表观遗传修饰在胰岛分化及其相关基因转录表达的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究表观遗传修饰在胰岛分化及其相关基因(Pdx-1、Pax4、MafA和Nkx6.1)转录表达的作用。方法培养及收集小鼠胚胎干细胞(mES)(1×107)、小鼠成纤维细胞株NIH3T3细胞(1×107)和小鼠胰岛素瘤细胞株NIT-1细胞(1×107)三种细胞,采用甲基化DNA免疫共沉淀-实时定量PCR法(MeDIP-qPCR)检测3种细胞中与胰岛分化相关的基因、0ct4基因和MLH1基因的转录起始区DNA甲基化水平,采用染色质免疫共沉淀-实时定量PCR法(ChIP-qPCR)检测上述三种细胞各基因转录起始区组蛋白修饰(H3乙酰化、H3K4m3和H3K9m3修饰)的状况,同时采用实时定量RT-PCR检测上述三种细胞各基因mRNA表达水平,分析DNA甲基化、H3乙酰化、H3K4m3和H3K9m3修饰改变与基因表达之间的关系。结果(1)NIH3T3细胞Pdx-1、MafA和Nkx6.1基因转录起始区呈高甲基化,与mES和NIT-1细胞相比均明显增高(P<0.05),与基因表达存在负相关;(2)NIT-1细胞中Pdx-1、Pax4、MafA、Nkx6.1等基因转录起始区的H3K4m的修饰水平较mES和NIH3T3细胞明显增高(P<0.05),基因表达。(3)NIH3T3细胞中Pdx-1、Pax4、MafA、Nkx6.1等基因转录起始区的H3K9m3的修饰水平较mES和NIT-1细胞明显增高(P<0.05),基因不表达。结论组蛋白修饰(H3K4m3和H3K9m3)及DNA甲基化能相互协调,共同参与了Pdx-1、MafA、Nkx6.1和Pax4等与胰岛分化相关的基因的表达调控,对胚胎干细胞向胰岛分
     化具有重要的意义。
Objective:To study the effect of epigenetic modification on the differentiation of islet cells and the expression of associated genes (Pdx-1、Pax4、MafA、Nkx6.1,etc). Method:Mouse embryonic stem cells(1×107), NIH3T3 cells(1×107) and NIT-1 cells(1×107) were cultured and collected. The promoter methylation status of islet differentiation-associated genes (Pdx-1,Pax4,MafA and Nkx6.1),Oct4 and MLH1 genes among different cell types were measured by using methylated DNA immunoprecipitation-real time quantitative PCR methods (MeDIP-qPCR). The promoter histone modification status of these genes among different cell types were measured by using chromatin immunoprecipitation-real time quantitative PCR methods. The expression of these genes in the three cell lines were measured by realtime quantitative PCR. Analyze the relationship between the differences of epigenetic modification(DNA methylation, H3 acetylation, H3K4m3 and H3K9m3) and gene expressions. Results:(1) In NIH3T3 cell, the transcription-initiation-site of Pdx-1, MafA and Nkx6.1 are high extent of methylaion status. Compared with mES cell and NIT-1 cell, NIH3T3 cell has a sigificantly higher level of DNA methylation modification (P<0.05). There are the Pearson correlation between expressions of Pdx-1、MafA、Nkx6 genes and methylation modification.(2) Compared with mES cell and with NIH3T3 cell, NIT-1 cell has a sigificantly higher level of H3K4m3 modification in the transcription-initiation-site of Pdx-1,Pax4,MafA and Nkx6.1 genes (p<0.05), with sigificant level of gene expression. (3) Compared with mES cell and with NIT-1 cell, NIH3T3 cell has a sigificantly higher level of H3K9m3 modification in the transcription-initiation-site of Pdx-1,Pax4,MafA and Nkx6.1 genes (p<0.05), with no gene expression. Conclusion:Histone modification (H3K4m3 and H3K9m3) and DNA methylation can regulate one another, and synergtically regulate the expression of islet differentiation-associated genes. These epigenetic modifications pose significant importance in the differentiation process from embryonic stem cell into islet cell.
引文
[1]Wu Ct, Morris JR. Genes, genetics and epigenetics:a correspondence. [J]Science 2001,293(5532):1103-5.
    [2]Quina AS, Buschbeck M, Di Croce L. Chromatin structure and epigenetics [J]. Biochem Pharmacol,2006,72 (11):15632-69.
    [3]S Razin A, Riggs AD. DNA methylation and gene function. [J] Science. 1980,210(4470):604-10.
    [4]Takai, D.& Jones, P. A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. [J].Proc. Natl Acad. Sci. USA.2002,99:3740-5.
    [5]Eckhardt, F. et al. DNA methylation profiling of human chromosomes 6,20 and 22. [J]. Nature Genet.2006,38:1378-85.
    [6]Bender J.DNA methylation and epigenetics. Annu Rev Plant Biol.2004,55:41-68..
    [7]Hattori N, Imao Y, Nishino K, et al. Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. [J] Genes Cells.2007,12(3):387-96.
    [8]Szyf M. DNA methylation and demethylation as targets for anticancer therapy [J]. Biochemistry (Mosc).2005,70:533-49.
    [9]Ramchandani S, Bhattacharya SK, Cervoni N, et al. DNA methylation is a reversible biological signal. [J].Proc Natl Acad Sci U S A.1999,96(11):6107-12.
    [10]Gonzales F.A.,Li,E.,Laird, P.W,etal.Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. [J].Mol Cell Biol 2002,22:480-91.
    [11]Ramchandani S, Bhattacharya SK, Cervoni N, et al. DNA methylation is a reversible biological signal. [J].Proc Natl Acad Sci USA.1999,96 (11):6107-12.
    [12]Andrea Steimer,Hanspeter Schob,Ueli Grossniklaus.Epigenetic control of plant development:new layers of complexity. [J] Current Opinion in plant Biology,2004,7:11-9
    [13]Jenuwein T, Allis CD. Translating the histone code. [J] Science.2001. 10;293(5532):1074-80.
    [14]Strahl BD, Allis CD. The language of covalent histone modifications. [J]. Nature. 2000;403(6765):4-5.
    [15]Tremethick DJ. Higher-order structuresof chromatin:The elusive 30 nm fiber. [J].Cell,2007,128:651-54.
    [16]Gibbons RJ. Histone modifying and chromatin remodeling enzymes in cancer and dysplastic syndromes. [J].Hum Mol Genet.2005,14 Spec No 1:R85-92.
    [17]Biel M, Wascholowski V, Giannis A, et al.. Epigenetics--an epicenter of gene regulation:histones and histone-modifying enzymes. [J].Angew Chem Int Ed Engl, 2005,44 (21):3186-216.
    [18]Martin C, Zhang Y. The diverse functions of histone lysine methylation. [J].Nat Rev Mol Cell Biol,2005,6(11):838-49.
    [19]Litt M D, Simpson M, Gaszner M, et al. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. [J].Science,2001,293 (5539):2453-2455
    [20]Johnson L, Mollah S, Garcia B A, et al. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. [J]. Nucleic Acids Res,2004,32 (22):6511-18.
    [21]Nan X, Ng H H, Johnson C A, et al. Transcriptional repression by the methyl2CpG2binding protein MeCP2 involves a histone deacetylase complex.[J]. Nature,1998,393 (6683):386-389.
    [22]Bannister A J, Zegerman P, Partridge J F, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. [J].Nature,2001, 410(6824):120-24
    [23]Kang JK, Park KW, Chung YG, et al. Coordinated change of a ratio of methylated H3-lysine 4 or acetylated H3 to acetylated H4 and DNA methylation is associated with tissue-specific gene expression in cloned pig. [J]. Exp Mol Med,2007,39 (1):84-96.
    [24]Shiota, K., Kogo, Y, Ohgane, J., et al.. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. [J] Genes Cells 2002,7:961-9
    [25]James, D, Levine, A.J, Besser, D, et al TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. [J]Development.2005; 132,1273-82.
    [26]Xu, R.H., Peck, R.M., Li, D.S. et al.. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. [J] Nat. Methods.2005,2,185-90.
    [27]Illingworth R., Jenuwein T, Allis CD, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. [J].PLoS Biol.2008,6, 12-22.
    [28]Lagarkova, M.A., Volchkov, P.Y., Lyakisheva, A.V. et al. Diverse epigenetic profile of novel human embryonic stem cell lines. [J].Cell Cycle 2006;5,416-20.
    [29]Lee JH, Hart SR, Skalnik DG. Histone deacetylase activity is required for embryonic stem cell differentiation.[J]. Genesis,2004,38(1):32-38.
    [30]Kimura H, Tada M, Nakatsuji N, et al.Histone code modifications on pluripotential nuclei of reprogrammed somatic cells.[J].Mol Cell Biol,2004, 24(13):5710-720.
    [31]Szutorisz H and Dillon N. The epigenetic basis for embryonic stem cell pluripotency.[J].Bioessays.2005;27(12)1286-293.
    [32]Bernstein, B.E., Mikkelsen, T.S., Xie, X. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. [J]. Cell,2006,125:315-326.
    [33]Naya FJ, Stellrecht CM, Tsai MJ et al. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. [J]. Genes Dev.1995 Apr,9(8):1009-19.
    [34]Knepel W, Transcriptional control of pancreatic islet hormones gene expression. [J]. Exp Clin Endocrinol.1993;101(1):39-45.
    1. Liss B. Improved quantitative real-time RT-PCR for expression profiling of individual cells.[J]. Nucleic Acids Res,2002,30(17):e89.
    2. Glockner S, Lehmann U, Wilke N, et al. Detection of gene amplification in intraductal and infiltrating breast cancer by laser-assisted microdissection and quantitative real-time PCR. [J].Pathobiology,2000,68(45):173-9.
    3. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. [J].Methods 2001; 25(4):402-8.
    4. Hamaguchi K, Gaskins HR, Leiter EH, et al.NIT-1, a pancreatic beta-cell line established from a transgenic NOD/Lt mouse[J]. Diabetes,1991,40(7):842-849.
    5. Yatoh S, Dodge R, Akashi T, et al. Differentiation of affinity-purified human pancreatic duct cells to beta-cells. [J]. Diabetes2007;56(7):1802-09
    6. Ozcan S, Mosley AL, Aryal BK etal. Functional expression and analysis of the pancreatic transcription factor PDX-1 in yeast. [J]. BiochemBiophys Res Commun,2002,295:724-9.
    7. Itkin Ansari P, Geron I, Hao E, et al. Cell based therapies for diabetes:progress towards a transplantable human beta cell line. Ann N Y Acad Sci,2003,1005:138-47.
    8. Olbrot M, Rud J, MossL G, et al. Identification of beta-cell-specific insulin gene transcription factor R IPE3b1 as mammalian MafA. [J]. Proc Natl Acad Sci USA. 2002,99(10):6737-42.
    9. Kataoka K, Han SI, Shioda S, et al. MafA is a glucose-regulated and pancreatic β cell-specific transcriptional activator for the insulin gene. [J] Biol Chem.2002,277(51): 49903-10.
    10. Aramata S, Han SI, Yasuda K, et al. Synergistic activation of the insulin gene promoter by the β cell enriched transcription factors MafA, Beta2, and Pdxl. [J].Biochim Biophys Acta.2005,1730(1):41-6.
    11. Samaras SE, Zhao L, Means A, et al. The islet beta cell-enriched RIPE3bl/Maf transcription factor regulates pdx-1 expression. [J] Biol Chem.2003,278(14):12263-70.
    12. Sander M, Sussel L, Conners J, et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of β-cell formation in the pancreas. [J].Development. 2000,127(24):5533-40.
    13. Collombat P, Hecksher-S(?)rensen J, Serup P, et al. Specifying pancreatic endocrine cell fates. [J]. Mech Dev.2006,123(7):501-12.
    14. Sander M, German MS. The beta cell transcription factors and development of the pancreas[J].Mol Med,1997,75(5):327-340.
    1 Weber M, Davies JJ, Wittiq D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. [J].Nat Genet.2005,37(8):853-62.
    2 Beck S, Rakyan VK. The methylome:approaches for global DNA methylation profiling. [J].Trends Genet 2008,24(5):231-7.
    3 Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. [J].Nat Genet. 2007,39(4):457-66.
    4 Boyer LA, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006,441 (7091):349-53.
    5 Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet.2006,38(4):431-40.
    6 Reik W, Dean W. DNA methylation and mammalian epigenetics. [J]. Electrophoresis, 2001,22(9):2838-2843.
    7 Mohn F, Weber M, Schubeler D, et al. Methylated DNA immunoprecipitation(MeDIP). [J].Methods Mol Biol.2009,507:55-64.
    8 Dahl C, Guldberg P. DNA methylation analysis techniques [J]. Biogerontology,2003, 4(4):233-250.
    9 Bender J.DNA methylation and epigenetics. [J]. Annu Rev Plant Biol.2004,55:41-68.
    10 Singal R, Ginder GD. DNA methylation. [J].Blood.1999,93(12):4059-70.
    11 Zhang Y, Ng HH, Erdjument-Bromage H, et al. Analysis of the NuRD subuni-reveals a histone deacetylase core complex and a connection with DNA methylation. [J].Genes Dev,1999,13(15):1924-35.
    12 Ng HH, Bird A. DNA methylation and chromatin modification. [J]. Curt Opin Genet Dev.1999,9(2):158-63.
    13 Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. [J]. Proc Natl Acad Sci USA.2002,99(6):3740-5.
    14 Rollins RA, Haqhiqhi F, Edwards JR, et al. Large-scale structure of genomic methylation patterns. [J].Genome Res.2006,16(2):157-63.
    15 Bock C, Paulsen M, Tierling S, et al. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. [J]. PLoS Genet 2006,2(3):e26.
    16 Ayton PM, Chen EH, Cleary ML. Binding to nonmethylated CpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein. [J].Mol Cell Biol.2004,24(23):10470-8.
    17 Roh TY, Cuddapah S, Zhao K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. [J].Genes Dev.2005,19(5):542-52.
    18 Eckhardt F, Lewin J, Cortese R, et al. DNA methylation profiling of human chromosomes 6,20 and 22. Nature Genet.2006,38(12):1378-85.
    19 Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002,16(1):6-21.
    20 Bibikova M, Chudin E, Wu B, et al. Human embryonic stem cells have a unique epigenetic signature. [J].Genome Res.2006,16(9):1075-83.
    21 Nore A, Sorensen A L, Boquest A C, et al. Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue. [J].Mol Biol Cell,2006,17:3543-56.
    22 Lagarkova MA, Volchkov PY, Lyakisheva AV, et al. Diverse epigenetic profile of novel human embryonic stem cell lines. Cell Cycle.2006,5(4):416-20.
    23 Yeo S, Jeong S, Kim J, et al. Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells. Biochem Biophys Res Commun.2007,359(3):536-42.
    24 Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell.2005,122(6):947-56.
    1 Jackson V,Chalkley R.A new method for the isolation of replicative chromatin:selective deposition of histone on both new and old DNA.[J].Cell,1981,23:121-34.
    2 Dedon P C,Soults J A,Allis C D,et al.A simplified formaldehyde fixation and immunopre-cipitation technique for studying protein-DNA interactions. [J].Anal Bio-chem,1991, 197:83-90
    3 Bergqvist D, Lindholm C, Nelzen O, et al. Chronic leg ulcers:the impact of venous disease. [J]. Vasc Surg,1999,29(8):752-55.
    4 Sterner DE,Berger SL.Acetylation of histones and transcription related factors. [J].Microbiol Mol Biol Rev,2000,64(2):435-55.
    5 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△ CT method. [J]. Methods 2001; 25(4):402-408.
    6 Pugh B F, Gilmour D S. Genome-wide analysis of protein DNA interactions in living cells. [J].Genome Biol,2001,2(4):10131-33.
    7 Katharine L,Arney,Amanda Qetal.Epigenetic aspects of differentiation.[J].Cell Science,2004,117:4355-63.
    8 Kouzarides. T1 Histone acetylases and deacetylases in cell proliferation. [J].Curr Opin Genet Dev,1999,9:40-48.
    9 Turner BM.Histone acetylation and an epigenetic code. [J].Bioessays.2001,23:820-30.
    10 Litt M D, Simpson M, Gaszner M, et al. Correlation between histone lysine methy-lation and developmental changes at the chicken beta-globin locus. [J]. Science, 2001,293 (5539):2453-55
    11 Johnson L, Mollah S, Garcia B A, et al. Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. [J]. Nucleic Acids Res,2004,32 (22):6511-18.
    12 Bannister A J, Zegerman P, Partridge J F, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. [J]. Nature,2001,410(6824):120-4.
    13 Curradi M, Izzo A, Badaracco G, Landsberger N. Molecular mechanisms of gene silencing mediated by DNA methylation.[J]. Mol Cell Biol,2002,22 (9):3157-73.
    14 Boyer LA, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. [J].Nature 2006,441(7091):349-53..
    15 Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. [J]Nat Genet.2006,38(4):431-40.
    1 Andrea Steimer,Hanspeter Schob,Ueli Grossniklaus.Epigenetic control of plant development:new layers of complexity. [J] Current Opinion in plant Biology, 2004,7:11-19.
    2 Katharine L,Arney,Amanda Qetal.Epigenetic aspects of differentiation.[J].Cell Science,2004,117:4355-63.
    3 Bender J.DNA methylation and epigenetics. [J]. Annu Rev Plant Biol.2004,55:41-68.
    4 Mccool KW, Xu X J, Sinqer D B, et all The role of histone acetylation in regulating early gene exp ression patterns during early embryonic stem cell differentiation. [J].Biol Chem,2007,19:6796-806.
    5 Nore A, Sorensen A L, Boquest A C, et al. Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue [J]1Mol Biol Cell,2006,17:3543-61.
    6 Reik W, Dean W, Walter J, et al.. Epigenetic reprogramming in mammalian development. [J].Science,2001,293:1089-95.
    7Katharine L,Arney,Amanda Qetal.Epigenetic aspects of differentiation.[J].Cell Science, 2004,117:4355-63.
    8 An W. Histone acetylation and methylation:combinatorial players for transcriptiona-1 regulation. [J].Subcell Biochem.2007; 41:351-69.
    9 Lee JH, Hart SR, Skalnik DG, et al. Histone deacetylase activity is required for embryonic stem cell differentiation.[J]. Genesis,2004,38:32-38.
    10 Kimura H, Tada M, Nakatsuji N, et al.Histone code modifications on pluripotentil nuclei of reprogrammed somatic cells.[J]. Mol Cell Biol,2004,24:5710-20.
    11 Bannister A J, Zegerman P, Partridge J F, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. [J]. Nature,2001,410(6824): 120-124.
    12 Bernstein, B.E., Mikkelsen, T.S., Xie, X. et al.A bivalent chromatin structure marks key developmental genes in embryonic stem cells. [J]. Cell,2006,125:315-326.
    13 Barski, A., Cuddapah, S., Cui, K.R. et al. High-resolution profiling of histone methylations in the human genome. [J].Cell,2007,129:823-837.
    14 Mikkelsen, T.S, Ku, M., Jaffe, D.B, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. [J].Nature 2007,448:553-560.
    15 Pan, G., Tian, S., Nie, J., Yang, C, et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. [J].Cell Stem Cell 2007,1:299-312.
    16 Nan X, Ng H H, Johnson C A, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.[J]. Nature,1998, 393 (6683):386-89.
    17 Bannister A J, Zegerman P, Partridge J F, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. [J]. Nature,2001,410(6824):120-124.
    18 Roh TY, Cuddapah S, Zhao K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. [J].Genes Dev.2005,19(5):542-52.
    19 Yamada Y, Watanabe H, Miura F, et al. A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. [J]. Genome Res. 2004,14(2):247-66.
    20 Curradi M, Izzo A, Badaracco G, Landsberger N. Molecular mechanisms of gene silencing mediated by DNA methylation. [J]. Mol Cell Biol,2002,22 (9):3157-3173.
    21 Hattori N, Nishino K, Ko Y, et al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. [J]. Biol Chem. 2004,279(17):17063-9.
    22 Hattori N, Imao Y, Nishino K, et al. Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. [J].Genes Cells.2007,12(3):387-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700