4):537-548.
    [13]McCawley LJ, Matrisian LM. Matrix metalloproteinases:they're not just for matrix anymore! Curr Opin Cell Biol,2001,13(5):534-540.
    [14]Aoshiba K, Rennard SI, Spurzem JR.Cell-matrix and cell-cell interactions modulate apoptosis of bronchial epithelial cells. Am J Physiol,1997,272(1 Pt 1): L28-L37.
    [15]Aoshiba K, Yokohori N, Nagai A. Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am J Respir Cell Mol Biol,2003,28(5): 555-562.
    [16]Powell WC, Fingleton B, Wilson CL, et al. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr Biol,1999,9(24):1441-1447.
    [17]Gueders MM, Balbin M, Rocks N, et al. Matrix metalloproteinase-8 deficiency promotes granulocytic allergen-induced airway inflammation.J Immunol,2005, 175(4):2589-2597.
    [18]MacNee W. Oxidative stress and COPD. Curr Drug Targets Inflamm Allergy. 2005,4(6):627-641.
    [19]Rahman I, Morrison D, Donaldson K, et al. Systemic oxidative stress in asthma, COPD, and smokers.Am J Respir Crit Care Med,1996,154(4 Pt 1):1055-1060.
    [20]Rahman I, van Schadewijk AAM, Crowther AJL, et al.4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. AmJ Respir Crit Care Med,2002,166(4): 490-495.
    [21]Ryter S, Kim HP, Hoetzel A, et al. Mechanisms of cell death in oxidative stress. Antioxidants Redox Signali,2007,9(1):49-89.
    [22]Marwick JA, Stevenson CS, Giddings J, et al. Cigarette smoke disrupts VEGF165-VEGFR-2 receptor signaling complex in rat lungs and patients with COPD morphological impact of VEGFR-2 inhibition. Am J Physiol Lung Cell Mol Physiol,2006,290(5):L897-L908.
    [23]Slebos DJ, Ryter SW, van der Toorn M, et al. Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. Am J Respir Cell Mol Biol,2007,36(4):409-417.
    [24]Zhang C, Cai S, Chen P, et al. Inhibition of tumor necrosis factor-a reduces alveolar septal cell apoptosis in passive smoking rats.Chinese Medical Journal, 2008,121(7):597-601.
    [25]Cai S, Chen P, Zhang C, et al. Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats. Respirology,2009,24(3):354-359.
    [26]Voelkel NF, Cool CD. Pulmonary vascular involvement in chronic obstructive pulmonary disease. Eur Respir J,2003,46:28S-32S.
    [27]Giordano RJ, Lahdenranta J, Zhen L, et al. Targeted induction of lung endothelial cell apoptosis causes emphysema-like changes in the mouse. J Biol Chem,2008, 283(43):29447-19460.
    [28]Kasahara Y, Tuder RM, Taraseviciene-Stewart L. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest,2000,106(11): 1311-1319.
    [29]Tuder RM, Wood K, Taraseviciene L, et al.Cigarette smoke extract decreases the expression of vascular endothelial growth factor by cultured cells and triggers apoptosis of pulmonary endothelial cell. Chest,2000,117(5 Suppl 1):241S-242S.
    [30]Patil AJ, Gramajo AL, Sharma A, et al. Effects of benzo(e)pyrene on the retinal neurosensory cells and human microvascular endothelial cells in vitro. Curr Eye Res,2009,34(8):672-682.
    [31]Guerassimov A, Hoshino Y, Takubo Y, et al. The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am J Respir Crit Care Med, 2004,170(9):974-980.
    [32]Chen Y, Hanaoka M, Chen P, et al. Protective effect of beraprost sodium, a stable prostacyclin analog, in the development of cigarette smoke extract-induced emphysema. Am J Physiol Lung Cell Mol Physiol,2009,296(4):L648-L656.
    [33]Wu CH, Lin HH, Yan FP, et al. Immunohistochemical detection of apoptotic proteins, p53/Bax and JNK/FasL cascade, in the lung of rats exposed to cigarette smoke. Arch Toxicol,80(6):328-336.
    [34]Saetta M, Turato G, Baraldo S, et al. Goblet cell hyperplasia and epithelial inflammation in peripheral airways of smokers with both symptoms of chronic bronchitis and chronic airflow limitation. Am J Respir Crit Care Med,2000,161(3 Pt 1):1016-1021.
    [35]Saetta M, Baraldo S, Corbino L, et al.CD8+ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med,1999,160(2): 711-717.
    [36]Thaikoottathil JV, Martin RJ, Zdunek J, et al.Cigarette smoke extract reduces VEGF in primary human airway epithelial cells. Eur Respir J,2009,33(4): 835-843.
    [37]Kang D, Kim SH, Hamasaki N. Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion,2007, 7(1-2):39-44.
    [38]Rabinovich RA, Bastos R, Ardite E, et al. Mitochondrial dysfunction in COPD patients with low body mass index. Eur Respir J,2007,29(4):643-650.
    [39]Remels AH, Schrauwen P, Broekhuizen R, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J,2007,30(2):245-252.
    [40]Sathyapala SA, Kemp P, Polkey MI. Decreased muscle PPAR concentrations:a mechanism underlying skeletal muscle abnormalities in COPD? Eur Respir J, 2007,30(2):191-193.
    [41]Wang J, Silva JP, Gustafsson CM, et al. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci USA,2001, 98(7):4038-4043.
    [42]Ikeuchi M, Matsusaka H, Kang D, et al. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation,2005,112(5):683-690.
    [43]Jeng JY, Yeh TS, Lee JW, et al.Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth. J Cell Biochem,2008,103(2):347-357.
    [44]Choi YS, Kim S, Pak YK. Mitochondrial transcription factor A (mtTFA) and diabetes. Diabetes Res Clin Pract,2001,54 Suppl 2:S3-9.
    [45]Palmeira CM, Rolo AP, Berthiaume J, et al. Hyperglycemia decreases mitochondrial function:the regulatory role of mitochondrial biogenesis.Toxicol Appl Pharmacol,2007,225(2):214-220.
    [1]Matias KP. Study of epigenetic changes leads to treatment advances in adult leukemias. Oncolog,2003,48:1-4.
    [2]Wu CT, Morris JR. Genes, genetics and epigenetics:a correspondence. Science, 2001,294(5551):2477-2478.
    [3]Barnes PJ.Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc,2009,6(8):693-696.
    [4]中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007修订版).中华结核和呼吸杂志,2007,30(1):8-17.
    [5]Ito K, Ito M, Elliott WM, et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med,2005,352(19):1967-1976.
    [6]Barnes PJ. Role of HDAC2 in the pathophysiology of COPD. Annu Rev Physiol 2009,71:451-464.
    [7]Punturieri A, Szabo E, Croxton TL, et al. Lung cancer and chronic obstructive pulmonary disease:needs and opportunities for integrated research. J Natl Cancer Inst,2009,101(8):554-559.
    [8]Bowman RV, Yang IA, Semmler AB, et al. Epigenetics of lung cancer.Respirology, 2006,11(4):355-365.
    [9]Kagan J, Srivastava S, Barker PE, et al. Towards clinical application of methylated DNA sequences as cancer biomarkers:a joint NCI's EDRN and NIST workshop on standards, methods, assays, reagents and tools. Cancer Res,2007,67(10): 4545-4549.
    [10]Shivapurkar N, Stastny V, Suzuki M, et al. Application of a methylation gene panel by quantitative PCR for lung cancers. Cancer Lett,2007,247(1):56-71.
    [11]Adcock IM, Tsaprouni L, Bhavsar P, et al. Epigenetic regulation of airway infl ammation. Curr Opin Immunol,2007,19(6):694-700.
    [12]Miyanaga A, Gemma A, Noro R, et al. Antitumor activity of histone deacetylase inhibitors in non-small cell lung cancer cells:development of a molecular predictive model. Mol Cancer Ther,2008,7(7):1923-1930.
    [13]Liu H, Zhou Y, Boggs SE, et al. Cigarette smoke induces demethylation of prometastatic oncogene synuclein-gamma in lung cancer cells by downregulation of dnmt3b. Oncogene,2007,26(40):5900-5910.
    [14]Pulling LC, Vuillemenot BR, Hutt JA, et al. Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res,2004, 64(11):3844-3848.
    [15]Remels AH, Schrauwen P, Broekhuizen R, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J,2007,30(2):245-252.
    [16]Soria JC, Rodriguez M, Liu DD, et al. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res, 2002,62(2):351-355.
    [17]Kersting M, Friedl C, Kraaus A, et al. Differential freqencies of p16(INK4a) promoter hypermethylation, p53 mutation and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J Clin Oncol,2000,18(18):3221-3229.
    [18]Frommer M, McDonald LE, MillarDS, et al.A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Nati Acad Sci USA,1992,89(5):1827-1831
    [19]Attwood JT, Yung RL, Richardson BC. DNA methylation and the regulation of gene transcription. J Cell Mol Life Sci,2002,59(2):241-257.
    [20]Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol,2003,4(3): 235-240.
    [21]Vairapandi M, Duker NJ. Enzymic removal of 5-methylcytosine from DNA by a human DNA-glycosylase. Nucleic Acids Res,1993,21(23):5323-5327.
    [1]Pauwels RA, Rabe KF. Burden and clinical features of chronic obstructive pulmonary disease. Lancet,2004,364(9434):613-620.
    [2]中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007修订版).中华结核和呼吸杂志,2007,30(1):8-17.
    [3]Kasahara Y, Tuder RM, Taraseviciene-StewartL, et al. Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest,2000,106(11): 1311-1319.
    [4]Demedts IK, Demoor T, Bracke KR, et al. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res,2006,7(53):1-10.
    [5]Gopisetty G, Ramachandran K, Singal R. DNA methylation and apoptosis. Mol Immunol,2006,43(11):1729-1740.
    [6]Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature,2004,429(6990):457-463.
    [7]Soria JC, Rodriguez M, Liu DD, et al. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res,2002, 62(2):351-355.
    [8]Kersting M, Friedl C, Kraaus A, et al. Differential freqencies of pl6(INK4a) promoter hypermethylation, p53 mutation and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J Clin Oncol,2000,18(18):3221-3229.
    [9]Carnevali S, Petruzzelli S, Longoni B, et al. Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol,2003,284(6):955-963.
    [10]Hellebrekers DM, Jair KW, Vire E, et al. Angiostatic activity of DNA methyltransferase inhibitors. Mol Cancer Ther,2006,5(2):467-475.
    [11]Miller-Kasprzak E, Jagodzin'ski PP.5-Aza-2'-deoxycytidine increases the expression of anti-angiogenic vascular endothelial growth factor 189b variant in human lung microvascular endothelial cells. Biomed Pharmacother,2008,62(3): 158-163.
    [12]Tuder RM, Wood K, Taraseviciene L, et al. Cigarette smoke extract decreases the expression of vascular endothelial growth factor by cultured cells and triggers apoptosis of pulmonary endothelial cell. Chest,2000,117(5 Suppl 1):241S-242S.
    [13]Yang YM, Liu GT. Damaging effect of cigarette smoke extraction on primary cultured human umbilical vein endothelial cells and its mechanism. Biomed Environ Sci,2004,17(2):121-134.
    [14]裴艳芳,陈平,李军利,等.环氧合酶-2对香烟提取物诱导的内皮细胞凋亡的作用.中华结核和呼吸杂志,2009,32(2):128-132.
    [15]陈益华,张华杰,南发俊.Caspases抑制剂的研究进展.生命科学,2006,18(3):247-254.
    [16]Alfons L. Apoptosis-an introduction. Bio Essays,2003,25(9):888-896.
    [17]Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB Rep,2008, 41(1):11-22.
    [18]Hampton MB, Fadeel B, Orrenius. Redox regulaion of the caspases during apoptosis. Ann NY Acad Sci,1998,854(1):328-335.
    [19]Wickenden JA, Clarke MC, Rossi AG, et al. Cigarette smoke prevents apoptosis through inhibition of caspase activation and induces necrosis. Am J Respir Cell Mol Biol,2003,29(5):562-570.
    [20]Yanbaeva DG, Dentener MA, Creutzberg EC, et al. Systemic effects of smoking. Chest,2007,131(5):1557-1566.
    [21]van Tiel ED, Peeters PHM, Smit HA, et al. Quitting smoking may restore haematological characteristics within five years. Ann Epidemiol,2002,12(6): 378-388.
    [22]Frohlich M, Sund M, Lowel H, et al. Independent association of various smoking characteristics with markers of systemic inflammation in men. Eur Heart J,2003, 24(14):1365-1372.
    [23]Hodge S, Hodge G, Holmes M, et al. Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J,2005(3): 447-454.
    [24]Liu H, Zhou Y, Boggs SE, et al. Cigarette smoke induces demethylation of prometastatic oncogene synuclein-gamma in lung cancer cells by downregulation of dnmt3b. Oncogene,2007,26(40):5900-5910.
    [25]Pulling LC, Vuillemenot BR, Hutt JA, et al. Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res 2004, 64(11):3844-3848.
    [26]Baryshnikova E, Destro A, Infante MV, et al. Molecular alterations in spontaneous sputum of cancer-free heavy smokers:results from a large screening program. Clin Cancer Res,2008,14(6):1913-1919.
    [27]Georgiou E, Valeri R, Tzimagiorgis G, et al. Aberrant p16 promoter methylation among Greek lung cancer patients and smokers:correlation with smoking. Eur J Cancer Prev,2007,16(5):396-402.
    [28]Hillemacher T, Frieling H, Moskau S, et al. Global DNA methylation is influenced by smoking behaviour. Eur Neuropsychopharmacol,2008,18(4): 295-298.
    [29]Franco R, Schoneveld O, Georgakilas AG, et al. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett,2008,266(1):6-11.
    [30]Breton CV, Byun HM, Wenten M, et al. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med,2009, 180(5):462-467.
    [31]Terry MB, Ferris JS, Pilsner R, et al. Genomic DNA methylation among women in a multiethnic New York City birth cohort. Cancer Epidemiol Biomarkers Prev, 2008,17(9):2306-2310
    [32]Launay JM, Del Pino M, Chironi G, et al. Smoking induces long-lasting effects through a monoamine-oxidase epigenetic regulation. PLoS One,2009,4(11): e7959.
    [1]Kang D, Kim SH, Hamasaki N. Mitochondrial transcription factor A (TFAM):roles in maintenance of mtDNA and cellular functions. Mitochondrion,2007,7(1-2): 39-44.
    [2]Remels AH, Schrauwen P, Broekhuizen R, et al. Peroxisome proliferator-activated receptor expression is reduced in skeletal muscle in COPD. Eur Respir J,2007, 30(2):245-252.
    [3]Larsson NG, Oldfors A, Garman JD. Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans. Hum Mol Genet,1997, 6(2):185-191.
    [4]Pierro P, Capaccio L, Gadaleta G. The 25 kDa protein recognizing the rat curved region upstream of the origin of the L-strand replication is the rat homologue of the human mitochondrial transcription factor. FEBS Lett,1999,457(3):307-310.
    [5]Siciliano G, Mancuso M, Pasquali L, et al.Abnormal levels of human mitochondrial transcription factor A in skeletal muscle in mitochondrial encephalomyopathies. Neurol Sci,2000,21(5Suppl):985-987.
    [6]Tiranti V, Rossi E, Ruiz-Carrillo A, et al. Chromosomal localization of mitochondrial transcription factor A (TCF6), single-stranded DNA-binding protein (SSBP), and endonuclease G (ENDOG), three human housekeeping genes involved in mitochondrial biogenesis. Genomics,1995,25(2):559-564.
    [7]Larsson NG, Barsh GS, Clayton DA. Structure and chromosomal localization of the mouse mitochondrial transcription factor A gene (MtTFA). Mamm Genome, 1997,8(2):139-140.
    [8]Rantanen A, Jansson M, Oldfors A, et al. Downregulation of Tfam and mtDNA copy number during mammalian spermatogenesis. Mamm Genome,2001,12(10): 787-792.
    [9]Reyesa A, Mezzinab M, Gadaletab G. Human mitochondrial transcription factor A (mtTFA):gene structure and characterization of related pseudogenes. Gene,2002, 291(1-2):223-232.
    [10]Ohno T, Umeda S, Hamasaki N, et al. Binding of human mitochondrial transcription factor A, an HMG box protein, to a four-way DNA junction. Biochem Biophys Res Commun,2000,271(2):492-498.
    [11]McCulloch V, Shadel GS. Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol Cell Biol.2003,23(16): 5816-5824.
    [12]Bogenhagen DF, Clayton DA. The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci,2003,28(7):357-360.
    [13]Lecrenier N, Foury F. New features of mitochondrial DNA replication system in yeast and man. Gene,2000,246(1-2):37-48.
    [14]Larsson NG, Wang J, Wihelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet, 1998,18(3):231-236.
    [15]Wu Z, Puigserver P, AnderssonU, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell,1999, 98(1):115-124.
    [16]Fisher RP, Clayton DA. Purication and characterization of human mitochondrial transcription factor 1. Mol Cell Biol,1988,8(8):3496-3509.
    [17]Takamatsu C, Umeda S, Ohsato T, et al. Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein. EMBO Rep, 2002,3(5):451-456.
    [18]Alam TI, Kanki T, Muta T, et al. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res,2003,31(6):1640-1645.
    [19]Kanki T, Nakayama H, Sasaki N, et al. Mitochondrial nucleoid and transcription factor A. Ann N Y Acad Sci,2004,1011(4):61-68.
    [20]Larsson NG, Oldfors A, Holme E, et al. Low levels of mitochondrial transcription factor A in mitochondrial DNA depletion. Biochem Biophys Res Commun,1994, 200(3):1374-1381.
    [21]Hirano M, Tuan H. Defects of intergenomic communication:where dowe stand? Brain Pathol,2000,10(3):451-461.
    [22]Bonnie D. Modulation of mitochondrial transcription in response to mtDNA depletion and repletion in HeLa cells. Nucleic Acids Res,2002,30(9):1929-1934.
    [23]Damien F, Martino D, Patricia E, et al. Zidovudine (AZT) induced alterations in mitochondrial biogenesis in rat striated muscles. Can J Physiol Pharmacol,1999, 77(1):29-35.
    [24]Rantanen A, Larsson NG. Regulation of mitochondrial DNA copy number during spermatogenesis. Hum Reprod,2000,15(Suppl 2):86-91.
    [25]Kaufman BA, Durisic N, Mativetsky JM, et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell,2007,18(9):3225-3236.
    [26]Cotney J, Wang Z, Shadel GS. Relative abundance of the human mitochondrial transcription system and distinct roles for h-mtTFBl and h-mtTFB2 in mitochondrial biogenesis and gene expression. Nucleic Acids Res,2007,35(12): 4042-4054.
    [27]Rebelo AP, Williams SL, Moraes CT. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res,2009,37(20): 6701-6715.
    [28]Sekiguchi M. MutT-related error avoidance mechanism for DNA synthesis. Genes Cells,1996,1(2):139-145.
    [29]Ohtsubo T, Nishioka K, Imaiso Y, et al. Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res, 2000,28(6):1355-1364.
    [30]Shinmura K, Yamaguchi S, Saitoh T, et al. Adenine excisional repair function of MYH protein on the adenine:8-hydroxyguanine base pair in double-stranded DNA. Nucleic Acids Res,2000,28(24):4912-4918.
    [31]Boiteux S, Radicella JP. The human OGG1 gene:structure, functions, and its implication in the process of carcinogenesis. Arch Biochem Biophys,2000,377(1): 1-8.
    [32]Yoshida Y, Izumi H, Ise T, et al. Human mitochondrial transcription factor A binds preferentially to oxidatively damaged DNA. Biochem Biophys Res Commun,2002,295(4):945-951.
    [33]Yoshida Y, Izumi H, Torigoe T, et al. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res,2003,63(13):3729-3734.
    [34]Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors:a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci,1994,91(4):1309-1313.
    [35]Choi YS, Kim S, Pak YK. Mitochondrial transcription factor A (mtTFA) and diabetes. Diabetes Res Clin Pract,2001,54 Suppl 2:S3-9.
    [36]Inagaki H, Matsushima Y, Ohshima M, et al. Interferons suppress mitochondrial gene transcription by depleting mitochondrial transcription factor A(mtTFA).J Interferon Cytokine Res,1997,17(5):263-269.
    [37]Palmeira CM, Rolo AP, Berthiaume J, et al. Hyperglycemia decreases mitochondrial function:the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol,2007,225(2):214-220.
    [38]Choi YS, Kim S, Lee HK, et al. In vitro methylation of nuclear respiratory factor-1 binding site suppresses the promoter activity of mitochondrial transcription factor A. Biochem biophys Res Commun,2004,314(1):118-122.
    [39]Wang J, Silva JP, Gustafsson CM, et al. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci USA,2001, 98(7):4038-4043.
    [40]Ikeuchi M, Matsusaka H, Kang D, et al. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation,2005,112(5):683-690.
    [41]Jeng JY, Yeh TS, Lee JW, et al. Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth. J Cell Biochem,2008,103(2):347-357.
    [42]Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling.J Biol Chem,2000, 275(21):16202-16212.
    [43]Sansome C, Zaika A, Marchenko ND, et al. Hypoxia death stimulus induces translocation of p53 protein to mitochondria.Detection by immunofluorescence on whole cells. FEBS Lett.2001,488(3):110-115.
    [44]Rabinovich RA, Bastos R, Ardite E, et al. Mitochondrial dysfunction in COPD patients with low body mass index. Eur Respir J,2007,29(4):643-650.
    [45]Sathyapala SA, Kemp P, Polkey MI. Decreased muscle PPAR concentrations:a mechanism underlying skeletal muscle abnormalities in COPD? Eur Respir J, 2007,30(2):191-193.
    [46]Tang K, Rossiter HB, Wagner PD, et al. Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol,2004,97(4):1559-1566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700