散发性结直肠癌中P33~(ING1b)的表达、突变及甲基化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     ING1(inhibitor of growth 1)基因是新近发现的抑癌基因,它的表达可抑制细胞生长、参与细胞衰老调节和诱导细胞凋亡。研究发现ING1基因有三种不同的亚型p33~(ING1b)、p47~(ING1a)和p24~(ING1c)。目前对P33~(ING1b)的研究较多,它是野生型p53的分子“伴侣”。在人体某些肿瘤中,P33~(ING1b) mRNA的表达水平降低,而基因突变较少,提示p33~(ING1b)并非通过突变而是通过低水平表达影响肿瘤的发生发展。在结直肠癌中,EphA7、E2F等基因的低表达是因为其启动子的甲基化引起的。迄今为止,p33~(ING1b)在结直肠癌中的研究报道较少,尚未见p33~(ING1b)启动子甲基化的研究报道。本研究检测散发性结直肠癌中p33~(ING1b)的mRNA表达、基因突变和启动子甲基化的情况,旨在探讨p33~(ING1b)基因在散发性结直肠癌发生发展中的作用和意义。
     方法:
     P33~(INC1b) mRNA表达、基因突变和启动子甲基化分别用半定量逆转录-聚合酶链式反应(reverse transcription-polymerase chain reaction,RT-PCR)、聚合酶链式反应-单链构像多态性(PCR-single strain conformation polymorphism,PCR-SSCP)和甲基化特异性PCR(Methylation Specific PCR,MSP)进行分析。
     结果:
     1、在46例结直肠癌组织和相应的正常粘膜组织中,p33~(ING1b) mRNA都有不同程度的表达,p33~(ING1b) mRNA在癌组织和正常粘膜组织中的平均光密度比值分别为0.52和1.28,有显著的统计学差异(P<0.05)。Dukes C/D期癌组织中p33~(ING1b) mRNA的平均光密度比值为0.38,低于Dukes A/B期的0.65,有显著的统计学差异(P<0.05)。但它们在不同年龄、性别、肿瘤部位、癌肿侵犯肠管范围和肿瘤分化程度组的比较无明显差别(P>0.05)。
     2、对p33~(ING1b)基因外显子1和外显子2的编码区进行检测,46例结直
Purpose:
    ING1 has been identified as a novel tumor suppressor gene, and proved to be involved in the modulation of cell cycle. Its expression can inhibit cell growth, control celluar aging, and induce cell apotosis. It has more than 3 different splices at transcription, and becomes three subtypes (p33~(ING1b)、 p47~(ING1a) 和 p24~(ING1c)) at least. P33~(ING1b) is a 'molecular partner' of wild type p53. Decreased expression of p33~(ING1b) mRNA has been found in some human tumors, but mutation of p33~(ING1b) was rarely found. It suggests that p33~(ING1b) exploits the effect on the genesis and progression of cancer by decreased expression, not by mutation. Decreased expression of EphA7、 CDX2、 E2F are caused by their promoter methylaion in colorectal cancer. There are seldom reports about p33~(ING1b) in colorectal cancer, and no report about its methylaion by now. Our study was to explore the effect and siginificance of p33~(ING1b) on the genesis and progression of sporadic colorectal cancer by detecting mRNA expression, mutation and promoter methylaion of p33~(ING1b).
    Methods:
    mRNA expression, mutation and promoter methylaion of p33~(ING1b) in 46 specimens of sporadic colorectal cancerous tissues and matched normal tissues were detected by semi-quantitative RT-PCR, PCR-SSCP and MSP, respectively.
    Results:
    (1) All 46 samples of tumor tissues and matched normal mucosae tissues express p33~(ING1b) mRNA. The average ratios of light density of P33~(ING1b) mRNA in the cancerous and normal tissues were 0.52 and 1.28, significant difference between
引文
1. Hung KE, Chung DC.Colorectal cancer screening: today and tomorrow. South Med J. 2006;99:240-246
    2.李连弟、饶克勤、张思维、等.中国12市县1993年-1997年肿瘤发病和死亡登记资料统计分析.中国肿瘤2002:11:497-507.
    3. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56:106-130.
    4. Liu Y, Bodmer WF.Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines.Proc Natl Acad Sci U S A. 2006;103:976-981.
    5. Barry EL, Baron JA, Grau MV, et al.K-ras mutations in incident sporadic colorectal adenomas.Cancer. 2006; 106:1036-1040.
    6. Luchtenborg M, Weijenberg MP, Wark PA, et al. Mutations in APC, CTNNB 1 and K-ras genes and expression of hMLHl in sporadic colorectal carcinomas from the Netherlands Cohort Study.BMC Cancer. 2005;15:160.
    7. Fearon ER,Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759-767.
    8. Smith G, Carey FA, Beattie J,et al.Mutations in APC, Kirsten-ras, and p53--alternative genetic pathways to colorectal cancer. Proc Nail Acad Sci U S A. 2002;99:9433-9438.
    9. Garkavtsev I, Kazarov A, Gudkov A, et al. Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet.1996; 14: 415-420.
    10. Garkavtsev I, Demetdck D, Riabowol K. Cellular localization and chromosome mapping of a novel candidate tumor suppressor gene (ING1). Cytogenet Cell Genet. 1997; 76:176-178.
    11. Zeremski M, Horrigan SK, Gfigorian IA, et al. Localization of the candidate tumor suppressor gene ING1 to human chromosome 13q34. Somat Cell Mol Genet. 1997; 23: 233-236.
    12.Nouman,G.S,Anderson,J.J,Crosier,S,et al. Downregulation of nuclear expression of the p33(ING1b) inhibitor of growth protein in invasive carcinoma of the breast. J Clin Pathol.2003;56: 507-511.
    13.Jager,D, Stockert,E, Scanlan,MJ, e al. Cancer-testis antigens and ING1 tumor suppressorgene product are breast cancer antigens: characterization of tissue-specificING1 transcripts and a homologue gene. Cancer Res. 1999;59:6197-6204.
    14.Nouman,GS, Angus,B, Lunec,J, et al. Comparative assessment expression of the inhibitor of growth 1 gene (ING1) in normal and neoplastic tissues. Hybrid. Hybridomics. 2002;21:1-10.
    15.Gunduz M,Nagatsuka H,Demircan K, et al.Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas.Gene. 2005;356:109-117.
    16.Takahashi M,Ozaki T,Todo S, et al.Decreased expression of the candidate tumor suppressor gene ING1 is associated with poor prognosis in advanced neuroblastomas.Oncol Rep. 2004;12:811-816.
    17.Tallen G, Kaiser I, Krabbe S, et al.No ING1 mutations in human brain tumours but reduced expression in high malignancy grades of astrocytoma.Int J Cancer. 2004;109:476-479.
    18.Nouman GS, Anderson JJ, Crosier S, et al.Downregulation of nuclear expression of the p33(ING1b) inhibitor of growth protein in invasive carcinoma of the breast.J Clin Pathol. 2003;56:507-511.
    19.Tokunaga E,Maehara Y,Oki E,et al.Diminished expression of ING1 mRNA and the correlation with p53 expression in breast cancers.Cancer Lett. 2000;15:15-122.
    20.Oki E, Maehara Y, Tokunaga E, et al.Reduced expression of p33(ING1) and the relationship with p53 expression in human gastric cancer.Cancer Lett. 1999;147:157-162.
    21.Toyama T, Iwase H, Watson P, et al.Suppression of ING1 expression in sporadic breast cancer.Oncogene. 1999;18:5187-5193.
    22.Yu GZ,Zhu MH,Zhu Z,et al.Genetic alterations and reduced expression of tumor suppressor p33(ING1b) in human exocrine pancreatic carcinoma. World J Gastroenterol. 2004;10:3597-3601.
    23.Ohgi T, Masaki T, Nakai S, et al.Expression of p33(ING1) in hepatocellular carcinoma: relationships to tumour differentiation and cyclin E kinase activity.Scand J Gastroenterol. 2002;37:1440-1448.
    24.Nouman GS, Anderson JJ, Wood KM, et al.Loss of nuclear expression of the p33(ING1b) inhibitor of growth protein in childhood acute lymphoblastic leukaemia.J Clin Pathol. 2002;55:596-601.
    25.Ohmori,M,Nagai,M,Tasaka,T,et al. Decreased expression of p33ING1 mRNA in lymphoid malignancies. Am. J. Hematol. 1999;62,118-119.
    26.Oki,E,Maehara,Y,Tokunaga,E,et al. Reduced expression of p33(ING1) and the relationship with p53 expression in human gastric cancer. Cancer Lett. 1999;147,157-162.
    27.Chen L,Matsubara N,Yoshino T,et al.Genetic alterations of candidate tumor suppressor ING1 in human esophageal squamous cell cancer.Cancer Res. 2001;61:4345-4349.
    28.Ito,K, Kinjo,K, Nakazato,T, et al. Expression and sequence analyses of p33(ING1) gene in myeloid leukemia. Am J Hematol. 2002;69:141-143.
    29.Krishnamurthy,J, Kannan,K, Feng,J, et al.Mutational analysis of the candidate tumor suppressor gene ING1 in Indian oral squamous cell carcinoma. Oral Oncol. 2001;37:222-224.
    30.Gonzalez-Zulueta M, Bender CM, Yang AS, et al. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res.1995; 55: 4531-4535.
    31. Herman JG, Merlo A, Mao L,et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res.1995; 55: 4525-4530.
    32. Galm O,Wilop S, Reichelt J, et al. DNA methylation changes in multiple myeloma. Leukemia.2004; 18: 1687-1692.
    33. Gilbert J, Gore SD, Herman JG, et al. The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res.2004; 10: 4589-4596.
    34. Herman JG..Circulating methylated DNA. Ann N Y Acad Sci .2004; 1022: 33-39.
    35. Spinella F, Rosano L, Di Castro V, et al. Inhibition of cyclooxygenase-1 and -2 expression by targeting the endothelin a receptor in human ovarian carcinoma cells. Clin Cancer Res.2004; 10: 4670-4679.
    36. Wang J, Kataoka H, Suzuki M, et al. Downregulation of EphA7 by hypermethylation in colorectal cancer. Oncogene. 2005;24:5637-5647.
    37. Kawai H, Tomii K, Toyooka S, et al. Promoter methylation downregulates CDX2 expression in colorectal carcinomas. Oncol Rep. 2005;13:547-551.
    38. Campanero MR,Armstrong MI,Flemington EK. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci. 2000; 97:6481-6486.
    39. Esteller M, Silva JM, Dominguez G., et al.promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl. Cancer Inst. (Bethesda). 2000;92: 564-569.
    40. Chen J,Rocken C,Lofton-Day C,et al.Molecular analysis of APC promoter methylation and protein expression in colorectal cancer metastasis. Carcinogenesis. 2005;26:37-43.
    41. Gtmduz,M,Ouchida,M,Fukushima,K,et al. Genomie structure of the human ING1 gene and tumor-specific mutations detected in head and neck squamous cell carcinomas. Cancer Res. 2000;60:3143-3146.
    42.Bassam BJ, Caetano-Anolles G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem. 1991;196:80-83.
    43.Galiatsatos P, Foulkes WD.Familial adenomatous polyposis.Am J Gastroenterol. 2006;101:385-398.
    44.Gruber SB.New developments in Lynch syndrome (hereditary nonpolyposis colorectal cancer) and mismatch repair gene testing.Gastroenterology.2006;130:577-587.
    45.Ricciardiello L, Boland CR.Lynch syndrome (hereditary non-polyposis colorectal cancer): current concepts and approaches to management.Curr Gastroenterol Rep. 2005;7:412-420.
    46.Gagnon JF, Bernard O, Villeneuve L, et al.Irinotecan inactivation is modulated by epigenetic silencing of UGT1A1 in colon cancer.Clin Cancer Res.2006;12:1850-1858.
    47.Nuovo GJ, Nakagawa H, Sotamaa K, et al. Hypermethylation of the MLH1 promoter with concomitant absence of transcript and protein occurs in small patches of crypt cells in unaffected mucosa from sporadic colorectal carcinoma. Diagn Mol Pathol. 2006;15:17-23.
    48.Sanz-Casla MT, Maestro ML, Vidaurreta M, et al. p16 Gene methylation in colorectal tumors: correlation with clinicopathological features and prognostic value.Dig Dis. 2005;23:151-155.
    49.Koinuma K, Yamashita Y, Liu W, et al.Epigenetic silencing of AXIN2 in colorectal carcinoma with microsatellite instability.Oncogene. 2006;25:139-146.
    50.Ebert MP, Mooney SH, Tonnes-Priddy L, et al.Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers.Neoplasia.2005;7:771-778.
    51. Imamura Y, Hibi K, Koike M, et al. RUNX3 promoter region is specifically methylated in poorly-differentiated colorectal cancer.Anticancer Res. 2005;25:2627-2630.
    52. Wang J, Kataoka H, Suzuki M, et al.Downregulation of EphA7 by hypermethylation in colorectal cancer. Oncogene. 2005;24:5637-5647.
    53. Oliveira C, Velho S, Domingo E, et al.Concomitant RASSF1A hypermethylation and KRAS/BRAF mutations occur preferentially in MSI sporadic colorectal cancer.Oncogene. 2005;24:7630-7634.
    54. Taniguchi H,Yamamoto H,Hirata T, et al. Frequent epigenetic inactivation of WIF-1 in human gastrointestinal cancers.Oncogene.2005;24:7946-7952.
    55. Issa JPJ, Ottaviano YL, Celano P, et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet. 1994;7:536-540.
    56. Robertson KD, Jones PA. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol Cell Biol. 1998; 18:6457-6473.
    57. Esteller M, Hamilton SR, Burger PC, et al. Inactivation of the DNA repair gene O~6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common eventin primary human neoplasia. Cancer Res 1999;59:793-797.
    58. Garkavtsev I, Grigorian IA, Ossovskaya VS, et al.The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control.Nature. 1998;391 (6664):295-298.
    59. Shinoura N, Muramatsu Y, Nishimura M, et al,.Adenovirus-mediated transfer of p33ING1 with p53 drastically augments apoptosis in gliomas.Cancer Res. 1999;59:5521-5528.
    60. Esteller M,Fraga MF, Guo M,et al..DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis.Hum Mol G-enet. 2001;10: 3001-3007.
    61.Herman JG, Graff JR, Myohanen S, et al.Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands.Proc Natl Acad Sci U S A.1996;93:9821-9826.
    62.Li H, Myeroff L, Smiraglia D, et al.SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers.Proc Natl Acad Sci U S A. 2003;100:8412-8417.
    63.Nilsson S, Gustafsson JA: Estrogen receptor action. Crit Rev Eukaryot Gene Expr. 2002;12:237-257.
    64.Mosselman S, Polman J, Dijkema R: ERβ: identification and characterization of a novel human estrogen receptor. FEBB Lett. 1996;392:49-52.
    65.Kuiper GGJM, Carlsson B, Grandien K, et al: Comparison of the ligand-binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology. 1997;138:863-870.
    66.Enmark E, Pelto-Huikko M, Grandien K, et al: Human estrogen receptor β-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab. 1997;82:4258-4265.
    67.Hall JM, Couse JF, Korach KS: The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem. 2001;276:36869-36872.
    68.Salih MA, Sims SH, Kalu DN: Putative intestinal estrogen receptor: evidence for regional differences. Mol Cell Endocrinol. 1996;121:47-55.
    69.Oshima CT,Wonraht DR,Catarino RM, et al: Estrogen and progesterone receptors in gastric and colorectal cancer. Hepatogastroenterology. 1999;46:3155-3158.
    70.Taylor AH, Al-Azzawi F: Immunolocalisation of oestrogen receptor beta in human tissues. J Mol Endocrinol. 2000;24:145-155.
    71.Foley EF, Jazaeri AA, Shupnik MA, et al: Selective loss of estrogen receptor β in malignant human colon. Cancer Res. 2000;60:245-248.
    72. Campbell-Thompson M, Lynch IJ, Bhardwaj B: Expression of estrogen receptor (ER) subtypes and ERβ isoforms in colon cancer. Cancer Res. 2001 ;61:632-640.
    73. Konstantinopoulos PA, Kominea A, Vandoros G, et al: Oestrogen receptor beta (ERβ) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour's dedifferentiation. European J Cancer. 2003;39:1251-1258.
    74. Leu Y-W, Yan PS, Fan M, et al: Loss of estrogenic receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res.2004;64:8184-8192.
    75. Klinge CM: Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res.2001 ;29:2905-2919.
    76. Enmark E, Pelto-Huikko M, Grandien K, et al: Human estrogen receptor β-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab. 1997;82:4258-4265.
    77. Kushner PJ, Agard DA, Greene GL, et al: Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol.2000;74:311-317.
    78. Safe S: Transcriptional activation of genes by 17 β-estradiol through estrogen receptor-Spl interactions. Vitam Horm.2001 ;62:231-252.
    79. Porter W, Saville B, Hoivik D, et al: Functional synergy between the transcription factor SP1 and the estrogen receptor. Mol Endocrinology. 1997; 11:1569-1580.
    80. Saville B, Wormke M, Wang E et al: Ligand-, cell-, and estrogen receptor subtype (α/β)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem. 2000;275:5379-5387.
    81. Schultz JR, Petz LN, Nardulli AM: Cell- and ligand-specific regulation of promoters containing activator protein-1 and Sp1 sites by estrogen receptors α and β. J Biol Chem. 2005;280:347-354.
    82.Toyota M,Ahuja N,Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A,1999;96:8681-8686..
    83.Fujii S, Tominaga K, Kitajima K, et al.Methylation of the oestrogen receptor gene in non-neoplastic epithelium as a marker of colorectal neoplasia risk in longstanding and extensive ulcerative colitis.Gut. 2005;54:1287-92.
    84.Hiranuma C,Kawakami K,Oyama K,et al.Hypermethylation of the MYOD1 gene is a novel prognostic factor in patients with colorectal cancer.Int J Mol Med. 2004;13:413-417.
    85.Nakagawa H,Nuovo GJ.Zervos EE,et al.Age-related hypermethylation of the 5' region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development.Cancer Res.2001;61:6991-6995.
    86.Dominguez G, Silva J, Garcia JM, et al.Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors.Mutat Res. 2003;530:9-17.
    87.Shen L, Kondo Y, Hamilton SR, et al. P14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53.Gastroenterology. 2003;124:626-633.
    88.Sanz-Casla MT, Maestro ML, Vidaurreta M, et al. p16 Gene methylation in colorectal tumors: correlation with clinicopathological features and prognostic value. Dig Dis. 2005;23:151-155.
    89.Kim BN, Yamamoto H, Ikeda K, et al.Methylation and expression of p16INK4 tumor suppressor gene in primary colorectal cancer tissues.Int J Oncol.2005;26:1217-1226.
    90.Chen J, Rocken C, Lofton-Day C, et al. Molecular analysis of APC promoter methylation and protein expression in colorectal cancer metastasis.Carcinogenesis. 2005;26:37-43.
    91.Kawakami K, Ruszkiewicz A, Bennett G, et al.DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer.Br J Cancer. 2006;94:593-598.
    92. Maeda K, Kawakami K, Ishida Y, et al. Hypermethylation of the CDKN2A gene in colorectal cancer is associated with shorter survival. Oncol Rep.2003; 10:935-938.
    93. Yi J, Wang ZW, Cang H, et al: P16 gene methylation in colorectal cancers associated with Duke's staging. World J Gastroenterol. 2001; 7:722-725.
    94. Esteller M, Gonzalez S, Risques RA, et al.K-ras and p16 aberrations confer poor prognosis in human colorectal cancer.J Clin Oncol. 2001;19:299-304.
    95. Tomizawa Y, Kohno T, Kondo H, et al. Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clin Cancer Res. 2002; 8:2362-2368.
    96. Ng CS, Zhang J, Wan S, et al: Tumor pl6M is a possible marker of advanced stage in non-small cell lung cancer. J Surg Oncol. 2002;79:101-106.
    1. Hung KE, Chung DC.Colorectal cancer screening: today and tomorrow. South Med J. 2006;99:240-246
    2.李连弟、饶克勤、张思维、等.中国12市县1993年.1997年肿瘤发病和死亡登记资料统计分析.中国肿瘤 2002:11:497-507.
    3. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759-767.
    4. Jones PA, Laird PW: Cancer epigenetics comes of age. Nat Genet. 1999; 21: 163-167.
    5. Issa JP: The epigenetics of colorectal cancer. Ann NY Acad Sci. 2000; 910: 140-153.
    6. Sanz-Casla MT, Maestro ML, Vidaurreta M, et al. p16 Gene methylation in colorectal tumors: correlation with clinicopathological features and prognostic value.Dig Dis;23:151-155.
    7. Shen L, Kondo Y, Hamilton SR, et al. P14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53. Gastroenterology. 2003; 124:626-633.
    8. Noda H, Kato Y, Yoshikawa H, et al.Microsatellite instability caused by hMLH1 promoter methylation increases with tumor progression in right-sided sporadic colorectal cancer.Oncology. 2005;69:354-362.
    9. Cross SH, Bird AP: CpG islands and genes. Curr Opin Genet Dev. 1995;5: 309-314.
    10. Turker MS: The establishment and maintenance of DNA methylation patterns in mouse somatic cells. Semin Cancer Biol. 1999;9: 329-337.
    11. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69: 915-926.
    12. Singer-Sam J, Riggs AD. X chromosome inactivation and DNA methylation. EXS 1993; 64: 358-384.
    13. Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature 1993; 366: 362-365.
    14. Bird AP. Gene number, noise reduction and biological complexity. Trends Genet 1995; 11: 94-100.
    15. Prak ET, Kazazian HH Jr. Mobile elements and the human genome. Nat Rev Genet 2000; 1: 134-144.
    16. Bird AP, Wolffe AP. Methylation-induced repression - belts, braces and chromatin. Cell 1999; 99:451-454.
    17. Baylin SB, Herman JG, Graff JR, et al:Alterations in DNA methylation - A fundamental aspect of neoplasia. Adv Cancer Res. 1998;72: 141-196.
    18. Boyes J, Bird A: Repression of genes by DNA methylation depends on CpG density and promoter strength: Evidence for involvement of a methyl-CpG binding protein. EMBO J. 1992;11: 327-333.
    19. Goelz SE, Vogelstein B, Hamilton SR, Feinberg AP. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 1985; 228: 187-190.
    20. Hernandez-Blazquez FJ, Habib M, Dumollard JM, et al. Evaluation of global DNA hypomethylation in human colon cancer tissues by immunohistochemistry and image analysis. Gut 2000; 47: 689-693.
    21. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature 1998; 395: 89-93.
    22. Lengauer C, Kinzler KW, Vogelstein B. DNA methylation and genetic instability in colorectal cancer cells. Proc Nail Acad Sci U S A 1997; 94: 2545-2550.
    23. Feinberg AP, Vogelstein B. Hypomethylation of ms oncogenes in primary human cancers. Biochem Biophys Res Commun 1983; 111: 47-54.
    24. Kusaba H, Nakayama M, Harada T, et al. Association of 5 CpG demethylation and altered chromatin structure in the promoter region with transcriptional activation of the multidrug resistance 1 gene in human cancer cells. Eur J Biochem 1999; 262: 924-932.
    25.Dong Z, Wang X, Evers BM. Site-specific DNA methylation contributes to neurotensin/neuromedin N expression in colon cancers. Am J Physiol Gastrointest Liver Physiol 2000; 279: G1139-G1147.
    26.Sharrard RM, Royds JA, Rogers S, Shorthouse AJ. Patterns of methylation of the c-myc gene in human colorectal cancer progression. Br J Cancer 1992; 65:667-672.
    27.Bariol C ,Suter C ,Cheong K,et al. The relationship between hypomethylation and CpG island methylation in colorectal neoplasia.Am J Pathol ,2003,162:1361-1371.
    28.Silverman AL, Park JG, Hamilton SR, Gazdar AF, Luk GD, Baylin SB. Abnormal methylation of the calcitonin gene in human colonic neoplasms.Cancer Res 1989; 49: 3468-3473.
    29.Herman JG, Merlo A, Mao L, et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 1995; 55: 4525-4530.
    30.Esteller M, Sparks A, Toyota M, et al: Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60:4366-4371.
    31. Cunningham JM, Christensen ER, Tester DJ, et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 1998; 58: 3455-3460.
    32.Young J, Biden KG, Simms LA, et al: HPP1: A transmembrane protein-encoding gene commonly methylated in colorectal polyps and cancers. Proc Natl Acad Sci USA. 2001;98: 265-270.
    33.Liang G, Robertson KD, Talmadge C, et al: The gene for a novel transmembrane protein containing epidermal growth factor and follistatin domains is frequently hypermethylated in human tumor cells. Cancer Res. 2000;60: 4907-4912.
    34.Du Y, Carling T, Fang W, et al:Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res. 2001 61: 8094-8099.
    35.Moinova HR, Chen WD, Shen L, et al: HLTF gene silencing in human colon cancer. Proc Natl Acad Sci USA. 2002;99:4562-4567.
    36.Toyota M, Shen L, Ohe-Toyota M, et al: Aberrant methylation of the Cyclooxygenase 2 CpG island in colorectal tumors. Cancer Res. 2000 60:4044-4048.
    37.Devereux TR, Horikawa I, Anna CH, et al: DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene.Cancer Res. 1999;59: 6087-6090.
    38.Vogelstein B, Kinzler KW. Colorectal tumors. In The Genetic Basis of Human Cancer, Vogelstein B , Kinzler KW (eds). McGraw-Hill: London,1998; 565-587.
    39.Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in the human colon. Nature Genet 1994; 7: 536-540.
    40.Jubb AM, Bell SM, Quirke P.Methylation and colorectal cancer. J Pathol. 2001;195:111-134.
    41.Issa JPJ, Vertino PM, Boehm CD, et al:Switch from mono-allelic to bi-allelic human IGF2 promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci USA. 1996; 93: 11757-11762.
    42.Ahuja N, Li Q, Mohan AL, et al: Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998;58: 5489-5494.
    43.Toyota M, Issa JP: CpG island methylator phenotypes in aging and cancer. Semin Cancer Biol. 1999;9: 349-357.
    44.Chan AO, Broaddus RR, Houlihan PS, et al: CpG island methylation in aberrant crypt foci of the colorectum. Am J Pathol. 2002;160: 1823-1830.
    45.ISSA JP: The Epigenetics of Colorectal Cancer. Ann NY Acad Sci. 2000;910:140-155.
    46.Shen L, Ahuja N, Shen Y, et al: DNA methylation and environmental exposures in human hepatocellular carcinoma. J Natl Cancer Inst.2002;94:755-761.
    47.Eads CA, Lord RV, Wickramasinghe K, et al: Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Res. 2001: 61:3410-3418.
    48.Yatabe Y, Tavare S, Shibata D: Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci USA. 2001; 98:10839-10844.
    49.Kondo Y, Issa JP. Epigenetic changes in colorectal cancer.Cancer Metastasis Rev. 2004;23:29-39.
    50.Nakagawa H, Nuovo GJ, Zervos EE, et al: Age-related hypermethylation of the 50 region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development. Cancer Res. 2001;61:6991-6995.
    51.Issa JP: Epigenetic variation and human disease. J Nutr. 2002;132:2388S-2392S.
    52.Wiencke JK, Zheng S, Lafuente A, et al. Aberrant methylation of p16INK4a in anatomic and gender-specific subtypes of sporadic colorectal cancer. Cancer Epidemiol Biomarkers Prev 1999; 8: 501-506.
    53.Toyota M, Ahuja N, Ohe-Toyota M, et al: CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96: 8681-8686.
    54.Whitehall VL, Wynter CV, Walsh MD, et al: Morphological and molecular heterogeneity within nonmicrosatellite instability-high colorectal cancer.Cancer Res. 2002;62: 6011-6014.
    55.van Rijnsoever M, Grieu F, Elsaleh H, et al: Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut. 2002;51: 797-802.
    56.Shen L, Ahuja N, Shen Y, et al: DNA methylation and environmental exposures in human hepatocellular carcinoma. J Natl Cancer Inst.2002;94:755-761. Toyota M, Kopecky KJ, Toyota MO,et al: Methylation profiling in acute myeloid leukemia. Blood. 2001;97: 2823-2829.
    
    57.Ueki T, Toyota M, Sohn T, et al: Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 2000;60: 1835-1839.
    58.Toyota M, Ahuja N, Suzuki H, et al: Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype.Cancer Res. 1999;59:5438-5442.
    59.Garcia-Manero G, Daniel J, Smith TL, et al: DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clin Cancer Res. 2002;8: 2217-2224.
    60.Strathdee G, Appleton K, Illand M, et al: Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes.Am J Pathol.2001;158: 1121-1127.
    61.Toyota M, Ohe-Toyota M, Ahuja N, et al: Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci USA. 2000;97: 710-715.
    62.Malkhosyan SR, Yamamoto H, Piao Z, et al: Late onset and high incidence of colon cancer of the mutator phenotype with hypermethylated hMLH1 gene in women. Gastroenterology. 2000; 119: 598.
    63.Shannon BA, Iacopetta BJ: Methylation of the hMLH1, p16, and MDR1 genes in colorectal carcinoma: Associations with clinicopathological features.Cancer Lett. 2001;167:91-97.
    64.Burri N, Shaw P, Bouzourene H, et al: Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer. Lab Invest. 2001;81:217-229.
    65.Whitehall VL, Walsh MD, Young J, et al:Methylation of O-6-methylguanine DNA methyltransferase characterizes a subset of colorectal cancer with low-level DNA microsatellite instability. Cancer Res.2001; 61: 827-830.
    66. Esteller M, Toyota M, Sanchez-Cespedes M, et al: Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res. 2000;60: 2368-2371.
    67. Midgley RS, Kerr DJ. ABC of colorectal cancer. Adjuvant chemotherapy. Br Med J 2000; 321: 1208-1211.
    68. Jones PA. Effects of 5-azacytidine and its 2-deoxyderivative on cell differentiation and DNA methylation. Pharmacol Ther 1985;28: 17-27.
    69. Szyf M. DNA methylation properties: consequences for pharmacology. Trends Pharmacol Sci 1994; 15: 233-238.
    70. Issa JP, Baylin SB, Herman JG. DNA methylation changes in haematologic malignancies: biologic and clinical implications. Leukemia 1997; 11: S7-S11.
    71. Wijermans PW, Krulder JW, Huijgens PC, Neve P. Continuous infusion of low-dose 5-aza-2-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 1997; 11: S19-S23.
    72. Cameron EE, Bachman KE, Myohanen S, et al: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 1999;21: 103-107.
    73. Plumb JA, Strathclee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2-deoxy-5-azacytidine-induced demethylation of hMLH1 gene promoter. Cancer Res 2000; 60: 6039-6044.
    74. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 2000; 343: 1350-1354.
    75. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 1999; 59: 793-797.
    76. Friedman HS, Kokkinakis DM, Pluda J, et al. Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J Clin Oncol 1998; 16: 3570-3575.
    77. Kreklau EL, Kurpad C, Williams DA, Erickson LC. Prolonged inhibition of O(6)-methylguanine DNA methyltransferase in human tumor cells by O(6)-benzylguanine in vitro and in vivo. J Pharmacol Exp Ther 1999; 291: 1269-1275.
    78. Carethers JM, Chauhan DP. Fink D, et al. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 1999; 117: 123-131.
    79. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB: Methylation of the oestrogen receptor CpG island links aging and neoplasia in human colon. Nat Genet. 1994;7: 536-540.
    80. Issa JP, Ahuja N, Toyota M, et al: Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 2001; 61: 3573-3577.
    81. Zochbauer-Muller S, Fong KM, Virnani AK, Geradts J, Gazdar AF, Minna JD: Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res.2001; 61: 249-255.
    82. Wong DJ, Barrett MT, Stoger R, et al: p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. Cancer Res. 1997;57:2619-2622.
    83. Sidransky D: Emerging molecular markers of cancer. Nat Rev Cancer.2002; 2: 210-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700