上皮性卵巢癌多肿瘤抑制基因异常甲基化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上皮性卵巢癌的发生是表遗传学与遗传学机制共同参与的涉及多基因改变、通过多阶段变异累积形成的病理过程。目前,在其发生机制中,DNA启动子区CpG岛异常甲基化是一个研究热点。表遗传学是研究没有DNA序列变化、可遗传的基因表达的改变,表遗传学的分子机制包括DNA甲基化、组蛋白修饰、染色质改型和RNA干涉等,它们在基因转录调控过程中起重要作用。作为表遗传学机制的重要内容,DNA甲基化是基因突变及缺失之外肿瘤抑制基因失活的第三种机制,DNA甲基化异常在多种肿瘤的发生中起重要作用。已有研究表明,肿瘤中异常甲基化的基因包括参与细胞周期调控、细胞分化、凋亡调控及肿瘤转移和血管生成相关基因等。DNA甲基化和组蛋白乙酰化是表遗传学调控基因表达的两种主要方式,DNA低甲基化和组蛋白乙酰化可促进基因表达,DNA高甲基化和组蛋白去乙酰化可抑制基因表达,DNA甲基化和组蛋白乙酰化相互影响。
     卵巢恶性肿瘤是女性生殖器三大恶性肿瘤之一,上皮性卵巢癌占卵巢恶性肿瘤85%-90%,DNA甲基化在上皮性卵巢癌的发生、发展中起重要作用。若干肿瘤抑制基因启动子区异常甲基化与上皮性卵巢癌的形成密切相关,研究表明,DNA甲基化酶抑制剂及组蛋白脱乙酰基酶抑制剂可能用于恶性肿瘤的临床治疗,包括上皮性卵巢癌在内。对肿瘤抑制基因启动子区异常甲基化的深入研究不仅有助于揭示上皮性卵巢癌的发生机制,而且可能促进上皮性卵巢癌临床诊断和治疗的发展。
     本研究旨在探讨上皮性卵巢癌与表遗传学的关系,选择与细胞凋亡、细胞周期调控、DNA修复及化疗耐药相关的基因RASSF1A、BRCA1、p16、hMLH1及MGMT,研究的第一部分首先通过检测基因启动子区CpG岛甲基化状态及其蛋白表达,寻找上皮性卵巢癌相关的异常甲基化基因,进一步分析基因蛋白表达及与启动子区甲基化的相关性,及与临床病理学特征的关系。研究的第二部分从与遗传学发生机制相结合的角度,分析上皮性卵巢癌组织中MSI状态,以及上述抑癌基因启动子甲基化及蛋白表达与MSI之间的相关性,探讨MMR基因hMLHl启动子甲基化与MSI的相关性以及在上皮性卵巢癌发生及发展中的作用。研究的第三部分以前两部分的实验结果为基础,选择甲基化酶抑制剂5-Aza-CdR及脱乙酰基酶抑制剂NaB两种药物,在观察卵巢癌细胞系生长抑制的同时,分析五个抑癌基因启动子区CpG岛甲基化状态、mRNA及蛋白表达的改变,探讨药物调控的意义及潜在的临床应用价值。
     材料与方法
     一、实验材料
     中国医科大学附属第一医院妇科、辽宁省肿瘤医院妇科1999-2006年手术治疗63例原发散发性上皮性卵巢癌组织、41例相应的盆腹腔转移灶、10例癌旁卵巢组织及20例正常卵巢组织;上皮性卵巢癌细胞株:CAOV3及OVCaR3(中国医科大学细胞生物教研室),HO-8910(上海肿瘤细胞研究所),A2780(天津血液病学研究所):RNA提取试剂TRIZOL Reagent(GIBCO BRL公司),甲基化酶抑制剂5-aza-2’-deoxycitydine(5-Aza-CdR)及脱乙酰基酶抑制剂Sodium Butyrate(NaB)(Sigma),RT-PCR试剂盒(TaKaRa),Wizard DNA Clean-up(Promega公司),Annexin-v-FITC凋亡检测试剂盒(北京宝赛生物技术有限公司),RASSF1A羊抗人多克隆抗体、BRCAl兔抗人多克隆抗体、P16鼠抗人单克隆抗体(Santa cruz),hMLHl兔抗人单克隆抗体及MGMT鼠抗人单克隆抗体(Neomarkers)。
     二、实验方法
     1 MSP法检测基因启动子区的甲基化状态
     2应用MTT法检测上皮性卵巢癌细胞株的增殖活性
     3流式细胞术检测细胞周期,Annexin V-FITC染色法检测细胞凋亡率
     4 RT-PCR法及Western-blot法检测基因mRNA及蛋白表达。
     5 PCR-聚丙烯酰胺凝胶电泳-硝酸银染色法检测卵巢组织MSI状态。
     三、统计分析
     采用SPSS11.5统计软件进行分析,率的比较采用X~2检验和Fisher精确概率法;采用Spearman等级相关系数分析相关性;均数统计分析方法为方差分析,两两比较采用LSD法。
     结果
     第一部分上皮性卵巢癌多肿瘤抑制基因启动子区异常甲基化及蛋白表达的研究
     1上皮性卵巢癌组织原发灶及盆腹腔转移灶中RASSF1A、BRCA1、p16、hMLH1及MGMT基因启动子区甲基化发生率在原发灶及转移灶中分别为49.2%、25.4%、20.6%、15.9%、11.1%及58.5%、26.8%、22.0%、12.2%、9.8%,在RASSF1A、BRCA1及p16中显著高于正常卵巢组织(P<0.05)。
     2上皮性卵巢癌组织原发灶及盆腹腔转移灶RASSF1A、BRCA1、p16、hMLH1及MGMT蛋白表达率分别为31.7%、28.6%、23.8%、27.0%、44.4%及29.3%、31.7%、22.0%、24.4%、48.8%,显著低于正常卵巢组织及癌旁卵巢组织(P<0.05),蛋白表达与其启动子区甲基化之间存在相关性,表明基因启动子区CpG岛异常甲基化是其蛋白失表达的机制之一。
     3 RASSF1A基因启动子区甲基化发生与上皮性卵巢癌临床分期和细胞分化程度相关,多发生在临床Ⅲ、Ⅳ期和低分化者(P<0.01)。
     4上皮性卵巢癌中存在CpG岛甲基化表型,与CIMP阴性癌相比,在不同临床期别、分化程度及病理类型间差异无统计学意义(P>0.05)。
     5上皮性卵巢癌中可能有2种不同甲基化类型肿瘤,一组易发生RASSF1A、hMLH1甲基化;另一组易发生BRCA1、p16,可能还包括MGMT的甲基化。
     第二部分上皮性卵巢癌微卫星不稳定性与肿瘤抑制基因异常甲
     基化的研究
     1上皮性卵巢癌组织存在MSI,MSI-H发生率在原发灶及盆腹腔转移灶中分别为22.2%及19.5%,两者之间无统计学差异(P>0.05)。
     2上皮性卵巢癌原发灶中MSI-H发生率在粘液性癌(38.9%)显著高于浆液性癌(8.8%)(P<0.05),在非浆液性癌组(37.9%) (粘液性癌、内膜样癌及透明细胞癌)显著高于浆液性癌组(P<0.01)。
     3上皮性卵巢癌中hMLH1基因启动子区异常甲基化导致的蛋白失表达与MSI-H密切相关(P<0.01)。
     第三部分联合应用5-Aza-CdR及NaB调控卵巢癌细胞TSG去甲基化及表达的实验研究
     1 5-Aza-CdR及NaB抑制四株上皮性卵巢癌细胞增殖,联合用药抑制作用增强。
     2 5-Aza-CdR及NaB处理后四株上皮性卵巢癌细胞呈现G1期阻滞,联合用药阻滞作用增强。
     3 5-Aza-CdR及NaB诱导四株上皮性卵巢癌细胞凋亡率显著增加,联合用药细胞凋亡率显著高于单独用药。
     4 5-Aza-CdR使四株上皮性卵巢癌细胞中异常甲基化基因呈去甲基化状态,使其中部分基因,包括CAOV3中p16基因,OVCAR3中RASSF1A和MGMT基因,A2780中BRCA1基因,以及HO-8910中p16和MGMT基因去甲基化伴随mRNA表达及蛋白表达上调。
     5 NaB使OVCAR3中RASSF1A基因、CAOV3及HO-8910中p16基因甲基化减弱,伴随mRNA表达及蛋白表达部分上调。
     6 5-Aza-CdR与NaB联合用药使上述异常甲基化基因呈完全去甲基化状态,诱导A2780中hMLH1 mRNA及蛋白重新表达,使OVCAR3中RASSF1A基因、HO-8910及CAOV3中p16基因mRNA及蛋白表达较单独用药上调。
     结论
     1上皮性卵巢癌组织中RASSF1A、BRCA1、p16、hMLH1及MGMT基因启动子区异常甲基化与其发生发展相关。
     2上皮性卵巢癌组织存在MS1,MSI-H与非浆液性癌类型,尤其是粘液性上皮性卵巢癌发生发展密切相关。上皮性卵巢癌中MSI-H机制部分在于hMLH1基因启动子区异常甲基化。
     3 5-Aza-CdR能逆转RASSF1A、BRCA1、p16、hMLH1及MGMT基因异常甲基化状态,调控其中部分基因的表达。
     4 NaB与5-Aza-CdR对上述基因去甲基化及表达调控具有协同作用。
     5 5-Aza-CdR与NaB具有协同抑制上皮性卵巢癌细胞增殖的作用,可能与阻滞细胞周期、诱导凋亡及上调RASSF1A、p16及BRCAl基因的表达有关。
Research on Abnormal Methylation of Several Tumor Suppressor Genes in Epithelial Ovarian Carcinoma
     Objective and significance
     Carcinogenesis of epithelial ovarian carcinoma is a stepwise process of accumulation of epigenetic and genetic abnormalities that can lead to cellular dysfunction. Study on abnormal hypermethylation of DNA promoter region is a focus in this area. Epigenetics is defined as modifications of the genome, heritable during cell division, that do not involve a change in the DNA sequence. Epigenetics includes DNA methylation、histone modification、chromatin remodeling and RNA interference, which play important roles in gene expressing regulation. As a main part of epigenetics, DNA hypermethylation is the third way of tumor suppressor gene (TSG) silencing besides genetic gene allelic loss and somatic mutation, which has been associated closely with a wide variety of human cancers. Increasing evidence suggests that many kinds of genes may be hypermethylated in human malignant tumors, including those participate cell cycle control、cell differentiation, apoptosis, metastasis and angiogenesis. DNA methylation and histone acetylation are the two most widely studied epigenetic changes which regulate gene expression. DNA hypomethylation and hyperacetylation can up-regulate gene expression, and DNA hypermethylation and hypoacetylation can down-regulate gene expression. DNA methylation and histone acetylation interplay closely.
     Ovarian carcinoma is one of the most common gynecologic cancers, and abnormal DNA methylation plays important roles in the course of carcinogenesis and development in epithelial ovarian cancer. Promoter hypermethylation of several TSGs plays crucial roles in carcinogenesis of epithelial ovarian cancer. As suggested, DNA demethlylated agents and histone deacetylase inhibitors can be used in treatment of malignant tumors, including epithelial ovarian carcinoma. Deeply research on hypermethylation of TSGs will not only contribute to further understanding on mechanisms of tumorigenesis, but also promote clinical diagnosis and treatment in epithelial ovarian carcinoma.
     Materials and methods
     1 Materials
     63 surgical resected specimens of sporadic primary epithelial ovarian carcinoma、41 metastatic tissues of pelvic and abdomen cavity、10 adjacent non-cancerous ovarian tissues and 20 normal ovarian tissues were gathered from both Gynecologic Department of the First Affiliated Hospital of China Medical University and Tumor Specific Hospital of Liao Ning Province. Epithelial ovarian cancer lines CAOV3 and OVCaR3 were provided by Cell Biologic Department of China Medical University, HO-8910 by Tumor Research Institute of Shanghai, A2780 by Haematologic Disease Research Institute of Tianjin; Trizol Reagent by GIBCOL BRL company, demethylating agent 5-aza-2'-deoxycitydine(5-Aza-CdR) and histone deacetylase inhibitors(HDACIs) sodium butyrate(NaB) were the product of Sigma; RT-PCR kit was the product of TaKaRa Company; Wizard DNA Clean-up was bought from Promega company, RPMI 1640 culture medium was the product of Hyclone company, RASSF1A goat polyclone、BRCA1 polyclone and P16 mouse monoclone antibody from Santa cruz, hMLH1 rabbit and MGMT mouse monoclone antibody from Lab Vision Neomarkers.
     2 Methods
     Methylation-specific PCP (MSP) was used to detect promoter methylation state. MTT assay, flow cytometry, and Annexin V-FITC staining were performed to analyze the cell proliferation activity, cell cycle, and apoptotic rate. RT-PCR and Western blot were used to detect expression of TSG at mRNA and protein level. Microsatellite instability was detected by PCR- polyacrylamide gel-silver stain method.
     Results
     SectionⅠPromoter hypermethylation and protein expression of several tumor suppressor genes in epithelial ovarian carcinoma
     1 Promoter hypermethylation of RASSF1A、BRCA1、p16、hMLH1 and MGMT was detected in epithelial ovarian cancer tissues and metastatic sites, the frequency was 49.2%、25.4%、20.6%、15.9% and 11.1% in ovarian cancer tissues and 58.5%、26.8%、22.0%、12.2% and 9.8% in metastatic sites respectively, which was significantly higher than that in normal ovarian tissues in RASSF1A, BRCA1 and p16 (P<0.05).
     2 The frequency of protein expression ofRASSF1A、BRCA1、p16、hMLH1 and MGMT was 31.7%、28.6%、23.8%、27.0% and 44.4% in epithelial ovarian cancer tissues and 29.3%、31.7%、22.0%、24.4% and 48.8% in metastatic sites, which was significantly lower than that in normal ovarian tissues and adjacent non-cancerous ovarian tissues(P<0.05). The protein expression was related with methylation state of promoter region, which suggested that promoter hypermethylation was one of the reasons that TSG lost expression.
     3 The frequency of promoter hypermethylation of RASSF1A was significantly lower in epithelial ovarian cancers of stageⅠandⅡthan that in stageⅢandⅣ(P<0.01), and so was that in both well and moderately differentiated cancers than that in poorly differentiated ones(P<0.01).
     4 CIMP was detected in epithelial ovarian carcinoma, and no statistical difference was found between different tumor stages, histological types and differentiated grades when compared with CIMP-negative cancers(P>0.05).
     5 There may exists two different kinds of epithelial ovarian carcinoma, one characterized with hypermethylation in RASSF1A and hMLH1, the other with BRCA1 and p16, maybe including MGMT hypermethylation.
     SectionⅡMSI and promoter hypermethylation of TSGs in epithelial ovarian carcinoma
     1 MSI was detected in epithelial ovarian carcinoma, and the frequency of MSI-H was 22.2% and 19.5% in ovarian cancer tissues and metastatic sites, and no statistical difference was found between them(P>0.05).
     2 The frequency of MSI-H was significantly higher in mucinous type (38.9%) than that in serous (8.8%) epithelial ovarian cancer(P<0.05), and so is that in non-serous type(37.9%) (including mucinous, endometrium and clear cell type) than that in serous one (P<0.01).
     3 The methylation state of promoter region of hMLH1 and accordant lost expression at protein level correlate with MSI-H(P<0.01).
     SectionⅢStudy on regulating effect of synergy of 5-Aza-CdR and NaB on methylation state and expression of TSGs in epithelial ovarian cancer cell lines
     1 5-Aza-CdR or NaB displayed a growth inhibitory effect on epithelial ovarian cancer cell line CAOV3、OVCaR3、HO-8910 and A2780, and the effect was enhanced when used combinantly(P<0.05).
     2 Cell cycle was blocked at G1 phrase after four epithelial ovarian cancer cell lines were exposed to 5-Aza-CdR or NaB, and the effect was enhanced when used combinantly(P<0.05).
     3 The apoptosis rate increased significantly after four epithelial ovarian cancer cell lines were exposed to 5-Aza-CdR or NaB, and the effect was enhanced when used combinantly(P<0.05).
     4 After treated with 5-Aza-CdR, TSGs in four epithelial ovarian cancer cell lines displayed different degree of demethylation effect, accompanied by up-regulation of part of TSGs, including p16 in CAOV3、RASSF1A and MGMT in OVCAR3、BRCA1 in A2780, as well as p16 and MGMT in HO-8910 at mRNA and protein level.
     5 The methylation sate decreased after treated with NaB in RASSF1A in OVCAR3, p16 in CAOV3 and HO-8910, accompanied by up-regulation at mRNA and protein level.
     6 The methylated TSGs displayed complete demethylation state after treated with 5-Aza-CdR and NaB together, which induced re-exprssion of hMLH1 in A2780 at both mRNA and protein level, up-regulation of RASSF1A in OVCAR3, p16 in HO-8910 and CAOV3.
     Conclusions
     1 Promoter hypermethylation of RASSF1A、BRCA1、p16、hMLH1 and MGMT correlates with tumorigenesis and development of epithelial ovarian carcinoma.
     2 MSI exists in epithelial ovarian carcinoma, and MSI-H correlates with tumorigenesis and development of non-serous type epithelial ovarian carcinoma, especially mucinous type. The mechanism of MSI-H in epithelial ovarian carcinoma lies partly in promoter hypermethylation of hMLH1 gene.
     3 5-Aza-CdR can reverse the abnormal hypermethylation state of RASSF1A、BRCA1、p16、hMLH1 and MGMT in human epithelial ovarian cancer cell lines and regulate the expression of some of the TSGs.
     4 NaB coordinate with 5-Aza-CdR in inducing demethylation and regulating gene expression.
     5 5-Aza-CdR and NaB can inhibit the growth of epithelial ovarian cancer cells synergistically, which may be due to blocking cell cycle、inducing apoptosis and up-regulation of RASSF1A、p16 and BRCA1.
引文
1 Ducasse M, Brown M A. Epigenetic aberrations and cancer. Mol Cancer,2006,5(1): 60-75.
    
    2 Lund A H, Lohuizen M V. Epigenetics and cancer. Genes Dev, 2004 , 18(26): 2315-2335.
    
    3 Herman J G, Baylin S B. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med , 2003, 349 (7): 2042 - 2054.
    4 Makarla P B, Saboorian M H, Ashfaq R, et al. Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res,2005, 11(15): 5365-5369.
    5 Novik K L, Nimmrich I, Gene B, et al. Epigenomics: genome-wide study of methylation phenomena. Curr Issues Mol Biol, 2002, 4(4): 111-128.
    6 Nishiyama R, Qi L X, Lacey M , et al. Both hypomethylation and hypermethylation in a 0.2-kb region of aDNA repeat in cancer. Mol Cancer Res, 2005 , 3(2):617-626.
    7 Esteller M, Corn P G, Baylin S B, et al. A gene hypermethylation profile of human cancer. Cancer Res, 2001,61(6):3225-3229.
    8 Teodoridis J M, Strathdee G, Brown R. Epigenetic silencing mediated by CpG island methylation: potential as a therapeutic target and as a biomarker. Drug Resist Updat,2004 ,7(5):267-278.
    9 Strathdee G, Appleton K, Illand M, et al. Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. Am J Pathol,2001,158(3): 1121 - 1127.
    10 Pacheco B S, Cardenas E P, Chayeb L T, et al.Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine. J Transl Med, 2006; 4(1): 32-40.
    11 Plasencial C P, Gonzalez A D. Can the state of cancer chemotherapy resistance be reverted by epigenetic therapy? Mol Cancer,2006; 5(1): 27-36.
    12 Gerson S L. Clinical relevance of MGMT in the treatment of cancer J Clin Oncology, 2002, 20 (9): 2388-2399.
    13 Koul S, McKiernan J M, Narayan G,et al. Role of promoter hypermethylation in cisplatin treatment response of male germ cell tumors.Mol Cancer,2004; 3(1):6-28.
    14 Reu F J, Leaman D W, Maitra R R,et al. Expression of RASSF1A, an epigenetically silenced tumor suppressor, overcomes resistance to apoptosis induction by interferons. Cancer Res,2006,66(5): 2785-2793.
    15 刘静,夏昭林.DNA损伤修复基因高甲基化与肿瘤.国外医学卫生学分册,2005,32(6),370-375.
    16 Herman J G, Graft J R, Myohanen S, et al. Methylation-specific PCP: a novel PCP assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA, 1996, 93(18): 9821-9826.
    17 Holliday R, Ho T. DNA methylation and epigenetic inheritance. Methods,2002,27(2): 179-183.
    18 Rountree M R,Bachman K E,Herman J G,et al. DNA methylation, chromatinin inheritance, and cancer.Oncogene,2001,20(12): 3156-3165
    19 Tamaru H, Zhang X, McMillen D, et al. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet, 2003,34(1):75-79.
    20 Esteller M. Relevance of DNA methylation in the management of cancer. Lancet Oncol, 2003; 4 (3):351-358.
    21 Kondo K, Yao M, Yoshida M, et al. Comprehensive mutational analysis of the VHL gene in sporadicrenal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosomes Cancer,2002,34(1):58-68.
    22 Cunningham J M,Christensen E R,Tester D J,et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res, 1998,58(7):3455-3460.
    23 Leung S Y, Yuen S T, Chung L P, et al. HMLHI promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res, 1999, 59(1): 159-164.
    24 Lerman M I, Minna J D. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. Cancer Res,2000,60(12):6116-6133.
    25 Maitra A, Wistuba H,Washington C,et al. High-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss. Am J Pathol, 2001, 159 (1):119-130.
    26 Ortiz-Vega S, Khokhlatchev A, Nedwidek M, et al. The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore 1. Oncogene, 2002, 21 (6) :1381 -1390.
    27 Agathanggelou A, Cooper W N, Latif F. Role of the Ras-Association Domain Family 1 Tumor Suppressor Gene in Human Cancers. Cancer Res, 2005,65(7):3497-3508.
    28 Honorio S, Agathanggelou A, Schuermann M, et al. Detection of RASSF1A aberrant promoter hypermethylation in sputum from chronic smokers and ductal carcinoma in situ from breast cancer patients. Oncogene,2003,22(1):147-150.
    29 Kim D H, Kim J S, Ji Y I, et al. Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res 2003,63(7):3743-3746.
    30 Yoon J H, Damman R, Pfeifer G P. Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas. Int J Cancer, 2001,94(2):212-217.
    31 Strunnikova M, Schagdarsurengin U, Kehlen A, et al. Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol Cell Biol, 2005 ,25(18): 3923-3933.
    32 Kawasaki H, Taira K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature.2004,431 (7005):212-217.
    33 Rathi A, Vimani A K, Schorge J O, et al. Methylation profiles of sporadic ovarian tumors and nonmalignant ovaries from high-risk women. Clin Cancer Res ,2002, 8(11):3324-3331.
    34 Caceres I I , Battagli C , Esteller M , et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients.Cancer Res, 2004, 64 (12): 6476-6481.
    35 Teodoridis J M, Hall J, Marsh S, et al. CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res, 2005,65(16), 8961-8967.
    36 Makarla P B, Saboorian M H, Ashfaq R, et al. Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res,2005, 11(15): 5365-5369.
    37 Miki Y, Swensen J.Shattuck E D,et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 1994, 266(5182):66-71.
    38 Thomas J E, Smith M, Tonkinson J L, et al. Induction of phosphorylation on BRCA1 during the cell cycle and after DNA damage. Cell Growth Differ, 1997,8(7):801-809.
    39 Wang H,Shao N,Ding Q M,et al.BRCAl protein are transported to the nucleus in the absence of serum and splic evariants BRCAla, BRCAlb are tyrosine phosphoproteins that associate with E2F,cyclins and cyclin dependent kinases. Oncogene, 1997, 15(2): 143-157.
    40 Chan KY, Ozcelik H, Cheung A N, et al. Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res, 2002, 62(8): 4151-4156.
    41 Esteller M, Silva J M , Dominguez G ,et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Insti, 2000, 92(3): 564-569.
    42 Baldwin R L, Nemeth E, Iran H, et al. BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study.Cancer Res, 2000, 60(10): 5329-5333.
    43 McCoy M L, Mueller C R, Roskelley C D. The role of the breast cancer susceptibility gene BRCA1 in sporadic epithelial ovarian cancer. Reprod Biol Endocrinol,2003,1(1):72-78.
    44 Yang H J, Liu V W, Wang Y,et al.Differential DNA methylation profiles in gynecological cancers and correlation with clinico -pathological data. BMC Cancer,2006,6(2): 212-224.
    45 Tycko B. Epigenetic gene silencing in cancer. Clin Invest,2000,105(4): 401-407.
    46 Ruas M, Peters G. The p16/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta, 1998,14(2): 115-177.
    47 Attri J, Srinivasan R, Majumdar S,et al. Alterations of tumor suppressor gene p16INK4a in pancreatic ductal carcinoma. BMC Gastroenterol,2005,5(10): 22-33.
    48 Jones P A. Epigenetics in Carcinogenesis and Cancer Prevention. Ann New York Academy Sci, 2003,983(2):213-219.
    49 Niederacher D,Yan H Y,An H X, et al.CDKN2 gene inactivation in epithelial sporadic ovarian cancer.Br J Cancer, 1999,80(11): 1920 -1926
    50 McCluskey L L,Chen C, Delgadillo E, et al.Differences in p16 gene methylation and expression in benign and malignant ovarian tumor.Gynecol Oncol, 1999,72(1):87- 92.
    51 Fujita M, Enomoto T, Haba T,et al. A Iteration of p16 and p15 genes in common epithelial ovarian tumors.Int J Cancer, 1997,74(1): 148 -155
    52 Gerdes B, Ramaswamy A, Ziegler A, et al.P161NK4a is a prognostic marker in resected ductal pancreatic cancer ,an analysis of pl6INK4a, p53, MDM2, an Rb. Ann Surg, 2002 ,235(1): 51-59
    53 Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol,2003,21 (4): 1174-1179.
    54 Deng G, Chen A, Pong E, et al. Methylation in hMLHl promoter interferes with its binding to transcription factor CBF and inhibits gene expression. Oncogene,2001,20(10):7120-7127.
    55 Geisler J P, Goodheart M J, Sood A K, et al. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma. Cancer,2003,98(10):2199-2206.
    56 Kane M F.Loda M,Gaida G M,et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res, 1997,57(2):808-811.
    57 Strathdee G, MacKean M J.Illand M,et al.A role for methylation of the hMLHl promoter in loss of hMLHl expression and drug resistance in ovarian cancer.Oncogene,1999,18(11):2335- 2341
    58 Gifford G, Paul J, Vasey P A, et al. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res,2004,10(13): 4420-4426.
    59 Gras E, Catasus L, Arguelles R, et al. Microsatellite instability, MLH-1 promoter hypermethylation, and frameshift mutations at coding mononucleotide repeat microsatellites in ovarian tumors. Cancer,2001,92(11):2829-2836.
    60 Liu L, Gerson S L. Targeted modulation of MGMT: clinical implications .Clin Cancer Res, 2006, 12(1): 328-331.
    61 Paz M F, Yaya T R, Rojas M I, et al. CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to Temozolomide in primary gliomas.Clin Cancer Res, 2004,10(15): 4933-4938.
    62 Toyota M, Ho C, Ahuja N, et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res 1999;59(5):2307-2312.
    63 Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA 1999, 96(16): 8681-8686.
    64 Tada Y, Wada M, Taguchi K, et al. The association of death-associated protein kinase hypermethylation with early recurrence in superficial bladder cancers. Cancer Res, 2002, 62(8): 4048-4053.
    65 Kim H, Kim YH, Kim SE, et al. Concerted promoter hypermethylation of hMLHl, p16INK4A, and E-cadherin in gastric carcinomas with microsatellite instability. J Pathol ,2003,200(8):23-31.
    66 Rashid A, Shen L, Morris JS, et al. CpG island methylation in colorectal adenomas. Am J Pathol ,2001,159(4): 1129-1135.
    67 Helleman J, Staveren I L, Dinjens W N,et al. Mismatch repair and treatment resistance in ovarian cancer. BMC Cancer,2006,6(2): 201-212.
    68 Plumb J A, Strathdee G, Sludden J, et al. Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLHl gene promoter. Cancer Res, 2000, 60(11):6039-6044.
    69 Pacheco B S,Cardenas E P,Chayeb L T,et al. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine. J Transl Med, 2006, 4(10): 32-41.
    70 Catasus L,Machin P,Matias-Guiu X,et al.Microsatellite instability inendometrial carcinomas: clinicopatholoigic correlations in a series of 42 cases.Hum Pathol, 1998,29(3): 1160-1164.
    71 Tautz D,Trick M,Dover G A,et al. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acid Res, 1984,12(13):4127-4138.
    72 Arzimanoglou H,Gilbert F, Barber H R. Microsatellite instability in human solid tumors. Cancer, 1998,82:1808-1820.
    73 Bocker T, Diermann J,Friedl W,et al. Microsatellite instability analysis: a multicenter study for reliability and quality control. Cancer Res,1997,57(9):4739-4743.
    74 Helland A, Borresen-Dale A L, Peltomaki P, et al. Microsatellite instability in cervical and endometrial carcinomas. Int J Cancer, 1997,70(2):499-501.
    75 Carvalho B, Pinto M.Cirnes L,et al.Concurrent hypermethylation of gene promoters is associated with a MSI-H phenotype and diploidy in gastric carcinomas. Eur J Cancer, 2003,39(9): 1222-1227.
    76 Woerner S M, Benner A, Sutter C.Pathogenesis of DNA repair-deficient cancers:a statistical meta-analysis of putative real common target genes.Oncogene,2003,22(11):2226-2235.
    77 Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer.J Clin Oncology, 2003, 21(6): 1174-1179.
    78 Esteller M ,Levine R,Baylin S B,et al. MLH1 promoter hypermethylation is ssociated with the microsatellite instability phenotype in sporadic endometrial carcinomas. PMID, 1998, 17(8): 2413-2417.
    79 Gurin C C,Federici M G, Kang L,et al.Causes and consequences of microsatellite instability in endometrial carcinoma. Cancer Res,1999,59(1):462-466.
    80 Sood A K , Holmes R, Hendrix M J,et al. Application of the National Cancer Institute International criteria for determination of microsatellite instability in ovarian cancer .Cancer Res, 2001,61 8):4371-4374.
    81 Semba S,Ouyang H,Han S Y,et al. Analysis of the candidate target genes for mutation in microsatellite instability-positive cancers of the colorectum.stomach and endometrium.Int J Oncol,2000,16(3): 731 -737.
    82 Geisler J P, Goodheart M J, Sood A K, et al. Mismatch repair gene expression defects contribute to microsatellite instability in ovarian carcinoma.Cancer,2003, 98(10):2199- 2206.
    83 Kihana T.Fujioka T,Hamada K,et al.Association of replication error positive phenotype with lymphocyte infiltration in endometrial cancer.Jpn J Cancer Res,1998,89(3):895-902.
    84 Matsumoto N, Yoshida T, Yamashita K, et al. Possible alternative carcinogenesis pathway featuring microsatellite instability in colorectal cancer stroma. Br J Cancer, 2003, 89(4): 707-712.
    85 Ebert M P.Molecular alterations in gastric cancer: the role of helico-bacter pylori. Eur J Gastroenterol,2000,12(4):795-798.
    86 Jacob S, Praz F. DNA mismatch repair defects: rule in colorectal carcinogenesis. Biochem, 2002,84(1):27-47.
    87 Ohwada M, Suzuki M, Saga Y,et al. DNA replication errors are frequent in mucinous cystadenocarcinoma of the ovary. Cancer Genet Cytogenet,2000,l 17(1):61-65.
    88 Catasus L, Bussaglia E,Rodrguez I, et al. Molecular genetic alterations in endometrioid carcinomas of the ovary: similar frequency of beta-catenin abnormalities but lower rate of microsatellite instability and PTEN alterations than in uterine endometrioid carcinomas.Hum Pathol, 2004,35(5): 1360-1368.
    89 Gras E, Catasus L, Arguelles R, et al. Microsatellite instability, MLH-1 promoter hypermethylation, and frameshift mutations at coding mononucleotide repeat microsatellites in ovarian tumors. Cancer, 2001 , 92(11):2829-2836.
    90 Haas C J, Diebold J, Hirschmann A, et al. Microsatellite analysis in serous tumors of the ovary. Int J Gynecol Pathol, 1999, 18(1): 158-162.
    91 Singer G,Kallinowski T, Hartmann A, et al. Different types of microsatellite instability in ovarian carcinoma. Int J Cancer,2004, 112(3):643-646.
    92 Tibiletti M G,Furlan D.Taborelli M,et al.Microsatellite instability in endometrial cancer: relation to histological subtypes. Gynecol Oncol, 1999,73(2):247-252.
    93 Delias A,Puhl A,Schram I P,et al. Molecular and clinicopathological analysis of ovarian carcinom as with and without microsatellite instability. Anticancer Res, 2004,24(2):361-369.
    94 Hickey K P, Boyle K P, Jepps H M, et al. Molecular detection of tumour DNA in serum and peritoneal fluid from ovarian cancer patients. Br J Cancer, 1999,80(5): 1803-1808.
    95 Carvalho B,Pinto M.Cirnes L,et al. Concurrent hypermethylation of gene promoters is associated with a MSI-H phenotype and diploidy in gastric carcinomas. Eur J Cancer,2003,39(9):122-127.
    96 Liu J, Albarracin C T, Chang K H, et al. Microsatellite instability and expression of hMLHl and hMSH2 proteins in ovarian endometrioid cancer. Mod Pathol, 2004 , 17(1):75-80.
    97 Cai K Q, Albarracin C, Rosen D, et al. Microsatellite instability and alteration of the expression of hMLHl and hMSH2 in ovarian clear cell carcinoma. Hum Pathol, 2004,35(5):552-559.
    98 Fang D C,Wang R Q,Yan S M,et al. Mutation and methylation of hMLHl in gastric carcinomas with microsatellite instability. World J Gastroenterol, 2003,9(4):655-659.
    99 Maximo V, Soares P, Seruca R,et al. Microsatellite instability, mitochondrial DNA large deletions, and mitochondrial DNA mutations in gastric carcinoma.Genes Chromosomes Cancer,2001,32(1):136-143.
    100 Strathdee G, Mackean M J, Illand M,et al. A role for methylation of the hMLH1 promoter in loss of hMLHl expression and drug resistance in ovarian cancer. Oncogene, 1999, 18(9): 2335-2341.
    101 Watanabe Y, Koi M, Hemmi H, et al. A change in microsatellite instability caused by cisplatin-based chemotherapy of ovarian cancer. Br J Cancer, 2001,85(4): 1064-1069.
    102 Chiaravalli A M, Furlan D, Facco C,et al.Immunohistochemical pattern of hMSH2/hMLH 1 in familial and sporadic coiorectal, gastric, endometrial and ovarian carcinomas with instability in microsatellite sequences. Virchows Archiv, 2001,438(1):39-48.
    103 Fink D, Nebel S, Aebi S, et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res, 1996 ,56(9):4881-4886.
    104 Anthoney D A,McIlwrath A J, Gallagher W M,et al. Microsatellite instability, apoptosis, and loss of p53 function in drug-resistant tumor cells.Cancer Res, 1996,56(3): 1374-1381.
    105 Allen HJ, DiCioccio RA, Hohmann P, et al. Microsatellite instability in ovarian and other pelvic carcinomas. Cancer Genet Cytogenet, 2000 ,117(2): 163-166.
    106 Okano M, Bell D W, Haber D A, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999, 99 (3):247-257.
    107 Rhee I, Bachman K E, Park B H, et a/.DNMTl and DNMT3b cooperate to silence genes in human cancer cells.Nature,2002,416(6880):552-556.
    108 Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy.Nature,2004,429(6932):457-463.
    109 Strathdee G, Brown R. Epigenetic cancer therapies: DNA methyltransferase inhibitors. Expert Opin Investig Drugs,2002,l l(6):747-754.
    110 Murakami J, Asaumi J, Maki Y, et al. Effects of demethylating agent 5-aza-2'- deoxycytidine and histone deacetylase inhibitor FR901228 on maspin gene expression in oral cancer cell lines. Oral Oncol, 2004,40(5): 597-603.
    111 Wijermans P W , Krulder J W, Huijigens PC , et al. Continuous infusion of low- dose 5-aza-2'- deoxycytiene in elderly patients with high risk myelodysplastic syndrome. Leukemia, 1997, 11 (1):1-5.
    112 Yasui W, Oue N, Ono S, et al. Histone acetylation and gastrointestinal carcinogenesis. Ann N Y Acad Sci,2003,983:220-231.
    113 Li J, Staver M J, Curtin M L, et al. Expression and functional characterization of recombinant human HDAC1 and HDAC3. Life Sci,2004,74(22):2693-2705.
    114 Curtin M, Glaser K. Histone deacetylase inhibitors: the abbot experience. Curr Med Chem, 2003,10(22):2373-2392.
    115 崔路佳,高善玲,裴凤华.丁酸钠抗肿瘤作用的新进展.世界华人消化杂志,2005,13(14):1744-1746.
    116 Eden S, Hashimshony T, Keshet 1, et al. DNA methylation models histone acetylation. Nature, 1998,394(6696):842-856.
    117 Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet, 2002,31(1): 141-149.
    118 Fu X H, Liu D P, Liang C C. Chromatin structure and transcriptional regulation of the β-globin locus. Exp Cell Res, 2002, 278(1):1-11.
    119 Gilbert, Gore S D, Herman J G, et al. The clinical application of targeting cancer through histone acetylation and hypomethylation. Clin Cancer Res, 2004, 10 (13):4589-4596.
    120 Esteller M. Relevance of DNA methylation in the management of cancer. Lancet Oncol,2003;4(3):351-358.
    121 Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Nat Cancer lnsti,2005,97(20):1498-1506.
    122 Stresemann C, Brueckner B, Musch T, et al. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res, 2006, 66(5): 2794-2800.
    123 Christman J K.5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 2002,21 (35):5483-5495.
    124 Yoo C B, Jones P A. DNA methyltransferase inhibitors in cancer therapy. AACR Education Book,2005,2(2):333-337.
    125 Sewack G F, Elis T W, Hansen U. Binding of TATA binding protein to a naturally positioned nucleosome is faciliated by histone acetylation. Mol Cell Biol,2001,21 (4): 1404-1415.
    126 Rice J C,David A C. Histone methylation versus histone acetvlation: new insights into epigenetic regulation. Curr Opin Biol,2001,13(3):263-273.
    127 Zhao Q, Cumming H, Cerruti L, et al. Site-specific acetylation of the fetal globin activator NF-E4 prevents its ubiquitination and regulatesits interaction with the histone deacetvlase HDAC1. J Biol Chem, 2004,279 (40) :41477-41486.
    128 De Ruijter A J, van Gennip A H, Caron H N, et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J, 2003, 370(2):737-749.
    129 Marks P A, Richon V M, Rifkind R A. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst, 2000, 92(3): 1210-1216.
    130 Secrist J P, Zhou X, Richon V M. HDAC inhibitors for the treatment of cancer. Curr Opin Investig Drugs,2003,4(12): 1422-1427.
    131 Nan X, Ng H H, Johnson C A, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 1998,393(6683): 386- 389.
    132 Robertson K D. DNA methylation and chromatin unraveling the tangled web. Oncogene, 2002, 21(35): 5361-5379.
    133 Curradi M, Izzo A, Badaracco G, et al. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol, 2002,22( 9): 3157-3173.
    134 Cameron E E, Bachman K E, Myohanen S, et al. Synergy of demethylaltion and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Gene,1999, 21(1): 103-107.
    135 Cheng J C, Weisenberger D J, Gonzales F A, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol 2004;24(4):1270-1278.
    136 Shi H, Wei S H, Leu Y W, et al. Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Cancer Res, 2003,63(4): 2164-2171.
    137 Karpf A R, Lasek A W, Ririe T O, et al. Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2'- deoxycytidine. Mol Pharmacol, 2004,65(1):18-27.
    138 Yang X, Ferguson A T, Nass S J, et al. Transcriptional activation of estrogen receptor a in human breast cancer cells by histone deacetylase inhibition.Cancer Res, 2000, 60(13): 6890-6894.
    139 Selker E U. Trichostatin A causes selective loss of DNA methylation in neurosporn. Proc Natl Acad Sci USA, 1998(13), 95(18): 9430-9435.
    140 Schwartz B, Avivi-Green C, Polak-Charcon S. Sodium butyrate induces retinoblastoma protein dephosphorylation, pl6 expression and growth arrest of colon cancer cells. Mol Cell Biochem 1998,188(1):21-30.
    141 Magdinier F, Wolffe A P. Selective association of the methyl-CpG binding protein MBD2 with the silent p 14/p16 locus in human neoplasia. Proc Natl Acad Sci USA, 2001, 98(10): 4990-4995.
    142 Ghoshal K, Datta J, Majumder S, et al Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure. Mol Cell Biol,2002,22(23): 8302-8319.
    143 Egger G, Aparicio A M, Escobar S G, et al. Inhibition of histone deacetylation does not block resilencing of pl6 after 5-aza-2'-deoxycytidine treatment. Cancer Res, 2007,67(1):346-353.
    144 Fahrner J A, Eguchi S, Herman JG, et al. Dependence of histone modifications and gene expression on DNA hypermethylation in cancer. Cancer Res, 2002, 62(14):7213-7218.
    145 Abbosh P H, Montgomery J S, Starkey J A, et al. Dominant-negative histone H3 lysine 27 mutant derepresses silenced tumor suppressor genes and reverses the drug-resistant phenotype in cancer cells. Cancer Res, 2006,66(11):5582-5591.
    146 Strunnikova M, Schagdarsurengin U, Kehlen A, et al. Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSFIA promoter. Mol Cell Biol, 2005 ,25(12): 3923-3933.
    
    147 Tamaru H, Selker E U. A histone H3 methyltransferase controls DNA methylation in Neurospora crasse. Nature,2001,414(6861):277-283.
    
    148 Haaf T. The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes. Pharmacol Ther, 1995, 65 (1):19-46.
    
    149 Lavelle D, de Simone J, Hankewych M, et al. Decitabine induces cell cycle arrest at the Gl phase via p21(WAFl) and the G2/M phase via the p38 MAP kinase pathway. Leuk Res, 2003,27(8):999-1007.
    
    150 Christman J K.5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 2002,21 (35): 5483- 5495.
    
    151 Schmelz K, Wagner M, Dorken B, et al. 5-Aza-2'-deoxycytidine induces p21 WAF expression by demethylation of p73 leading to p53-independent apoptosis in myeloid leukemia. Int J Cancer ,2005,114(3):683-695.
    
    152 Lallemand F, Courilleau D, Sabbah M, et al. Direct inhibition of the expression of cyclin D1 gene by sodium butyrate. Biochem Biophys Res Commun, 1996,229 (2):163-169.
    
    153 Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic -reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature,2000, 403(1):98-103.
    
    154 Minucci S, Pelicci P G. Histone deacetylase inhibitors and the promise of epigenetic(and more) treatment for cancer. Nat Rev Cancer,2006,6(1):38-51.
    
    155 Curtin M, Glaser K. Histone deacetylase inhibitors: the abbott experience. Curr Med Chem, 2003,10(22):2373-2392.
    
    156 Zhu W G, Lakshmanan R R, Beal M D, et al. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res, 2001, 61(3):1327-1333.
    
    157 Taddei A, Maison C, Roche D, et al. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat Cell Biol,2001,3(1):114-120.
    
    158 Takai N, Desmond J C, Kumagai T, et al. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res,2004,10(4):l 141-1149.
    
    159 Xu W S, Perez G, Ngo L, et al. Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res, 2005, 65(15):7832-7839.
    1 Nakao M. Epigenetics: interaction of DNA methylation and chromotin. Gene,2001,278(1):25-31.
    2 Novik K L, Nimmrich I, Gene B,et al. Epigenomics:genome-wide study of methylation phenomena. Curr Issues Mol Biol, 2002, 4(4): 111-128.
    3 Jones PA, Laird PW.Cancer epigenetics comes of age.Nature Genet, 1999,21(2): 163-167.
    4 Holliday R, HoT. DNA methylation and epigenetic inheritance. Methods, 2002,27(2): 179-183.
    5 Lund A H, Lohuizen M V. Epigenetics and cancer . Genes Dev, 2004 , 18(26): 2315-2335.
    6 Rountree M R, Bachman K E,Herman J G,et al. DNA methylation, chromatinin inheritance,and cancer. Oncogene,2001,20( 11 ):3156-3165.
    7 Benjamin T. Epigenetic gene silencing in cancer. Clin Invest, 2000, 105(4): 401-407.
    8 Antequera F, Bird A.Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA, 1993,90(26): 11995-11999.
    9 Jones PA. Epigenetics in carcinogenesis and cancer prevention. Ann New York Acad Sci , 2003,983(1):213-219.
    10 Bestor TH,Verine GL.DNA methyltransferase.Curr Opin Cell Biol, 1994,6(2):380-389.
    11 Rhee I, Bachman K E, Park B H, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002, 416( 6880): 552-556.
    12 Herman J G, Baylin S B. Gene Silencing in cancer in association with promoter hypermethylation. New Eng J Med, 2003, 349(8): 2042-2054.
    13 Ahuja N.Association between CpG methylation and microsatellite instability in colonal cancer.Cancer Res, 1997, 57(7): 3370 -3374.
    14 Feinberg A P. Cancer epigenetics takes center stage.Proc Natl Acad Sci USA. 2001, 98(2): 392-394.
    15 Bariol C, Suter C,Cheong K,et al. The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Pathol,2003,162(4): 1361 -1371.
    16 Nishiyama R, Qi L X, Lacey M , et al. Both hypomethylation and hypermethylation in a 0.2-kb region of a DNA repeat in cancer. Mol Cancer Res, 2005 , 3(2):617-626.
    
    17 Esteller M, Corn PG, Baylin SB,et al. A gene hypermethylation profile of human cancer.Cancer Res, 2001,61(6), 3225-3229.
    
    18 朱新江,戴冬秋.表遗传学与胃肠道肿瘤.世界华人消化杂志,2006,14(34):3251-3256.
    
    19 Martin D G E, Grimes D E, Baetz K ,et al. Methylation of Histone H3 Mediates the Association of the NuA3 Histone Acetyltransferase with Chromatin. Mol Cell Biol, 2006,26(8): 3018-3028.
    
    20 Derrane M.Gene imprinting: making an impression on cancer research. J Natl Cancer Inst,1999, 91(1):16-18.
    
    21 Makarla P B, Saboorian M H, Ashfaq R, et al. Promoter hypemethylation profile of ovarian epithelial neoplasms. Clin Cancer Res, 2005, 11(15): 5365-5369.
    
    22 Strathdee G, Appleton K, Illand M,et al. Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes.Am J Pathol,2001,158(3): 1121-1127.
    23 Ruas M, Peters G.The p16/CDKN2A tumor suppressor and its relatives.Biochim Biophys Acta,1998,14(1): 115-177.
    24 Myohanen SK,Baylin SB,Herman JG,et al.Hypermethylation can selectively silence individual p~(16INK4A) alleles in neoplasia. Cancer Res,1998,58(2):591-593.
    25 McCluskey L L,Chen CDelgadillo E,et al.Differences in p16 gene methylation and expression in benign and malignant ovarian tumor.Gynecol Oncol, 1999,72(1):87- 92.
    26 Fujita M,Enomoto T,Haba T,et al.Alteration of pl6 and p15 genes in common epithelial ovarian tumors.IntJCancer,1997,74(1):148-155.
    27 Milde-langosch K,Ocon E,Becker G,et al.P16/MTSl inactivation in ovarian carcinomas:high frequency of reduced protein expression associated with hypermethylation or mutation in endometrioid and mucinous tumors.lnt J Cancer, 1998,79(1):61- 65.
    28 Niederacher D,Yan H Y,An H X,et al.CDKN2 gene inactivation in epithelial sporadic ovarian cancer.Br J Cancer, 1999,80:1920 -1926.
    29 Rathi A, Virmani A K, Schorge J O, et al. Methylation profiles of sporadic ovarian tumors and nonmalignant ovaries from high-risk women.Clin Cancer Res,2002, 8(11), 3324-3331.
    30 Wong Y F,Chung T K,Cheung T H,et al. Methylation of p16 in primary gynecologic malignancy.Cancer Lett, 1999,136(2):231-235.
    31 Dhillon V S, Aslam M, Husain S A. The contribution of genetic and epigenetic changes in granulosa cell tumors of ovarian origin .Clin Cancer Res, 2004,10(18):5537-5545.
    32 Brown I, Milner B J,Rooney P H,et al. Inactivation of the p16~(INK4A) gene by methylation is not a frequent event in sporadic ovarian carcinoma. Oncol Rep,2001,8(6):1359-1362.
    33 Baldwin R L, Nemeth E,Iran H, et al. BRCA1 promoter region hypermethylation in ovarian carcinoma: a population-based study.Cancer Res, 2000, 60(10): 5329-5333.
    34 Chan K Y, Ozcelik H, Cheung A N, et al. Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res, 2002, 62(8): 4151-4156.
    35 Esteller M, Silva J M, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Nat Cancer Insti, 2000, 92(2): 564-569.
    36 Bianco T, Chenevix T G, Walsh D C, et al. Tumour-specific distribution of BRCAI promoter region methylation supports a pathogenetic role in breast and ovarian cancer .Carcinogenesis, 2000,21(1): 147-151.
    37 Geisler J P, Hatterman-Zogg M, Rathe J A, et al. Frequency of BRCA1 dysfunction in ovarian cancer. J Nat Cancer Insti, 2002, 94(1): 61-67.
    38 Catteau A, Harris W H, Xu C F, et al. Methylation of the BRCAI promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene,1999,18(8): 1957-1965.
    39 宋英娜,郎景和.微卫星不稳定性在妇科肿瘤中的研究进展.中华医学杂志,2000,7(80):554-556.
    40 姜斌,翟勇平,刘静,等.胃癌微卫星不稳定性与淋巴结转移的关系.肿瘤防治杂志,2003,10(6):604-605.
    41 Kane M F, Loda M,Gaida G M,et al.Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res, 1997,57(2):808-811.
    42 Cunningham J M,Christensen E R, Tester D J,et al.Hypermethylation of the hMLH1 promote rin colon cancer with microsatellite instability.Cancer Res,1998,58(7):3455-3460.
    43 Leung S Y, Yuen S T, Chung L P, et al. HMLHI promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability.Cancer Res,1999,59 (1): 159-164.
    44 Strathdee G, MacKean M J, Illand M,et al .A role for methylation of the hMLH1 promoter in loss of hMLHI expression and drug resistance in ovarian cancer.Oncogene,1999,18(11):2335-2341.
    45 Gifford G, Paul J, Vasey P A, et al. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients.Clin Cancer Res, 2004,10(13): 4420-4426.
    46 Plumb J A, Strathdee G, Sludden J, et al. Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res, 2000,60(11):6039-6044.
    47 Strunnikova M, Schagdarsurengin U, Kehlen A, et al. Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter. Mol Cell Biol,2005,25(12): 3923-3933.
    48 关志宇,戴冬秋.DNA甲基化与胃肠道肿瘤.国外医学肿瘤学分册,2005,32(2):135-137.
    49 Agathanggelou A, Cooper W N, Latif F. Role of the Ras-Association Domain Family 1 tumor suppressor gene in human cancers. Cancer Res, 2005,65(8):3497-3508.
    50 Pfeifer G P, Yoon J H,Liu L, et al. Methylation of the RASSFIA gene in human cancers. Biol Chem,2002,383 (3):907-914.
    51 Yoon J H, Dammann R, Pfeifer G P. Hypermethylation of the CpG inlandofthe RASSF1A gene in ovarian and renal cell carcinomas.lnt J Cancer,2001,94(2):212-217.
    52 Caceres I I , Battagli C , Esteller M , et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients.Cancer Res, 2004,64(13):6476-6481.
    53 Roskelley C D,Bissell M J.The dominance of the microenviroment in breast and ovarian cancer.Cancer Biol,2002,12(1):97-104.
    54 刘静,夏昭林.DNA损伤修复基因高甲基化与肿瘤.国外医学卫生学分册,2005, 32(6):370-375.
    55 Esteller M, Hamilton S R, Burger P C, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 1999,59(2): 793-797.
    56 Codegoni A M, Bertoni F, Patregnani C, et al. Allelic expression of p73 in human ovarian cancers.Ann Oncol, 1999, 10(3):949-953.
    57 史本涛,王盛兴,贺大林.肿瘤抑制基因ARHI的生物学功能及研究进展.肿瘤防治杂志,2005,12(3):229-232.
    58 Yu Y, Xu T, Peng H, et al. NOEY2(ARH Ⅰ),an imprinted putative tumor suppressor gene in ovarian and breast carcinoma.Proc Natl Acad Sci USA, 1999,96(1):214-219.
    59 Yu Y, Fujii S, Yuan J, et al. Epigenetic regulation of ARHI in Breast and ovarian cancer cells. Ann N Y Acad Sci, 2003, 983(2):268-277.
    60 Yuan J, Gullianello M, De-Lombaert S,et al. 3-Arylpyrazolo[4,3-d]-pyrimidine derivatives: nonpeptide CRF-1 antagonists. Proc Amer Assoc Cancer Res,2002,43 (1):114-115.
    61 Deltour S, Pinte S, Guerardel C,et al. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol,2002,22(13): 4890-4901,
    62 Narayan G, Arias-Pulido H, Koul S,et al. Frequent promoter methylation of CDH1,DAPK,RARB and HICI genes in carcinoma of cervix uteri: its relationship to clinical outcome.Mol Cancer, 2003, 2(1): 24-36.
    63 Akahira J, Sugihashi Y, Suzuki T, et al. Decreased expression of 14-3-30 is associated with advanced disease in human epithelial ovarian cancer, its correlation with aberrant DNA methylation. Clinical Cancer Res,2004,10(8):2687-2693.
    64 Shen D H, Chart K, Khoo U S, et al. Epigenetic and genetic alterations of p33ING1b in ovarian cancer .Carcinogenesis, 2005, 26(4):855-863.
    65 Terasawa K, Sagae S, Toyota M, et al. Epigenetic inactivation of TMS1/ASC in ovarian cancer.Clinical Cancer Res, 2004, 10(6):2000-2006.
    66 Cheng J C, Weisenberger D J, Gonzales F A, et al.Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol. 2004,24(3): 1270-1278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700