基于SO_4·~-的非均相类Fenton-光催化协同氧化体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国环保、能源等相关政策和法规的逐步建立和完善,对工业用水的回用率提出了较高要求。水回用率提高虽然有效节约了水资源,降低了生产成本,但也使水中的有机物逐渐累积,导致排出的有机废水具有成分复杂、高浓度、高生物毒性和生物难降解的特点,传统生物水处理工艺难以对其进行有效处理。高级氧化技法(AOPs)被认为是处理高浓度难降解有机废水的有效途径,能彻底将水中有机污染物分解成无害的CO2和H2O。其中,基于Fe2+和H2O2构成的Fenton反应和TiO2光催化氧化技术理论上能在常温、常压下反应,反应速率快且操作简单,非常适合于工业有机废水处理。但在实际工程中,由于Fe2+在pH>3.7时易被氧化并生成Fe(OH)3沉淀,Fenton反应需要投加过量含Fe2+药剂来保证对H2O2的催化,确保污染物的降解。虽然Fe(OH)3有一定絮凝作用,但会产生大量化学污泥,造成二次污染;而TiO2光催化反应则需足够强度的紫外光源保证TiO2被有效激发,对光穿透能力差、色度较大的有机废水处理效果较差,大量纳米TiO2粉末状催化剂易因团聚而不能和污染物分子进行有效反应,且难以从水中去除和回收,也易造成催化剂浪费和二次污染。因此,往往需要配备辅助设施才能适应不同水质,保证工艺有效运行和处理效果,导致技术成本较高。
     论文的主要研究内容与结论如下:
     ①针对上述技术瓶颈,作者创新性地设计并使用溶胶-凝胶法合成了一种“双效催化剂”—Co-TiO2。“双效”是指在近中性条件下(pH=6.9),Co-TiO2能在无光环境下催化PMS(KHSO5)发生基于硫酸根自由基(SO_4·~-)的类Fenton催化氧化反应(Co-TiO2/PMS,SR-Fenton);同时,还能在光照条件下作为光催化剂,通过光催化氧化(Photo/Co-TiO2,Photo)去除水中的有机污染物。试验结果表明:pH=6.9时, Co-TiO2/PMS反应对50mg/L的罗丹明B(RhB)和苯酚(PhOH)的降解率为77.5%和64.9%。可见光(Vis)照射下,Vis/Co-TiO2反应光催化降解RhB和PhOH,降解率分别为45.6%和52.3%。
     当Vis、Co-TiO2和PMS同时存在于反应体系中时,SR-Fenton和光催化形成了协同催化氧化体系。基于此,作者融合SR-Fenton和TiO2光催化过程开发了一种新型“SR-Fenton/光催化协同技术(Vis/Co-TiO2/PMS,SR-Fenton/Photo)”。试验表明,相同条件下,Vis/Co-TiO2/PMS体系对RhB和PhOH的降解率(ηD)都上升为100%,反应时间由2h缩短到80min。根据Vis/Co-TiO2/PMS反应对100mg/L的RhB和PhOH的ηD计算出体系中SR-Fenton和TiO2光催化的协同效率(ηSyn)分别为15.7%和12.6%。此外,Co-TiO2的重复利用性好,Co2+离子溶出率(ηLCo2+)仅为1.4%。同时,Co-TiO2有一定的铁磁性,具有磁力回收的潜力。
     ②本文对Co-TiO2/PMS、Vis/Co-TiO2和Vis/Co-TiO2/PMS为对比体系进行了研究,以探讨Co-TiO2的催化机理和SR-Fenton/光催化的协同机制:
     1)针对Co-TiO2/PMS反应体系,通过XPS和UV-DRS检测表明Co-TiO2催化剂表面有Co3O4颗粒。自由基淬灭试验结果显示Co-TiO2/PMS体系中主要自由基种类是SO_4·~-,结合原位ATR-FTIR分析确定Co3O4颗粒是Co-TiO2催化剂的SR-Fenton活性点位。以草酸盐定量法测得1.0g Co-TiO2可催化1mol PMS产生1molSO4。针对Vis/Co-TiO2反应体系,XRD测试结果表明一部分Co2+离子掺入了TiO2晶格。基于第一性原理计算并结合UV-DRS、VBXPS测试确定Co-TiO2催化剂的Eg=2.30eV,EVBT=2.0eV,ECBB=-0.3eV,是窄带系半导体,能有效利用可见光,Co-TiO2的可见光活性主要来源于Co2+的掺杂。同时,EEM测试表明Co2+掺杂降低了光生电子-空穴对(hvb+/ecb)的复合率,增强了Co-TiO2的光催化活性。
     2)对Co-TiO2催化剂Co元素XPS图谱的研究发现Vis/Co-TiO2/PMS协同反应前后Co-TiO2催化剂表面Co3O4颗粒中的Co(II)比例由33%上升到46%;而Co-TiO2/PMS反应前后Co3O4中的Co(II)却由33%下降到12%。可能是光催化产生的强还原性电子将Co3O4中的部分Co(III)还原成了Co(II),提高了SR-Fenton催化效率。同时,PMS能有效提高光催化过程的表观量子产率(ΦApp),加入PMS后,UV/TiO2反应的ΦApp由0.0074增大到0.073μmol/J,可推知PMS能捕获光生电子(ecb)。SR-Fenton和光催化效率的提高,都增强了体系的氧化能力。通过自由基淬灭法发现pH=6.9时,Vis/Co-TiO2/PMS反应为OH和SO_4·~-自由基的混合体系,自由基总量比Co-TiO2/PMS体系上升34%。
     3)利用GC/MS、LC/MS跟踪RhB在Vis/Co-TiO2/PMS反应中的主要降解中的浓度,发现它们的生成量大于Co-TiO2/PMS和Vis/Co-TiO2反应,生成速率也较快。准一级动力学方程能较好拟合三种反应过程。协同作用在反应动力学上的表现为Vis/Co-TiO2/PMS反应的表观速率常数(kobs)(0.01399min-1)比Vis/Co-TiO2(0.00161min-1)和Co-TiO2/PMS反应(0.0699min-1)增大了一个数量级;同时,表观活化能(E Appa)由Co-TiO2/PMS反应的51.3kJ/mol下降到Vis/Co-TiO2/PMS的39.5kJ/mol。基于kobs计算协同系数(Sc)为1.8。
     ③最后,将Vis/Co-TiO2/PMS协同体系用于去除水中的微量POPs/EDCs物质阿特拉津和PAHs物质萘和菲。结果表明阿特拉津能被Vis/Co-TiO2/PMS体系有效降解,部分有毒中间产物也被完全去除。当以Vis为光源,[ATZ]0=0.1mM、mcata=0.01g、PMS/[ATZ]0=1:2、pH=6.9时,反应50min,ATZ即被完全降解,反应协同效率(ηSyn)和协同系数(Sc)分别达37%和5.30。萘和菲也能被协同体系快速去除,水中的NOM物质对它们降解率影响不明显。对比类似研究,Vis/Co-TiO2/PMS协同体系有效节省了药剂投加量、反应时间短、降低了技术成本。
     因此,论文合成的Co-TiO2双效催化剂和构建的SR-Fenton/Photo协同催化氧化体系部分解决了传统Fenton催化依赖酸性反应环境、药剂投加量大、含铁化学污泥以及TiO2光催化依赖紫外光源和催化剂难回收的问题。
Recent years, with the gradual establishment and improvement of environmentaland energy-related policies and regulations in China, the industrial water has beenrequired to have a higher recycling rate. Although the increasing of the water reusesaves the water resources and reduce production costs effectively, but also causes theaccumulation of organic matter in the water. So, the high concentration of varioustoxicity and refractory organic pollutants were usually rich in the industrial wastewater,and the traditional biological waste water treatment process is difficult to remove themeffectively. But, the advanced oxidation processes (AOPs) are considered to be aneffective way to deal with them, it can completely decompose the organic pollutantsinto harmless CO2and H2O. Among different AOPs, the Fenton reaction (Fe2+/H2O2)and TiO2photocatalytic oxidation technology are best suited to the industrial organicwastewater treatment as they can react at room temperature and atmospheric pressure,furthermore, their reaction rates are fast and the operation conditions are simple,theoretically. Actually, Fenton reaction requires excessive dose of Fe2+to catalyze H2O2decomposition to ensure the degradation of pollutants, because the Fe2+ions will beoxidized and precipitated in the form of Fe(OH)3at pH>3.7. The large quantities ofchemical ferric sludge will cause secondary pollution, in spite of Fe(OH)3has someflocculating effect. On the other hand, the TiO2photocatalysis is required sufficientintensity UV as light source. In the case of some dark color wastewater, the lightpenetration is weak, the treatment effect is poor. Furthermore, a large number ofnano-TiO2powders are not react with pollutant molecules effectively as reunited. Also,the suspended nano powders are difficult to remove from the water by filtration or othermethods, and it also lead to secondary pollution, easily. Therefore, in practicalengineering Fenton and TiO2photocatalysis need auxiliary facilities to adapt to differentwater quality and ensure the effective operation of the processes, and the treatmenteffect, so resulting in higher technology costs.
     The main contents and conclusions of the paper are as follows:
     ①In order to overcome these technological bottlenecks, the authors innovativelydesigned and synthesized a “bifunctional catalyst”-Co-TiO2by using sol-gel method.“Bifunctional” means: When pH=6.9, the Co-TiO2catalyst can initiate SR-Fentonreaction via catalyzed PMS (KHSO5) to produce sulfate radicals (SO4) in dark (Co-TiO2/PMS, SR-Fenton) or exited by light (Photo/Co-TiO2, Photo) as photocatalyticcatalyst, respectively. Therefore, Co-TiO2catalyst is able to be applied in both dark andbright environments to removal organic pollutants in water flexibly. The results showthat: within2h reaction time, the degradation rates of50mg/L of rhodamine B (RhB)and phenol (PhOH) were77.5%and64.9%, respectively, in Co-TiO2/PMS process, atpH=6.9. At the same time, under visible (Vis) irradiation, the RhB and PhOHphotocatalytic degradation rate were45.6%and52.3%by Vis/Co-TiO2process.
     When the light, Co-TiO2and PMS coexist in the reaction system, SR-Fenton andphotocatalysis formed a synergistic oxidation system. Based on this, the authors hasdeveloped a novel “SR-Fenton/photocatalytic synergistic oxidation technology(Vis/Co-TiO2/PMS, SR-Fenton/Photo)” which integrated SR-Fenton and TiO2photocatalytic process in a heterogeneous catalytic system. Tests showed that under thesame conditions, degradation rate of RhB and PhOH (ηD) both increased to100%inVis/Co-TiO2/PMS system, and the reaction time reduced to80min. Calculation ofsynergistic coefficient (ηSyn) of SR-Fenton and TiO2photocatalysis based on the ηDof100mg/L RhB and PhOH degradation in Vis/Co-TiO2/PMS process were15.7%and12.6%. In addition, Co-TiO2showed good reusability and the Co2+ions leaching rate(ηLCo2+) was only1.4%. Magnetic test indicated that the Co-TiO2catalysts hasferromagnetic, so it has potential to recovery by magnetic force.
     ②To analyze the catalytic mechanism of Co-TiO2in the SR-Fenton/Photosynergistic system, this paper used Co-TiO2/PMS, Vis/Co-TiO2and Vis/Co-TiO2/PMSas comparison system:
     1) In the study of the Co-TiO2/PMS process, the UV-DRS and XPS spectra showedthe Co3O4particles loaded on the surface of Co-TiO2catalyst. The radical quenchingtest showed theSO_4·~-was the main radical specie of Co-TiO2/PMS reaction, and thein-situ ATR-FTIR analysis determined the Co3O4particles were the SR-Fenton activesites of Co-TiO2catalyst. Using oxalate to quantify the radicals in the reaction madesure that1.0g Co-TiO2can catalyze1mol PMS to produce1molSO_4·~-. In the study ofVis/Co-TiO2process, the XRD spectra showed that a part of the Co2+ions has implantedinto the TiO2lattice.Based on first-principles calculation and UV-DRS, VBXPS tests,the Eg, EVBT, and ECBBwere2.30,2.0, and-0.3eV. So, it is a narrow-band semiconductor,can utilize visible light effectively. The visible light photocatalytic activity of Co-TiO2might be attributed to the Co2+ions doping. Meanwhile, EEM tests showed that theCo2+-doping also reduced the combination of photo-generated electron-hole pairs (hvb+/ecb), and enhanced photocatalytic activity of Co-TiO2.
     2) From the Co XPS spectra of the fresh and spent Co-TiO2catalyst ofVis/Co-TiO2/PMS reaction, the Co(II) proportion of Co3O4particles, loaded on thesurface of Co-TiO2catalyst, rose from33%to46%; while it dropped from33%to12%in the Co-TiO2/PMS reaction. This results told us the strong reductive photo generatedelectrons from photocatalytic reaction reduced a part of Co(III) in Co3O4to Co(II), andthe higher Co(II) amount improved the SR-Fenton catalytic efficiency. Meanwhile, thetrial also showed that PMS can effectively improve the apparent quantum yield (ΦApp)of TiO2photocatalytic process. After adding PMS to the UV/TiO2process, ΦAppofUV/TiO2reaction increases from0.0074to0.073μmol/J, and it can be inferred that thePMS can capture the photo-excited electrons. The enhancement of SR-Fenton andphotocatalysis of synergistic system improved the oxidizing ability of Vis/Co-TiO2/PMSreaction obviously. Using the radical quenching method to recognize the radicals inVis/Co-TiO2/PMS process, it can be found that when pH=6.9, OH andSO_4·~-both existin the hybrid system, and the radical total amount was34%more than the Co-TiO2/PMSreaction.
     3)Based on the results of GC/MS, LC/MS and quantity of major intermediates ofRhB degradation, we can found that the amount of by-products in the Vis/Co-TiO2/PMSprocess was greater than individual Co-TiO2/PMS or Vis/Co-TiO2reaction and theirgeneration rate was faster. The RhB degradation kinetics of Co-TiO2/PMS, Vis/Co-TiO2and Vis/Co-TiO2/PMS all fitted quasi-first-order kinetics well. The synergistic effectreflected in the reaction kinetics was that the apparent rate constants (kobs) ofVis/Co-TiO2/PMS (0.01399min-1) was one magnitude bigger than Vis/Co-TiO2(0.00161min-1) and Co-TiO2/PMS reaction (0.0699min-1). Meanwhile, comparing withCo-TiO2/PMS the apparent activation energy (EAppa) was decreased from51.3kJ/mol to39.5kJ/mol. The synergistic coefficient calculated based kobs(Sc) was1.8.
     ③Finally, the author using Vis/Co-TiO2/PMS synergistic system to remove thetrace POPs/EDCs substance atrazine and PAHs substance naphthalene and phenanthrene.Results indicated that the atrazine can be degrade effectively and some toxicintermediates are also completely removed. The reaction conditions were as follows:visible light source,[ATZ]0=0.1mM, mcata=0.01g, PMS/[ATZ]0=1:2, pH=6.9,50minreaction time. The synergistic efficiency (ηSyn) was37%and the synergistic coefficient(Sc) was5.30, respectively. Furthermore, the trace naphthalene and phenanthrene alsocan be rapid removal by the synergistic process, and their removal rates were not affected by NOM in water obviously. Compared with the similar studies, theVis/Co-TiO2/PMS synergistic system effectively saves the pharmaceutical dosageeffectively, furthermore, it also shorten the reaction time and reduce technology costs.
     Consequently, the Co-TiO2bifunctional catalyst and the synergisticSR-Fenton/Photo system build in this study partially overcome the drawbacks of acidicpH environment, large pharmaceutical dosage, and chemical sludge of traditionalFenton, as well as, ultraviolet light source dependence and catalyst recovery problem ofTiO2photocatalysis.
引文
[1] De Filippis S P, Brambilla G, Dellatte E, et al. Exposure to polychlorinated dibenzo-p-dioxins(PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls(DL-PCBs), and polybrominated diphenyl ethers (PBDEs) through the consumption of preparedmeals in Italy[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess.2014.
    [2] Snedeker S M. Pesticides and breast cancer risk: a review of DDT, DDE, and dieldrin[J].Environ Health Perspect.2001,109Suppl1:35-47.
    [3] Kümmerer K. Antibiotics in the aquatic environment--a review--part I[J]. Chemosphere.2009,75(4):417-434.
    [4] Kümmerer K. Antibiotics in the aquatic environment--a review--part II[J]. Chemosphere.2009,75(4):435-441.
    [5]魏瑞成,包红朵,郑勤,等.粪源抗生素金霉素和喹乙醇在养殖水体中的残留及对锦鲤的生态毒理效应研究[J].农业环境科学学报.2009,28(9):1800-1805.
    [6] Li X, Mehrotra M, Ghimire S, et al. β-Lactam resistance and β-lactamases in bacteria of animalorigin[J]. Veterinary Microbiology.2007,121(3):197-214.
    [7]叶计朋,邹世春,张干,等.典型抗生素类药物在珠江三角洲水体中的污染特征[J].生态环境.2007,16(2):384-388.
    [8]王冰,孙成,胡冠九.环境中抗生素残留潜在风险及其研究进展[J].环境科学与技术.2007,30(3):108-111.
    [9]孔维栋,朱永官.抗生素类兽药对植物和土壤微生物的生态毒理学效应研究进展[J].生态毒理学报.2007(01):1-9.
    [10]杨庆,彭永臻.序批式活性污泥法原理与应用[Z].北京:科学出版社,2010.
    [11] Amadelli R, Samiolo L, Battisti A D, et al. Electro-oxidation of Some Phenolic Compoundsby Electrogenerated O3and by Direct Electrolysis at PbO2Anodes[J]. Journal of TheElectrochemical Society.2011,158(7): P87.
    [12] Chen F, Xie Y, He J, et al. Photo-Fenton degradation of dye in methanolic solution under bothUV and visible irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry.2001,138(2):139-146.
    [13] Liu Y, Lowry G V. Effect of particle age (Fe0content) and solution pH on NZVI reactivity: H2evolution and TCE dechlorination[J]. Environmental Science&Technology.2006,40(19):6085-6090.
    [14] Wang Z, Huang W, Fennell D E, et al. Kinetics of reductive dechlorination of1,2,3,4-TCDDin the presence of zero-valent zinc[J]. Chemosphere.2008,71(2):360-368.
    [15] Arnold W A, Ball W P, Roberts A L. Polychlorinated ethane reaction with zero-valent zinc:pathways and rate control[J]. Journal of Contaminant Hydrology.1999,40(2):183-200.
    [16] Choi J, Kim Y. Reduction of2,4,6-trichlorophenol with zero-valent zinc and catalyzedzinc[J]. Journal of Hazardous Materials.2009,166(2–3):984-991.
    [17] Bokare V, Jung J, Chang Y, et al. Reductive dechlorination of octachlorodibenzo-p-dioxin bynanosized zero-valent zinc: Modeling of rate kinetics and congener profile[J]. Journal ofHazardous Materials.2013,250–251(0):397-402.
    [18]贺泓,李俊华,等.环境催化:原理及应用[Z].北京:科学出版社,2008.
    [19]吴忠标.环境催化原理及应用[Z].北京:化学工业出版社,2006.
    [20]潘湛昌,孔祥晋,肖楚民,等.负载型二氧化钛光阳极对茜素红的光电催化降解[J].化学与生物工程.2006,23(8):45-47.
    [21] Yang S, Lou L, Wang K, et al. Shift of initial mechanism in TiO2-assisted photocatalyticprocess[J]. Applied Catalysis A: General.2006,301(2):152-157.
    [22]李红.二氧化钛纳米微粒的制备及对染料橙黄Ⅱ的光催化氧化[J].化学研究与应用.2007,19(11):1258-1260.
    [23]崔玉民,范少华,苏凌浩.功能材料二氧化钛光催化降解酸性黑染料[J].北京科技大学学报.2006,28(7):625-629.
    [24]刘秀兰,孙汉文,申士刚.流化床中光催化降解4BS染料废水的影响因素分析[J].河北大学学报:自然科学版.2007,27(4):382-386.
    [25]李蕊,赵景联,孙亚萍.超声协同TiO2光催化降解酸性大红染料的研究[J].应用化工.2006(06):416-419.
    [26]陈长琦,岑科达,殷福才,等.酸性大红GR染料废水超声降解的实验研究[J].安徽化工.2007(01):50-53.
    [27]水平极板多维电极电催化反应器废水处理设备[P].中国, CN200810234238.5,2011.1.26.
    [28]李桂英,安太成,陈嘉鑫,等.光电催化氧化处理高含氯采油废水的研究[J].环境科学研究.2006(01):30-34.
    [29]英国Pell Frishchmann公司BGAO-湿式催化氧化案例http://wenku. baidu. com/link?url=XsqTVhqLK0TC-DQqdjst5uQD1bsVPJoasIsFYI3nHKpi_zNwmOLOylZy-oBoJ5G9d378uDA_2h48H3Iz44axQdM3BCE7NMIuOmk9HCzJ8bq
    [30]张翼,马军,胡兵,等.多相催化-臭氧氧化法处理模拟有机磷农药废水[J].环境污染治理技术与设备.2005(11):51-55.
    [31]蒋展鹏,祝万鹏,杨志华,等.化学氧化法处理资源回收后的J-酸和吐氏酸染料中间体废液[J].环境科学.1997(04):36-38.
    [32]吴克明,陈新丽,陆艳. Fenton混凝沉淀法处理高浓度焦化废水的研究[J].电力环境保护.2005,21(3):41-43.
    [33] Miralles-Cuevas S, Oller I, Perez J A, et al. Application of solar photo-Fenton atcircumneutral pH to nanofiltration concentrates for removal of pharmaceuticals in MWTPeffluents[J]. Environmental science and pollution research international.2014.
    [34] Lima P A, de Carvalho M, Da C A, et al. Author's reply: Z-Score: Fenton2013. Ten-yearupdate[J]. J Pediatr (Rio J).2014.
    [35] Feng L, Oturan N, van Hullebusch E D, et al. Degradation of anti-inflammatory drugketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidationprocesses[J]. Environmental science and pollution research international.2014.
    [36] Kato D M, Elia N, Flythe M, et al. Pretreatment of lignocellulosic biomass using Fentonchemistry[J]. Bioresource Technology.2014,162C:273-278.
    [37]吴耀国,冯文璐,王秋华,等. Fenton法中拓宽pH范围的方法[J].现代化工.2008(03):87-90.
    [38]罗九鹏,韩菲,姜琦,等. Fenton-絮凝法预处理化工综合废水的研究[J].工业用水与废水.2011(05):15-19.
    [39] Inbasekaran M, Balu K, Meenakshisundaram S. Solar active fire clay based hetero-Fentoncatalyst over a wide pH range for degradation of Acid Violet7[J]. Journal of EnvironmentalSciences.2012(03):529-535.
    [40] General-Chemistry-Of-Fenton-S-Reagent H W H O.
    [41] Rivas F J, Beltran F J, Frades J, et al. Oxidation of p-hydroxybenzoic acid by Fenton'sreagent[J]. Water Research.2001,35(2):387-396.
    [42] Safarzadeh-Amiri A, Bolton J R, Cater S R. The use of iron in advanced oxidationprocesses[J]. Journal of Advanced Oxidation Technologies.1996,1:18-26.
    [43]陈晓旸.基于硫酸自由基的高级氧化技术降解水中典型有机污染物研究[D].大连理工大学,2007.
    [44] Kochany J, Lipczynska-Kochany E. Application of the EPR spin-trapping technique for theinvestigation of the reactions of carbonate, bicarbonate, and phosphate anions with hydroxylradicals generated by the photolysis of H2O2[J]. Chemosphere.1992,25(12):1769-1782.
    [45] Zhou T, Lim T, Wu X. Sonophotolytic degradation of azo dye reactive black5in anultrasound/UV/ferric system and the roles of different organic ligands[J]. Water Research.2011,45(9):2915-2924.
    [46] Li Y C, Bachas L G, Bhattacharyya D. Kinetics studies of trichlorophenol destruction bychelate-based Fenton reaction[J]. Environmental Engineering Science.2005,22(6):756-771.
    [47]张道斌,张晖,曾志武,等.类Fenton反应对偶氮染料橙黄Ⅱ的脱色研究[J].环境污染治理技术与设备.2006,7(2):101-104.
    [48] Verma P, Baldrian P, Gabriel J, et al. Copper–ligand complex for the decolorization ofsynthetic dyes[J]. Chemosphere.2004,57(9):1207-1211.
    [49] Verma P, Baldrian P, Nerud F. Decolorization of structurally different synthetic dyes usingcobalt (II)/ascorbic acid/hydrogen peroxide system[J]. Chemosphere.2003,50(8):975-979.
    [50] Martins A F, Vasconcelos T G, Wilde M L. Influence of variables of the combinedcoagulation–Fenton-sedimentation process in the treatment of trifluraline effluent[J]. Journalof Hazardous Materials.2005,127(1):111-119.
    [51] Shah V, Verma P, Stopka P, et al. Decolorization of dyes with copper (II)/organicacid/hydrogen peroxide systems[J]. Applied Catalysis B: Environmental.2003,46(2):287-292.
    [52] Fu D, Zhang X, Keech P G, et al. An electrochemical study of H2O2decomposition onsingle-phase γ-FeOOH films[J]. Electrochimica Acta.2010,55(11):3787-3796.
    [53] Gomathi Devi L, Girish Kumar S, Mohan Reddy K, et al. Effect of various inorganic anionson the degradation of Congo Red, a di azo dye, by the photo-assisted Fenton process usingzero-valent metallic iron as a catalyst[J]. Desalination and Water Treatment.2009,4(1-3):294-305.
    [54] Xu L, Wang J. Magnetic nanoscaled Fe3O4/CeO2composite as an efficient Fenton-likeheterogeneous catalyst for degradation of4-chlorophenol[J]. Environmental Science&Technology.2012,46(18):10145-10153.
    [55] Yaping Z, Jiangyong H. Photo-Fenton degradation of17β-estradiol in presence ofα-FeOOHR and H2O2[J].Applied Catalysis B: Environmental.2008,78(3):250-258.
    [56] Guo L, Chen F, Fan X, et al. S-doped α-Fe2O3as a highly active heterogeneous Fenton-likecatalyst towards the degradation of acid orange7and phenol[J]. Applied Catalysis B:Environmental.2010,96(1):162-168.
    [57] Qu X, Kobayashi N, Komatsu T. Solid nanotubes comprising α-Fe2O3nanoparticles preparedfrom ferritin protein[J]. ACS Nano.2010,4(3):1732-1738.
    [58]张钰,郑蒙,邓安平,等. α-FeOOH类Fenton可见光光催化降解有毒有机污染物[J].环境科学与技术.2011,34(10):24-28.
    [59] Tyre B W, Watts R J, Miller G C. Treatment of four biorefractory contaminants in soils usingcatalyzed hydrogen peroxide[J]. Journal of Environmental Quality.1991,20(4):832-838.
    [60] Costa R C, Lelis M F, Oliveira L C, et al. Novel active heterogeneous Fenton system based onFe3-xMxO4(Fe, Co, Mn, Ni): the role of M2+species on the reactivity towards H2O2reactions.[J]. Journal of Hazardous Materials.2006,129(1-3):171-178.
    [61]何光裕,张艳,钱茂公,等.磁性Fe3O4/石墨烯Photo-Fenton催化剂的制备及其催化活性[J].无机化学学报.2012(11):2306-2312.
    [62] Molina R, Martínez F, Melero J A, et al. Mineralization of phenol by a heterogeneousultrasound/Fe-SBA-15/H2O2process: Multivariate study by factorial design ofexperiments[J]. Applied Catalysis B: Environmental.2006,66(3):198-207.
    [63] Fernandez J, Nadtochenko V, Enea O, et al. Testing and performance of immobilized Fentonphotoreactions via membranes, mats and modified copolymers[J]. International Journal ofPhotoenergy.2003,5(2):107-114.
    [64] Kusic H, Koprivanac N, Horvat S, et al. Modeling dye degradation kinetic using dark-andphoto-Fenton type processes[J]. Chemical Engineering Journal.2009,155(1):144-154.
    [65] Teng W. Treatment of the Wastewater containing EDTA and Heavy Metals by Ferrite Processcombined with Fenton's Method[J].2004.
    [66] Li J, Ai Z, Zhang L. Design of a neutral electro-Fenton system with Fe@Fe2O3/ACFcomposite cathode for wastewater treatment[J]. Journal of Hazardous Materials.2009,164(1):18-25.
    [67] Nie Y, Hu C, Zhou L, et al. Degradation characteristics of humic acid over iron oxides/Fe0core–shell nanoparticles with UVA/H2O2[J]. Journal of Hazardous Materials.2010,173(1):474-479.
    [68] Yue-Hua Z, Chun-Mei X, Chang-Hong G. Application Sodium Percarbonate to OxidativeDegradation Trichloroethylene Contamination in Groundwater[J]. Procedia EnvironmentalSciences.2011,10:1668-1673.
    [69] Cajal-Marinosa P, de la Calle R G, Rivas F J, et al. Impacts of changing operationalparameters of in situ chemical oxidation (ISCO) on removal of aged PAHs from soil[J].Journal of Advanced Oxidation Technologies.2012,15(2):429-436.
    [70] Chan K H, Chu W. Degradation of atrazine by cobalt-mediated activation ofperoxymonosulfate: different cobalt counteranions in homogenous process and cobalt oxidecatalysts in photolytic heterogeneous process[J]. Water research.2009,43(9):2513-2521.
    [71] Guan Y, Ma J, Li X, et al. Influence of pH on the formation of sulfate and hydroxyl radicals inthe UV/peroxymonosulfate system[J]. Environmental Science&Technology.2011,45(21):9308-9314.
    [72] Rastogi A. Sulfate Radical-Based Environmental Friendly Chemical Oxidation Processes forDestruction of2-Chlorobiphenyl (PCB) and Chlorophenols (CPs)[D]. University ofCincinnati,2008.
    [73] Norman R, Storey P M, West P R. Electron spin resonance studies. Part XXV. Reactions ofthe sulphate radical anion with organic compounds[J]. Journal of the Chemical Society B:Physical Organic.1970:1087-1095.
    [74] Hayon E, Treinin A, Wilf J. Electronic spectra, photochemistry, and autoxidation mechanismof the sulfite-bisulfite-pyrosulfite systems. SO2, SO3, SO4, and SO5radicals[J].Journal of the American Chemical Society.1972,94(1):47-57.
    [75] Liang C, Wang Z, Bruell C J. Influence of pH on persulfate oxidation of TCE at ambienttemperatures[J]. Chemosphere.2007,66(1):106-113.
    [76] Pennington D E, Haim A. Stoichiometry and mechanism of the chromium (II)-peroxydisulfatereaction[J]. Journal of the American Chemical Society.1968,90(14):3700-3704.
    [77] Fujishima A, Hashimoto K, Watanabe T. TiO2photocatalysis: fundamentals andapplications[M]. BKC Incorporated,1999.
    [78] Ho W, Yu J C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe andCdSe/TiO2nanoparticles[J]. Journal of Molecular Catalysis A: Chemical.2006,247(1):268-274.
    [79] Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Journal ofPhotochemistry and Photobiology C: Photochemistry Reviews.2000,1(1):1-21.
    [80]刘春艳.纳米光催化及光催化环境净化材料[M].北京:化学工业出版社,2008.
    [81]陈晴空,吉芳英,关伟,等. Co2+离子掺杂对TiO2结构与光催化活性的影响[J].四川大学学报(工程科学版.2013,45(5).
    [82] He R, Hocking R K, Tsuzuki T. Co-doped ZnO nanopowders: Location of cobalt andreduction in photocatalytic activity[J]. Materials Chemistry and Physics.2012,132(2):1035-1040.
    [83] Sahoo C, Gupta A K, Pal A. Photocatalytic degradation of Methyl Red dye in aqueoussolutions under UV irradiation using Ag+doped TiO2[J]. Desalination.2005,181(1):91-100.
    [84] Yu J, Qi L, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2nanosheets with exposed (001) facets[J]. The Journal of Physical Chemistry C.2010,114(30):13118-13125.
    [85] Li H, Bian Z, Zhu J, et al. Mesoporous Au/TiO2nanocomposites with enhancedphotocatalytic activity[J]. Journal of the American Chemical Society.2007,129(15):4538-4539.
    [86] Boucouvalas Y, Zhang Z, Verykios X E. Partial oxidation of methane to synthesis gas via thedirect reaction scheme over Ru/TiO2catalyst[J]. Catalysis letters.1996,40(3-4):189-195.
    [87] Yang L, Luo S, Li Y, et al. High efficient photocatalytic degradation of p-nitrophenol on aunique Cu2O/TiO2p-n heterojunction network catalyst[J]. Environmental Science&Technology.2010,44(19):7641-7646.
    [88] Seabold J A, Shankar K, Wilke R H, et al. Photoelectrochemical properties of heterojunctionCdTe/TiO2electrodes constructed using highly ordered TiO2nanotube arrays[J]. Chemistryof Materials.2008,20(16):5266-5273.
    [89]周婧,赵高凌,臧金鑫,等. CdS量子点敏化TiO2薄膜电极的制备和光电化学性能[J].硅酸盐学报.2011,39(7):1075-1079.
    [90] Li W, Li D, Meng S, et al. Novel Approach To Enhance Photosensitized Degradation ofRhodamine B under Visible Light Irradiation by the ZnxCd1-xS/TiO2Nanocomposites[J].Environmental Science&Technology.2011,45(7):2987-2993.
    [91] Ye F, Ohmori A, Li C. Photoresponse and donor concentration of plasma-sprayed TiO2andTiO2-ZnO electrodes[J]. Journal of thermal spray technology.2005,14(4):530-535.
    [92] Chi C, Liau S, Lee Y. The heat annealing effect on the performance of CdS/CdSe-sensitizedTiO2photoelectrodes in photochemical hydrogen generation[J]. Nanotechnology.2010,21(2):25202.
    [93] Ram M K, Andreescu S, Ding H. Nanotechnology for environmental decontamination[M].McGraw-Hill,2011.
    [94]姜承志,苏会东,卢旭东.混晶纳米TiO2薄膜光催化降解亚甲基蓝[J].环境科学与技术.2008,31(3):26-29.
    [95]曹永强,龙绘锦,陈咏梅,等.金红石/锐钛矿混晶结构的TiO2薄膜光催化活性[J].物理化学学报.2009,25(06):1088-1092.
    [96] Lin J. Theoretical studies of the local structure and the EPR parameters for substitutionalMo5+in TiO2[J]. Brazilian Journal of Physics.2010,40(3):344-347.
    [97]颜秉熙,罗胜耘,沈杰.直流反应磁控溅射制备的Mo掺杂TiO2薄膜的光电特性[J]. ActaPhys. Chim. Sin.2012,28.
    [98] Gomathi Devi L, Narasimha Murthy B, Girish Kumar S. Photocatalytic activity of V5+,Mo6+and Th4+doped polycrystalline TiO2for the degradation of chlorpyrifos underUV/solar light[J]. Journal of molecular catalysis. A, Chemical.2009,308(1-2):174-181.
    [99] Devi L G, Kottam N, Kumar S G, et al. Preparation, characterization and enhancedphotocatalytic activity of Ni2+doped titania under solar light[J]. Central European Journal ofChemistry.2010,8(1):142-148.
    [100] Serpone N, Lawless D, Disdier J, et al. Spectroscopic, photoconductivity, and photocatalyticstudies of TiO2colloids: naked and with the lattice doped with Cr3+, Fe3+, and V5+cations[J].Langmuir.1994,10(3):643-652.
    [101]张前程,张凤宝,张国亮,等.超细Co/TiO2和Ce/TiO2的制备及光催化性能[J].精细化工.2003,20(4):227-229.
    [102] Datye A K, Riegel G, Bolton J R, et al. Microstructural characterization of a fumed titaniumdioxide photocatalyst[J]. Journal of Solid State Chemistry.1995,115(1):236-239.
    [103] Liu Z, Sun D D, Guo P, et al. An efficient bicomponent TiO2/SnO2nanofiber photocatalystfabricated by electrospinning with a side-by-side dual spinneret method[J]. Nano letters.2007,7(4):1081-1085.
    [104] Lin C, Wu C, Onn Z. Degradation of4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3andTiO2/SnO2systems.[J]. Journal of Hazardous Materials.2008,154(1-3):1033-1039.
    [105] Wang G, Yang X, Qian F, et al. Double-sided CdS and CdSe quantum dot co-sensitized ZnOnanowire arrays for photoelectrochemical hydrogen generation[J]. Nano Letters.2010,10(3):1088-1092.
    [106] Lee Y, Huang B, Chien H. Highly efficient CdSe-sensitized TiO2photoelectrode forquantum-dot-sensitized solar cell applications[J]. Chemistry of Materials.2008,20(22):6903-6905.
    [107] Schrier J, Demchenko D O, Wang L, et al. Optical properties of ZnO/ZnS and ZnO/ZnTeheterostructures for photovoltaic applications[J]. Nano Letters.2007,7(8):2377-2382.
    [108] Mews A, Kadavanich A V, Banin U, et al. Structural and spectroscopic investigations ofCdS/HgS/CdS quantum-dot quantum wells[J]. Physical Review B.1996,53(20): R13242.
    [109] Bai S, Li H, Guan Y, et al. The enhanced photocatalytic activity of CdS/TiO2nanocomposites by controlling CdS dispersion on TiO2nanotubes[J]. Applied SurfaceScience.2011,257(15):6406-6409.
    [110] Kim Y J, Gao B, Han S Y, et al. Heterojunction of FeTiO3nanodisc and TiO2nanoparticlefor a novel visible light photocatalyst[J]. The Journal of Physical Chemistry C.2009,113(44):19179-19184.
    [111] Long M, Cai W, Cai J, et al. Efficient photocatalytic degradation of phenol overCo3O4/BiVO4composite under visible light irradiation[J]. The Journal of PhysicalChemistry B.2006,110(41):20211-20216.
    [112] Serpone N, Maruthamuthu P, Pichat P, et al. Exploiting the interparticle electron transferprocess in the photocatalysed oxidation of phenol,2-chlorophenol and pentachlorophenol:chemical evidence for electron and hole transfer between coupled semiconductors[J].Journal of Photochemistry and Photobiology A: Chemistry.1995,85(3):247-255.
    [113]李红,童三伏,张渊明,等.几种电子受体对TiO2光催化降解活性的影响[J].精细化工.2005,22(4):290-293.
    [114] Bamwenda G R, Uesigi T, Abe Y, et al. The photocatalytic oxidation of water to O2overpure CeO2, WO3, and TiO2using Fe3+and Ce4+as electron acceptors[J]. Applied catalysis. A,General.2001,205(1-2):117-128.
    [115]李协吉,姚亚东,尹光福,等.一种纳米TiO2薄膜负载技术及性能研究[J].材料导报.2006,19(F11):120-121.
    [116] Miranda-García N, Suárez S, Sánchez B, et al. Photocatalytic degradation of emergingcontaminants in municipal wastewater treatment plant effluents using immobilized TiO2in asolar pilot plant[J]. Applied Catalysis B: Environmental.2011,103(3):294-301.
    [117] Akimoto S. Magnetic properties of FeO-Fe2O3-TiO2system as a basis of rock magnetism[J].Journal of the Physical Society of Japan.1962,17:706.
    [118] Xuan S, Jiang W, Gong X, et al. Magnetically separable Fe3O4/TiO2hollow spheres:fabrication and photocatalytic activity[J]. The Journal of Physical Chemistry C.2008,113(2):553-558.
    [119] Saien J, Ojaghloo Z, Soleymani A R, et al. Homogeneous and heterogeneous AOPs for rapiddegradation of Triton X-100in aqueous media via UV light, nano titania hydrogen peroxideand potassium persulfate[J]. Chemical Engineering Journal.2011,167(1):172-182.
    [120]胡雪峰,沈铭能.碱性过硫酸钾氧化—紫外分光光度法测水体总氮[J].环境污染与防治.2002,24(1):40-41.
    [121]复盛,国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [122]钱君龙,府灵敏.用过硫酸盐氧化法同时测定水中的总氮和总磷[J].环境科学.1987,8(1):81-84.
    [123]肖学文,廖双泉,廖建和,等.过硫酸盐引发棉纤维接枝的研究[J].化学工程师.2004(10):10-11.
    [124]郑炎松,江岸.2,4-二羟甲基四氢吡咯衍生物的合成及对烯烃环氧化反应的诱导[J].有机化学.2003(10):1114-1119.
    [125] Denmark S E, Wu Z.6-Oxo-1,1,4,4-tetramethyl-1,4-diazepinium Salts. A New Class ofCatalysts for Efficient Epoxidation of Olefins with Oxone[J]. The Journal of OrganicChemistry.1998,63(9):2810-2811.
    [126] Lee K, Cho H K, Song C. Bromination of activated arenes by Oxone and sodiumbromide[J]. BULLETIN-KOREAN CHEMICAL SOCIETY.2002,23(5):773-775.
    [127] Campaci F, Campestrini S. Catalytic olefin epoxidations with KHSO5: the first report onmanganese hemiporphyrazines as catalysts in oxygenation reactions[J]. Journal ofMolecular Catalysis A: Chemical.1999,140(2):121-130.
    [128]陶晓春,曹雄杰,余伟,等. Oxone/CaCl2/TEMPO体系在温和条件下对醇的氧化反应[J].有机化学.2010(02):250-253.
    [129] Wo niak L A, Kozio kiewicz M, Kobylańska A, et al. Potassium peroxymonosulfate(oxone)—An efficient oxidizing agent for phosphothio compounds[J]. Bioorganic&Medicinal Chemistry Letters.1998,8(19):2641-2646.
    [130]户安军,吕春绪,霍婷,等.苄醇类化合物的选择性氧化[J].化学通报.2006,69(2).
    [131]孙允凯,阳年发,吴诗,等.大位阻烯烃不对称环氧化合成手性环氧化合物[J].高等学校化学学报.2009(08):1559-1565.
    [132]严兆华,胡伟,田伟生,等.氟烷磺酰氟/双氧水/碱/丙酮体系与苄醇衍生物的氧化反应[J].高等学校化学学报.2013(01):103-107.
    [133] Poulin M C, Christianson W T. On-farm eradication of foot-and-mouth disease as analternative to mass culling[J]. Veterinary record.2006,158(14):467-472.
    [134] Glauner T, Kunz F, Zwiener C, et al. Elimination of Swimming Pool Water DisinfectionBy-products with Advanced Oxidation Processes (AOPs)[J]. Acta Hydrochimica etHydrobiologica.2005,33(6):585-594.
    [135]王丽娟,杨汝男,章海涛,等.湿强纸再制浆的研究[J].中国造纸.2004(04):65-66.
    [136]黄国斌.新型微蚀体系Oxone简介[J].化工新型材料.2002,30(2):37-38.
    [137]刘福娟.竹浆粕的制取工艺及其对纤维素结构、性能的影响[D].上海:东华大学,2006.
    [138] Beitz T, Bechmann W, Mitzner R. Investigations of reactions of selected azaarenes withradicals in water.2. Chlorine and bromine radicals[J]. The Journal of Physical Chemistry A.1998,102(34):6766-6771.
    [139] Ivanov K L, Glebov E M, Plyusnin V F, et al. Laser flash photolysis of sodium persulfate inaqueous solution with additions of dimethylformamide[J]. Journal of Photochemistry andPhotobiology A: Chemistry.2000,133(1):99-104.
    [140] Chu G, Zhang S, Yao S, et al. Spectroscopic characterization of mechanisms of oxidation ofPhe by SO4radical: A pulse radiolysis study[J]. Science in China Series B: Chemistry.2002,45(4):398-406.
    [141] Tsao M, Wilmarth W K. The Aqueous Chemistry of Inorganic Free Radicals. I. TheMechanism of the Photolytic Decomposition of Aqueous Persulfate Ion and EvidenceRegarding the Sulfate–Hydroxyl Radical Interconversion Equilibrium[J]. The Journal ofPhysical Chemistry.1959,63(3):346-353.
    [142] Sun D D, Zheng H, Xue W P. Oxidation of Phenol by Persulfate Activated with UV-Lightand Ag+[J]. Advanced Materials Research.2013,610:1806-1809.
    [143] Sun D D, Yan X X, Xue W P. Oxidative Degradation of Dimethyl Phthalate (DMP) byPersulfate Catalyzed by Ag+Combined with Microwave Irradiation[J]. Advanced MaterialsResearch.2013,610:1209-1212.
    [144] Ling S K, Wang S, Peng Y. Oxidative degradation of dyes in water using Co2+/H2O2andCo2+/peroxymonosulfate[J]. Journal of Hazardous Materials.2010,178(1):385-389.
    [145] Liang C, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE.I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple[J].Chemosphere.2004,55(9):1213-1223.
    [146] Liang C, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE.II. Activated by chelated ferrous ion[J]. Chemosphere.2004,55(9):1225-1233.
    [147] Saputra E, Muhammad S, Sun H, et al. Activated carbons as green and effective catalysts forgeneration of reactive radicals in degradation of aqueous phenol[J]. RSC Advances.2013,3(44):21905-21910.
    [148]刘桂芳,孙亚全,陆洪宇,等.活化过硫酸盐技术的研究进展[J].工业水处理.2013,32(12):6-10.
    [149]杨鑫,杨世迎,王雷雷,等.活性炭催化过二硫酸盐降解水中AO7[J].环境科学.2011,32(7):1960-1966.
    [150] Do S, Jo J, Jo Y, et al. Application of a peroxymonosulfate/cobalt (PMS/Co (II)) system totreat diesel-contaminated soil[J]. Chemosphere.2009,77(8):1127-1131.
    [151] Yen C, Chen K, Kao C, et al. Application of persulfate to remediate petroleumhydrocarbon-contaminated soil: Feasibility and comparison with common oxidants[J].Journal of Hazardous Materials.2011,186(2):2097-2102.
    [152] Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metalswith common oxidants[J]. Environmental Science&Technology.2004,38(13):3705-3712.
    [153] Fernandez J, Maruthamuthu P, Renken A, et al. Bleaching and photobleaching of Orange IIwithin seconds by the oxone/Co2+reagent in Fenton-like processes[J]. Applied Catalysis B:Environmental.2004,49(3):207-215.
    [154] Wu J, Zhang H, Qiu J. Degradation of Acid Orange7in aqueous solution by a novelelectro/Fe2+/peroxydisulfate process[J]. Journal of Hazardous Materials.2012,215:138-145.
    [155] Sabri N, Hanna K, Yargeau V. Chemical oxidation of ibuprofen in the presence of ironspecies at near neutral pH[J]. Science of the Total Environment.2012,427:382-389.
    [156]曹锡章,宋天佑,王杏乔.吉林大学.无机化学(第三版):上册[M].北京:高等教育出版社,1993.
    [157] Shukla P, Sun H, Wang S, et al. Co-SBA-15for heterogeneous oxidation of phenol withsulfate radical for wastewater treatment[J]. Catalysis Today.2011,175(1):380-385.
    [158] Bianco Prevot A, Baiocchi C, Brussino M C, et al. Photocatalytic degradation of acid blue80in aqueous solutions containing TiO2suspensions[J]. Environmental Science&Technology.2001,35(5):971-976.
    [159]张天永,朱丹丹,张友兰,等.添加剂对有机颜料光催化降解的影响[J].催化学报.2004,25(4):293-296.
    [160] Sathish Kumar P S, Sivakumar R, Anandan S, et al. Photocatalytic degradation of Acid Red88using Au-TiO2nanoparticles in aqueous solutions[J]. Water research.2008,42(19):4878-4884.
    [161]沈迅伟,张静,袁春伟.二氧化钛悬浆体系中过硫酸盐对苯酚光催化降解的影响[J].环境科学学报.2005,25(5):631-636.
    [162] Ouyang B, Fang H, Zhu C, et al. Reactions between the SO4radical and some commonanions in atmospheric aqueous droplets[J]. Journal of Environmental Sciences.2005,17(5):786-788.
    [163] Das T N, Huie R E, Neta P. Reduction Potentials of SO3, SO5, and S4O63Radicals inAqueous Solution[J]. The Journal of Physical Chemistry A.1999,103(18):3581-3588.
    [164] Neta P, Madhavan V, Zemel H, et al. Rate constants and mechanism of reaction of sulfateradical anion with aromatic compounds[J]. Journal of the American Chemical Society.1977,99(1):163-164.
    [165] Nicolaescu A R, Wiest O, Kamat P V. Radical-induced oxidative transformation ofquinoline[J]. The Journal of Physical Chemistry A.2003,107(3):427-433.
    [166]储高升,张淑娟,都志文,等. SO4自由基氧化苯丙氨酸反应机理的图谱表征[J].中国科学(B辑化学).2002(03):248-254.
    [167] George C, Rassy H E, Chovelon J M. Reactivity of selected volatile organic compounds(VOCs) toward the sulfate radical (SO4)[J]. International Journal of Chemical Kinetics.2001,33(9):539-547.
    [168] Khursan S L, Semes Ko D G, Safiullin R L. Quantum-chemical modeling of the detachmentof hydrogen atoms by the sulfate radical anion[J]. Russian Journal of Physical Chemistry.2006,80(3):366-371.
    [169] Padmaja S, Alfassi Z B, Neta P, et al. Rate constants for reactions of SO4radicals inacetonitrile[J]. International Journal of Chemical Kinetics.1993,25(3):193-198.
    [170]秦伟伟,肖书虎,宋永会,等. O3/UV协同氧化处理黄连素制药废水[J].环境科学研究.2010(07):877-881.
    [171] Adewuyi Y G. Sonochemistry in environmental remediation.2. Heterogeneoussonophotocatalytic oxidation processes for the treatment of pollutants in water[J].Environmental Science&Technology.2005,39(22):8557-8570.
    [172]史惠祥,徐献文,汪大翚. US/O3降解对硝基苯酚的影响因素及机理[J].化工学报.2006(02):390-396.
    [173]鲁思伽,洪军,祁士华,等. UV/Fenton体系中Fe2+/Fe3+的相互转化规律[J].环境科学学报.2009(06):1258-1262.
    [174]陈芳艳,唐玉斌,陆敏,等. US/Fenton试剂协同处理焦化废水的研究[J].工业安全与环保.2007(06):7-9.
    [175] Wu C, Yu C. Effects of TiO2dosage, pH and temperature on decolorization of C. I. ReactiveRed2in a UV/US/TiO2system[J]. Journal of Hazardous Materials.2009,169(1):1179-1183.
    [176]赵德明,史惠祥,雷乐成,等. US/UV协同催化氧化降解对氯苯酚的研究[J].环境科学学报.2003(05):588-592.
    [177] Torres R A, Nieto J I, Combet E, et al. Influence of TiO2concentration on the synergisticeffect between photocatalysis and high-frequency ultrasound for organic pollutantmineralization in water[J]. Applied Catalysis B: Environmental.2008,80(1):168-175.
    [178] Kritikos D E, Xekoukoulotakis N P, Psillakis E, et al. Photocatalytic degradation of reactiveblack5in aqueous solutions: Effect of operating conditions and coupling with ultrasoundirradiation[J]. Water Research.2007,41(10):2236-2246.
    [179] Machado E L, Kist L T, Schmidt R, et al. Secondary hospital wastewater detoxification anddisinfection by advanced oxidation processes[J]. Environmental Technology.2007,28(10):1135-1143.
    [180]丛俏,任春雪. UV/TiO2/Fenton体系催化氧化降解罗丹明B的研究[J].净水技术.2007(05):52-54.
    [181] Kim H, Lee J, Lee H, et al. Synergistic effects of TiO2photocatalysis in combination withFenton-like reactions on oxidation of organic compounds at circumneutral pH[J]. AppliedCatalysis B: Environmental.2012,115:219-224.
    [182] Zhao B, Mele G, Pio I, et al. Degradation of4-nitrophenol (4-NP) using Fe-TiO2as aheterogeneous photo-Fenton catalyst[J]. Journal of Hazardous Materials.2010,176(1):569-574.
    [183] Liu L, Zhang G, Wang L, et al. Highly active S-modified ZnFe2O4heterogeneous catalystand its photo-fenton behavior under UV-visible irradiation[J]. Industrial&EngineeringChemistry Research.2011,50(12):7219-7227.
    [184] Zhu J, Chen F, Zhang J, et al. Fe3+-TiO2photocatalysts prepared by combining sol-gelmethod with hydrothermal treatment and their characterization[J]. Journal ofPhotochemistry and Photobiology A: Chemistry.2006,180(1):196-204.
    [185]乌锡康.有机化合物环境数据简表[Z]. http://ishare. games. sina. com.cn/download/explain. php?fileid=5208328
    [186]任学昌,陈学民,赵昊星,等.水体中常见无机阴离子对TiO2薄膜光催化降解甲醛的影响[J].环境工程学报.2008(10):1339-1344.
    [187] Kormali P, Troupis A, Triantis T, et al. Photocatalysis by polyoxometallates and TiO2: Acomparative study[J]. Catalysis Today.2007,124(3):149-155.
    [188] Muller J G, Hickerson R P, Perez R J, et al. DNA damage from sulfite autoxidation catalyzedby a nickel (II) peptide[J]. Journal of the American Chemical Society.1997,119(7):1501-1506.
    [189] Stemmler A J, Burrows C J. Guanine versus deoxyribose damage in DNA oxidationmediated by vanadium (IV) and vanadium (V) complexes[J]. JBIC Journal of BiologicalInorganic Chemistry.2001,6(1):100-106.
    [190]张雯,王绪绪,林华香,等.磁场对光催化反应羟基自由基生成速率的影响[J].化学学报.2005,63(18):1765-1768.
    [191] Zhang T, Zhu H, Croué J. Production of sulfate radical from peroxymonosulfate induced bya magnetically separable CuFe2O4spinel in water: Efficiency, stability, and mechanism[J].Environmental Science&Technology.2013,47(6):2784-2791.
    [192] Karpova S P. Quantitative determination of ampicillin and oxacillin in the “Ampiox”preparation using potassium hydrogenperoxomonosulphate.[J]. Journal of Chemical&Pharmaceutical Research.2013,5(10).
    [193]宋广清,席宏波,周岳溪,等.同步荧光光谱法测定水中痕量萘和菲[J].光谱学与光谱分析.2012(07):1838-1841.
    [194] Zhu Y, Chen S, Quan X, et al. Cobalt implanted TiO2nanocatalyst for heterogeneousactivation of peroxymonosulfate[J]. RSC Advances.2013,3(2):520-525.
    [195]刘秀华,何小波,傅依备. Co掺杂对TiO2光催化剂结构与性能的影响[J].化学学报.2008(14):1725-1730.
    [196] Hillier S. Accurate quantitative analysis of clay and other minerals in sandstones by XRD:comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance ofsample preparation[J]. Clay Minerals.2000,35(1):291-302.
    [197] Lee S S, Bai H, Liu Z, et al. Novel-structured electrospun TiO2/CuO composite nanofibersfor high efficient photocatalytic cogeneration of clean water and energy from dyewastewater[J]. Water Research.2013,47(12):4059-4073.
    [198] Li Y, Zhang F. Catalytic oxidation of Methyl Orange by an amorphous FeOOH catalystdeveloped from a high iron-containing fly ash[J]. Chemical Engineering Journal.2010,158(2):148-153.
    [199] Ji F, Li C, Deng L. Performance of CuO/Oxone system: Heterogeneous catalytic oxidationof phenol at ambient conditions[J]. Chemical Engineering Journal.2011,178:239-243.
    [200]韩立安,常琳,牟国栋,等. Co3O4纳米颗粒的溶胶凝胶法制备及磁性[J].西安科技大学学报.2008(03):602-604.
    [201]李生英,许世红,徐飞,等. Co3O4纳米粒子的固相合成及磁性研究[J].合成化学.2006(06):571-573.
    [202]孔令刚,康晋锋,王漪,等. CoxTi(1-x)O(2-δ)体材中氢退火引起的铁磁性及结构相变[J].物理学报.2006(03):1453-1457.
    [203] Pereira L C J, Nunes M R, Monteiro O C, et al. Magnetic properties of Co-doped TiO2anatase nanopowders[J]. Applied Physics Letters.2008,93(22):222502.
    [204] Jiang B Z, Phan T L, Yang D S, et al. Magnetism in Co-doped rutile TiO2nanoparticles[J].Solid State Communications.2010,150(39–40):1932-1935.
    [205] Huang W, Zuo Z, Han P, et al. XPS and XRD investigation of Co/Pd/TiO2catalysts bydifferent preparation methods[J]. Journal of Electron Spectroscopy and Related Phenomena.2009,173(2):88-95.
    [206] Yang Q, Choi H, Dionysiou D D. Nanocrystalline cobalt oxide immobilized on titaniumdioxide nanoparticles for the heterogeneous activation of peroxymonosulfate[J]. AppliedCatalysis B: Environmental.2007,74(1):170-178.
    [207] Lu Y, Lin Y, Wang D, et al. A high performance cobalt-doped ZnO visible lightphotocatalyst and its photogenerated charge transfer properties[J]. Nano Research.2011,4(11):1144-1152.
    [208] Shi P, Su R, Wan F, et al. Co3O4nanocrystals on graphene oxide as a synergistic catalyst fordegradation of Orange II in water by advanced oxidation technology based on sulfateradicals[J]. Applied Catalysis B: Environmental.2012,123:265-272.
    [209] Ganesh I, Gupta A K, Kumar P P, et al. Preparation and characterization of Co-doped TiO2materials for solar light induced current and photocatalytic applications[J]. MaterialsChemistry and Physics.2012,135(1):220-234.
    [210] Anipsitakis G P, Stathatos E, Dionysiou D D. Heterogeneous activation of oxone usingCo3O4[J]. The Journal of Physical Chemistry B.2005,109(27):13052-13055.
    [211] Gonzalez J, Torrent-Sucarrat M, Anglada J M. The reactions of SO3with HO2radical andH2O... HO2radical complex. Theoretical study on the atmospheric formation of HSO5andH2SO4[J]. Physical Chemistry Chemical Physics.2010,12(9):2116-2125.
    [212] Pham A L, Lee C, Doyle F M, et al. A silica-supported iron oxide catalyst capable ofactivating hydrogen peroxide at neutral pH values[J]. Environmental Science&Technology.2009,43(23):8930-8935.
    [213] Furman O S, Teel A L, Watts R J. Mechanism of base activation of persulfate[J].Environmental Science&Technology.2010,44(16):6423-6428.
    [214] Jayakumar O D, Sudakar C, Persson C, et al.1D morphology stabilization and enhancedmagnetic properties of Co:ZnO nanostructures on codoping with Li: a template-freesynthesis[J]. Crystal Growth&Design.2009,9(10):4450-4455.
    [215] Kim Y D, Cooper S L, Klein M V, et al. Spectroscopic ellipsometry study of the dilutedmagnetic semiconductor system Zn (Mn, Fe, Co) Se[J]. Physical Review B.1994,49(3):1732.
    [216] Zayat M, Levy D. Blue CoAl2O4particles prepared by the sol-gel and citrate-gel methods[J].Chemistry of Materials.2000,12(9):2763-2769.
    [217] Xu Y, Schoonen M A. The absolute energy positions of conduction and valence bands ofselected semiconducting minerals[J]. American Mineralogist.2000,85(3-4):543-556.
    [218] Li M, Gao X, Hou Y, et al. Characterization of CoTiO3Nanocrystallites Prepared byHomogeneous Precipitation Method.[J]. Journal of Nano&Electronic Physics.2013,5(3).
    [219] Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, andapplications[J]. Chemical reviews.2007,107(7):2891-2959.
    [220] Peng H, Li J, Li S, et al. First-principles study of the electronic structures and magneticproperties of3d transition metal-doped anatase TiO2[J]. Journal of Physics: CondensedMatter.2008,20(12):125207.
    [221]刘慧,孙晓君,孙苗,等.钴掺杂锐钛矿二氧化钛能带结构的第一性原理计算[J].硅酸盐学报.2012,39(10):1617-1621.
    [222] Le T T, Akhtar M S, Park D M, et al. Water splitting on Rhodamine-B dye sensitizedCo-doped TiO2catalyst under visible light[J]. Applied Catalysis B: Environmental.2012,111:397-401.
    [223] Ding Y, Zhu L, Wang N, et al. Sulfate radicals induced degradation of tetrabromobisphenolA with nanoscaled magnetic CuFe2O4as a heterogeneous catalyst of peroxymonosulfate[J].Applied Catalysis B: Environmental.2013,129:153-162.
    [224] Dai G, Liu S, Liang Y, et al. Synthesis and enhanced photoelectrocatalytic activity of p-njunction Co3O4/TiO2nanotube arrays[J]. Applied Surface Science.2013,264:157-161.
    [225]徐璇.基于难降解有机污染物特性的光催化-生化废水处理技术[D].重庆大学,2010.
    [226]胡学斌,徐璇,吉芳英,等.疏水性光催化剂的制备及其催化动力学[J].无机材料学报.2009,24(6):1115-1120.
    [227] Muhammad S, Shukla P R, Tadé M O, et al. Heterogeneous activation ofperoxymonosulphate by supported ruthenium catalysts for phenol degradation in water[J].Journal of Hazardous Materials.2012,215:183-190.
    [228] Yao H, Richardson D E. Bicarbonate surfoxidants: micellar oxidations of aryl sulfides withbicarbonate-activated hydrogen peroxide[J]. Journal of the American Chemical Society.2003,125(20):6211-6221.
    [229] Yao H, Richardson D E. Epoxidation of alkenes with bicarbonate-activated hydrogenperoxide[J]. Journal of the American Chemical Society.2000,122(13):3220-3221.
    [230] Richardson D E, Yao H, Frank K M, et al. Equilibria, kinetics, and mechanism in thebicarbonate activation of hydrogen peroxide: oxidation of sulfides byperoxymonocarbonate[J]. Journal of the American Chemical Society.2000,122(8):1729-1739.
    [231] Sanchez M, Hadasch A, Fell R T, et al. Key Role of the Phosphate Buffer in the H2O2Oxidation of Aromatic Pollutants Catalyzed by Iron Tetrasulfophthalocyanine[J]. Journal ofCatalysis.2001,202(1):177-186.
    [232]何立平,杨迎春,徐成华,等. Fe/活性炭多相类Fenton法湿式氧化罗丹明B废水的研究[J].环境工程学报.2009(08):1433-1437.
    [233]何立平,杨迎春,徐成华,等.针铁矿催化降解废水中的罗丹明B[J].化工环保.2008(05):396-400.
    [234]林玉锁,徐亦钢,石利利,等.农药环境污染事故调查诊断方法研究[J].污染防治技术.1998(03):137-140.
    [235]李清波,黄国宏,王颜红,等.阿特拉津生态风险及其检测和修复技术研究进展[J].应用生态学报.2002(05):625-628.
    [236] Assaf N A, Turco R F. Accelerated biodegradation of atrazine by a microbial consortium ispossible in culture and soil[J]. Biodegradation.1994,5(1):29-35.
    [237]万年升,顾继东,段舜山.阿特拉津生态毒性与生物降解的研究[J].环境科学学报.2006(04):552-560.
    [238] Mandelbaum R T, Wackett L P, Allan D L. Mineralization of the s-triazine ring of atrazineby table bacterial mixed cultures.[J]. Applied and Environmental Microbiology.1993,59(6):1695-1701.
    [239] Buser H R. Atrazine and other s-triazine herbicides in lakes and in rain in Switzerland[J].Environmental Science&Technology.1990,24(7):1049-1058.
    [240]张琴,包丽颖,刘伟江,等.我国饮用水水源内分泌干扰物的污染现状分析[J].环境科学与技术.2011(02):91-96.
    [241] Kolpin D W, Barbash J E, Gilliom R J. Occurrence of pesticides in shallow groundwater ofthe United States: Initial results from the National Water-Quality Assessment Program[J].Environmental Science&Technology.1998,32(5):558-566.
    [242]张阳,张颖,陈冠雄.原水性质对纳滤去除三嗪类除草剂的影响[J].哈尔滨工业大学学报.2005,37(3):311-314.
    [243]尹志芳,钟桐生,黄杉生,等.阿特拉津在聚碳酸酯膜中的迁移性能研究[J].化学研究与应用.2012(01):69-73.
    [244]李绍峰,梁媛,张荣全,等. O3/H2O2降解Atrazine效能研究[J].环境科学.2009(05):1425-1429.
    [245]李绍峰,梁媛,张荣全,等. O3/H2O2降解阿特拉津影响因素研究[J].环境工程学报.2008(03):358-361.
    [246]曹连秋,李冬,孔祥吉,等. TiO2/AC光催化降解水中微量莠去津的研究[J].哈尔滨商业大学学报(自然科学版).2008(06):667-671.
    [247]高燕飞,徐力克,刘豪,等. UV-H2O2联用工艺去除水中阿特拉津的研究[J].四川环境.2010(04):5-8.
    [248] Zhang Y, Li Y, Zheng X. Removal of atrazine by nanoscale zero valent iron supported onorganobentonite[J]. Science of the Total Environment.2011,409(3):625-630.
    [249] Zadaka D, Nir S, Radian A, et al. Atrazine removal from water by polycation-claycomposites: Effect of dissolved organic matter and comparison to activated carbon[J]. WaterResearch.2009,43(3):677-683.
    [250] Guan Y, Ma J, Ren Y, et al. Efficient degradation of atrazine by magnetic porous copperferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfateradicals[J]. Water Research.2013,47(14):5431-5438.
    [251] Bianchi C L, Pirola C, Ragaini V, et al. Mechanism and efficiency of atrazine degradationunder combined oxidation processes[J]. Applied Catalysis B: Environmental.2006,64(1):131-138.
    [252] Mededovic S, Locke B R. Side-chain degradation of atrazine by pulsed electrical dischargein water[J]. Industrial&Engineering Chemistry Research.2007,46(9):2702-2709.
    [253] Balci B, Oturan N, Cherrier R, et al. Degradation of atrazine in aqueous medium byelectrocatalytically generated hydroxyl radicals. A kinetic and mechanistic study[J]. WaterResearch.2009,43(7):1924-1934.
    [254] Chan K H, Chu W. Model applications and mechanism study on the degradation of atrazineby Fenton's system[J]. Journal of Hazardous Materials.2005,118(1):227-237.
    [255]曹曼,欧阳福承.水体中多环芳烃的来源,迁移及转化[J].四川环境.1991,3:4.
    [256]蔡文良,罗固源,许晓毅,等.嘉陵江重庆段表层水体多环芳烃的污染特征[J].环境科学.2012(07):2341-2346.
    [257] Kou J, Li Z, Yuan Y, et al. Visible-light-induced photocatalytic oxidation of polycyclicaromatic hydrocarbons over tantalum oxynitride photocatalysts[J]. Environmental Science&Technology.2009,43(8):2919-2924.
    [258]王统艳,邓晓燕.改性TiO2光催化降解水体中菲的研究[J].广州化工.2012(07):123-125.
    [259] Gao Y, Gan H, Zhang G, et al. Visible light assisted Fenton-like degradation of rhodamine Band4-nitrophenol solutions with a stable poly-hydroxyl-iron/sepiolite catalyst[J]. ChemicalEngineering Journal.2013,217:221-230.
    [260] He Z, Sun C, Yang S, et al. Photocatalytic degradation of rhodamine B by Bi2WO6withelectron accepting agent under microwave irradiation: Mechanism and pathway[J]. Journalof Hazardous Materials.2009,162(2):1477-1486.
    [261] Shukla P, Wang S, Singh K, et al. Cobalt exchanged zeolites for heterogeneous catalyticoxidation of phenol in the presence of peroxymonosulphate[J]. Applied Catalysis B:Environmental.2010,99(1):163-169.
    [262] Andersen J, Pelaez M, Guay L, et al. NF-TiO2photocatalysis of amitrole and atrazine withaddition of oxidants under simulated solar light: Emerging synergies, degradationintermediates, and reusable attributes[J]. Journal of Hazardous Materials.2013,260:569-575.
    [263] Du Y, Zhao L, Chang Y, et al. Tantalum (oxy) nitrides nanotube arrays for the degradation ofatrazine in vis-Fenton-like process[J]. Journal of Hazardous Materials.2012,225:21-27.
    [264][264]蔡涛,张璐吉,胡六江,等.零价铁活化过二硫酸盐氧化降解阿特拉津[J].应用化学.2013,30(1):114-119.
    [265]廖云燕,刘国强,赵力,等.利用热活化过硫酸盐技术去除阿特拉津[J].环境科学学报.2014,34(4).
    [266]何丹凤,周付江,刘金泉. Fenton试剂对水体中多环芳烃(PAHs)污染物的去除效果研究[J].化学工程师.2008(03):42-45.
    [267]唐婧,刘媚,王耀,等. Fenton试剂降解水中的菲和芘[J].化学研究与应用.2009(05):715-717.
    [268]谢艳招,苏德志,陈厚,等.光催化降解含萘污水[J].江西化工.2009(04):98-99.
    [269] Wang Y R, Chu W. Degradation of a xanthene dye by Fe (II)-mediated activation of Oxoneprocess[J]. Journal of Hazardous Materials.2011,186(2):1455-1461.
    [270] Su S, Guo W, Leng Y, et al. Heterogeneous activation of Oxone by CoxFe3-xO4nanocatalystsfor degradation of rhodamine B[J]. Journal of Hazardous Materials.2013,244:736-742.
    [271] Yao Y, Cai Y, Lu F, et al. Magnetic recoverable MnFe2O4and MnFe2O4-graphene hybrid asheterogeneous catalysts of peroxymonosulfate activation for efficient degradation ofaqueous organic pollutants.[J]. Journal of Hazardous Materials.2014,270:61-70.
    [272] Hu L, Yang F, Lu W, et al. Heterogeneous activation of oxone with CoMg/SBA-15for thedegradation of dye Rhodamine B in aqueous solution[J]. Applied Catalysis B:Environmental.2013,134-135(0):7-18.
    [273] Gayathri P, Praveena Juliya Dorathi R, Palanivelu K. Sonochemical degradation of textiledyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions[J].Ultrasonics Sonochemistry.2010,17(3):566-571.
    [274]庞素艳.铁锰催化H2O2、KHSO5、KMnO4氧化降解酚类化合物的效能与机理研究[D].哈尔滨工业大学,2011.
    [275] Mora V C, Rosso J A, Mártire D O, et al. Phenol depletion by thermally activatedperoxydisulfate at70℃[J]. Chemosphere.2011,84(9):1270-1275.
    [276] Olmez-Hanci T, Arslan-Alaton I. Comparison of sulfate and hydroxyl radical basedadvanced oxidation of phenol[J]. Chemical Engineering Journal.2013,224:10-16.
    [277] Lin Y, Liang C, Chen J. Feasibility study of ultraviolet activated persulfate oxidation ofphenol[J]. Chemosphere.2011,82(8):1168-1172.
    [278] Saputra E, Muhammad S, Sun H, et al. A comparative study of spinel structured Mn3O4,Co3O4and Fe3O4nanoparticles in catalytic oxidation of phenolic contaminants in aqueoussolutions.[J]. Journal of Colloid and Interface Science.2013,407:467-473.
    [279] Saputra E, Muhammad S, Sun H, et al. Manganese oxides at different oxidation states forheterogeneous activation of peroxymonosulfate for phenol degradation in aqueoussolutions[J]. Applied Catalysis B: Environmental.2013,142:729-735.
    [280] Saputra E, Muhammad S, Sun H, et al. α-MnO2activation of peroxymonosulfate forcatalytic phenol degradation in aqueous solutions[J]. Catalysis Communications.2012,26:144-148.
    [281] Muhammad S, Saputra E, Sun H, et al. Removal of Phenol Using Sulphate RadicalsActivated by Natural Zeolite-Supported Cobalt Catalysts[J]. Water, Air,&Soil Pollution.2013,224(12):1-9.
    [282] Sun H, Tian H, Hardjono Y, et al. Preparation of cobalt/carbon-xerogel for heterogeneousoxidation of phenol[J]. Catalysis Today.2012,186(1):63-68.
    [283] Liang H, Sun H, Patel A, et al. Excellent performance of mesoporousCo3O4/MnO2nanoparticles in heterogeneous activation of peroxymonosulfate for phenoldegradation in aqueous solutions[J]. Applied catalysis. B, Environmental.2012,127:330-335.
    [284] Liang H, Ting Y Y, Sun H, et al. Solution combustion synthesis of Co oxide-based catalystsfor phenol degradation in aqueous solution[J]. Journal of Colloid and Interface Science.2012,372(1):58-62.
    [285] Muhammad S, Saputra E, Sun H, et al. Coal fly ash supported Co3O4catalysts for phenoldegradation using peroxymonosulfate[J]. RSC Advances.2012,2(13):5645-5650.
    [286] Muhammad S, Saputra E, Sun H, et al. Heterogeneous catalytic oxidation of aqueous phenolon red mud-supported cobalt catalysts[J]. Industrial&Engineering Chemistry Research.2012,51(47):15351-15359.
    [287] Yao Y, Yang Z, Sun H, et al. Hydrothermal synthesis of Co3O4-graphene for heterogeneousactivation of peroxymonosulfate for decomposition of phenol[J]. Industrial&EngineeringChemistry Research.2012,51(46):14958-14965.
    [288] Shi L, Liang L, Ma J, et al. Highly efficient visible light-driven Ag/AgBr/ZnO compositephotocatalyst for degrading Rhodamine B[J]. Ceramics International.2014,40(2):3495-3502.
    [289] Ruzimuradov O, Nurmanov S, Hojamberdiev M, et al. Fabrication of nitrogen-doped TiO2monolith with well-defined macroporous and bicrystalline framework and its photocatalyticperformance under visible light[J]. Journal of the European Ceramic Society.2014,34(3):809-816.
    [290] Martínez-De La Cruz A, Pérez U M. Photocatalytic properties of BiVO4prepared by theco-precipitation method: Degradation of rhodamine B and possible reaction mechanismsunder visible irradiation[J]. Materials Research Bulletin.2010,45(2):135-141.
    [291] Murcia López S, Hidalgo M C, Navío J A, et al. Novel Bi2WO6-TiO2heterostructures forRhodamine B degradation under sunlike irradiation[J]. Journal of Hazardous Materials.2011,185(2):1425-1434.
    [292] Zhou G, Sun H, Wang S, et al. Titanate supported cobalt catalysts for photochemicaloxidation of phenol under visible light irradiations[J]. Separation and PurificationTechnology.2011,80(3):626-634.
    [293]高剑,吴棱,梁诗景,等.铁钛双金属共柱撑膨润土光催化-Fenton降解苯酚[J].催化学报.2010(03):317-321.
    [294] Devi L G, Kavitha R. Enhanced photocatalytic activity of sulfur doped TiO2for thedecomposition of phenol: A new insight into the bulk and surface modification[J]. MaterialsChemistry and Physics.2014,143(3):1300-1308.
    [295] De Lasa Hugo I., Rosaies Benito Serrano.光催化技术[Z].北京:科学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700