系列过渡金属配聚物和超分子的研制及光诱导下的表面电子行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高新技术的发展及其与材料科学、生物科学以及固体物理的渗透,基于某些物理特性的一系列光、电、热、磁等功能配合物的研究正在迅猛发展。配合物的许多特殊功能与其电子行为有密切的关联。例如配合物中金属离子间的不同电子排布、不同电子耦合及电子交换可能引起不同的磁学性能;金属离子外层电子的跃迁和转移的不同能够呈现出不同的氧化还原特性,进而表现出某种特有的催化性能;配合物体系间的电子转移和能量传递还可能引起某些生化性质的变化。由此看来,研究配合物体系中电子的跃迁、传递和转移等变化行为对配合物的性能研究具有重大的意义。表面光电压光谱(SPS)是探测固体表面电子跃迁和转移等表面电子行为的一种有效手段,能够检测到由入射光诱导而引起的固体表面电荷的变化。它不仅与由光吸收引起的电子跃迁过程有关,还直接反映了光生电荷的分离和转移特性。目前,它已被成功的应用到光激发表面相互作用的电子转移、染料的敏化过程、光催化研究以及固体材料表面和相间的电荷转移过程等方面。但借助表面光电压光谱研究配合物表面电子行为的报道还不多见。我们将配合物的表面光电压光谱与紫外-可见吸收光谱进行对比分析,首次将半导体的能带理论与配合物的晶体场理论结合起来并与化合物的结构相关联,解释并分析指认了表面光电压光谱中的一些响应带,研究了配合物在光诱导下的表面电子行为,可为新型配合物光电材料的研制和发展提供一定的参考和依据。
     1.采用常规及溶剂热合成等方法,以Mn,Ni,Cu,Ti等为中心金属合成了27种配聚物及超分子,全部得到了单晶体,测定了它们的晶体结构,给出了明确的结构解析。它们的分子式如下:
     [1]以Mn(Ⅱ/Ⅳ)为中心的配合物:
     (1)[Mn(tpha)(phen)]_n;
     (2)[Mn(na)_2(H_2O)_2]_n;
     (3)[Mn(m-tpha)(phen)]n;
     (4){[Mn_3(m-tpha)_2(m-Htpha)_2(bipy)_2]·2H_2O}_n
     (5)[Mn(2,3-dcp)(H_2O)]_n;
     (6)[Mn(3,5-dcpyrazole)(H_2O)_2]_n
     (7){[Mn(OX)_(1.5)(H_2O)]·Cl}_n
     (8){[Mn(phen)_2(OH)Cl]·Cl·(OH)·(C_9H_(11)NO_2)·2H_2O};
     (9)[Mn_2(C_8H_7O_2)_4(phen)_2(μ-H_2O)];
     (10)[Mn_2(btec)(phen)_2(H_2O)_6]·2H_2O;
     (11)[Mn(phen)_2Cl_2];
     (12)[Mn(phen)_2Cl_2]·C_6H_5COOH;
     (13)[Mn(phen)_2Cl_2](HOC_6H_4CHO)_2·H_2O;
     (14)[Mn(2,5-dcp)_2(H_2O)_2];
     (15)[Mn(2,5-dcp)(phen)(H_2O)]·H_2O;
     (16)[Mn(INA)_2(H_2O)_4];
     [2]以Ni(Ⅱ)为中心的配合物:
     (17)[Ni_3(btc)_2(H_2O)_(14)]·4H_2O
     (18)[Ni(phen)_2(H_2O)_2]·btc·[Ni(H_2O)_6]_(0.5)·9H_2O
     (19)[Ni(3,5-dcpz)_2(H_2O)_2]·H_2O
     (20)[Ni(2,5-dcp)(H_2O)_4]·2H_2O
     (21)[Ni(otpha)(Imh)_3(H_2O)_2]·H_2O
     [3]以Cu(Ⅱ)为中心的配合物:
     (22)[Cu_2Cl_4(phen)_2]
     (23)[Cu(C_9H_7NO)_2]
     (24)[Cu(phen)(H_2O)_2·SO_4]
     [4]以Ti(Ⅲ/Ⅳ)为中心的配合物:
     (25)[Ti_2O_(0.5)(SO_4)_(0.5)(btec)·H_2SO_4]_n·H_2O
     (26){[TiO(SO_4)_2]·(C_(10)H_(10)N_2)}_n·2H_2O
     (27){[Ti1O(SO_4)(HSO_4)][Ti2O(SO_4)(HSO_4)]·(C_(10)H_(10)N_2)}_n·5H_2O
     2.采用SPS技术测定了全部化合物在光诱导下的表面光电压光谱和场诱导表面光电压光谱。测定结果表明,全部化合物均在300-800nm范围内呈现出正的表面光伏响应。但是表面光伏响应的强度、位置、数量以及光伏响应带的形状是明显不同的,这与化合物的结构,中心金属离子的种类、价态和配位环境密切相关。可以总结得出以下规律性结论:
     [1]配合物的维度影响SPS的强度。化合物的维度越高,表面光伏响应的强度就越大。一般地,3D结构传输电子或空穴的能力最强,2D和1D次之,0D结构的则最弱。例如:化合物(1)-(3)分别是Mn(Ⅱ)离子形成的具有3D,2D和1D无限结构的配聚物,它们的表面光伏响应的强度表现为顺次降低。
     [2]分子间的连接方式影响SPS的强度。分子间的作用越紧密,距离越近,表面光伏响应的强度就越大。通过配位键和共价键结合的化合物的表面光伏响应强度要明显高于通过氢键连接的化合物。对于都是通过共价键和配位键连接起来的同维的聚合物,则分子间的弱相互越作用多,分子间连接越紧密,表面光伏响应的强度就会相对较强。
     [3]中心金属离子的种类和价态不同,其SPS响应带的数目明显不同。这主要是因为金属离子所呈现的d→d~*跃迁响应带的数目不同造成的。
     [4]中心金属离子的配位微环境影响SPS的数量和形状。金属离子所处的晶体场配位环境不同,d轨道的分裂状况就不同,可能引起的d→d~*跃迁光伏响应也不同。例如:Mn(Ⅱ)离子在强场和弱场下的d轨道的分裂可以呈现出2种不同的状况,强场条件下,Mn(Ⅱ)离子可能产生d→d~*跃迁;弱场条件下,不能产生d→d~*跃迁。另外,金属离子配位微环境的对称性越高,光伏响应带越平滑。
     3.将过渡金属配聚物及超分子化合物视为一种广义半导体。将半导体的能带理论和配合物的晶体场理论相结合,并参考晶体结构知识和光谱理论,圆满解释了各化合物的SPS响应带,并与其相应的紫外-可见吸收光谱进行了对比和关联,进一步证实了SPS指认的正确性。
With the rapid development of high-technique, material science, biologicalscience and the infiltration of solid physics, the researches about some functionalcomplexes which possess optical, electronic and magnetic specialties have achievedgreat progresses. Electronic behavior has close relations with some functions ofcomplexes. For example, the different distributions, couplings and electron transferscan due to different magnetic properties. The transition of external electron can showdifferent redox specialties and can possess some catalysis effects while the transitionof electron and energy between systems can attribute to some biochemical functions.By this token, the research of external electron behavior has significant meaning forthe functional study of transitional metal complexes. Surface photovoltage spectrumcan supply the information about the surface and interface of solid materials but alsocan study the molecular congeries, electronic states and energy-band structures. It issignificant to study the characteristics and mechanism through surface photovoltagespectrum. The energy gap of some transitional metal complexes is sometimes in theregion of that of semiconductors, therefore we can combine the energy band theorywith the crystal field theory to explain and analyze the response bands. The detectionabout surface charge behavior and photoelectric property of coordinationsupramolecules has the important references and elicitation for exploitingphotoelectric property of transition metal complexes.
     1. Using normal and solvothermal methods, we have reported twenty-seven Mn, Ni,Cu, Ti polymers and coordination supramolecules. Their structures have beendetermined by using X-ray single crystal diffraction. Their formulas are presented asfollowing:
     [1] Mn(Ⅱ/Ⅳ) polymers and coordination supramolecules:
     (1) [Mn(tpha)(phen)]_n;
     (2) [Mn(na)_2(H_2O)_2]_n;
     (3) [Mn(m-tpha)(phen)]_n;
     (4) {[Mn_3(m-tpha)_2(m-Htpha)_2(bipy)_2]·2H_2O}_n
     (5) [Mn(2,3-dcp)(H_2O)]_n;
     (6) [Mn(3,5-dcpyrazole)(H_2O)_2]_n
     (7) {[Mn(OX)_(1.5)(H_2O)]·Cl}_n
     (8) {[Mn(phen)_2(OH)Cl]·Cl·(OH)·(C_9H_(11)NO_2)·2H_2O};
     (9) [Mn_2(C_8H_7O_2)_4(phen)_2(μ-H_2O)];
     (10) [Mn_2(btec)(phen)_2(H_2O)_6]·2H_2O;
     (11) [Mn(phen)_2Cl_2];
     (12) [Mn(phen)_2Cl_2]·C_6H_5COOH;
     (13) [Mn(phen)_2Cl_2](HOC_6H_4CHO)_2·H_2O;
     (14) [Mn(2,5-dcp)_2(H_2O)_2];
     (15) [Mn(2,5-dcp)(phen)(H_2O)]·H_2O;
     (16) [Mn(INA)_2(H_2O)_4];
     [2] Ni (Ⅱ) coordination supramolecules:
     (17) [Ni_3(btc)_2(H_2O)_(14)]·4H_2O
     (18) [Ni(phen)_2(H_2O)_2]·btc·[Ni(H_2O)_6]_(0.5)·9H_2O
     (19) [Ni(3,5-dcpz)_2(H_2O)_2]·H_2O
     (20) [Ni(2,5-dcp)(H_2O)_4]·2H_2O
     (21) [Ni(otpha)(Imh)_3(H_2O)_2]·H_2O
     [3] Cu (Ⅱ) coordination supramolecules:
     (22) [Cu_2Cl_4(phen)_2]
     (23) [Cu(C_9H_7NO)_2]
     (24) [Cu(phen)(H_2O)_2·SO_4]
     [4] Ti (Ⅲ/Ⅳ) polymers:
     (25)[Ti_2O_(0.5)(SO_4)_(0.5)(btec)·H_2SO_4]_n·H_2O
     (26){[TiO(SO_4)_2]·(C_(10)H_(10)N_2)}_n·2H_2O
     (27){[Ti1O(SO_4)(HSO_4)][Ti2O(SO_4)(HSO_4)]·(C_(10)H_(10)N_2)}_n·5H_2O
     2. Beside the structural characterization, the photo-physics property of thesecomplexes has been investigated. The surface photovoltage spectra of the complexesall exhibit positive surface photovoltage responses in 300-800nm, but the intensity,position, number and shape of the responses are different obviously. The distinctionmight be responsible for their structure, species, valence and coordinationenvironment of metal ions in the complexes. From them, we can get some rules asfollowing:
     [1] The dimension of complexes affects the intensity of the SPS. Moredimensional structure can supply more transmission passages for transferringelectrons or holes, which will improve the intensity of the responses. Generallyspeaking, 3D structure can provide more transmission passages than 2D and 1Dstructure, while 0D structure is bad for transferring electrons or holes. For example,complexes (1)-(3) are Mn(Ⅱ) polymers which possess 3D, 2D and 1D structurerespectively, the SPV intensity of them weakens gradually.
     [2] Connected styles of molecules affect the intensity of SPS. The more theinteractions are, the better for the transmission of electron or holes. Coordination bondis beneficial for transferring electrons or holes than hydrogen bond and other weak interactions. When the complexes are all connected to polymer by the same mode, thestronger the interaction, the intensity of the responses will become higher.
     [3] The kind and valence of the metal ions affect number of the responses.Because the d→d~* transition bands of metal ions are different, the number of theresponses in SPS will show different.
     [4] The micro-environment of metal ions affects the number and the shape ofresponse bands. When the coordination environment is different, the split of the doribital is also different so the d→d~* transition response bands are distinguished. Forexample, Mn (Ⅱ) ions can take on different responses when in different field.Meanwhile, if the metal ions have the higher symmetry, the shape of the SPVresponse band is smooth and there seldom appear the splitting peaks.
     3. We have regards the transitional metal polymers and supramolecules as a kind ofextended semiconductors. We have combined the energy-band theory ofsemiconductors and crystal-field theory of complexes to discuss the SPS of all thecomplexes. Moreover, we have compared the SPV responses with the absorptionbands in UV-Vis spectroscopy which validates the correctness of the assignments inSPS.
引文
[1] Adeline Y. Robin, Katharina M. Fromm. Coordination polymers networks with O-and N-dornoes: What are, why and how they are made, Coord.Chem. Rev., 2006,250, 2127-2157.
    [2] O. M. Yaghi, M. Okeeffe, N. W. Ockwig. Reticular synthesis and the design of new materials, Nature, 2003,423: 705-708.
    [3] Alexander M. Kirillov, Yauhen Y. Karabach, MattiHaukka, M. Ftima C. Guedes da Silva, Joaquin Sanchiz, Maximilian N. Kopylovich, Armando J. L. Pombeiro, Self-Assembled Copper(II) Coordination Polymers Derived from Aminopolyalcohols and Benzene polycarboxylates: Structural and Magnetic Properties, Inorg. Chem., 2008,47 (1): 162-175.
    [4] Lu-Fang Ma, Li-Ya Wang, Dan-Hua Lu, Stuart R. Batten. Jian-Ge Wang, Structural Variation from 1D to 3D: Effects of Temperature and pH Value on the Construction of Co(II)-H2tbip/bpp Mixed Ligands System, Cryst. Growth Des., 2009, 9 (4): 1741-1749.
    [5] Lu-Fang Ma, Li-Ya Wang, Yao-Yu Wang, Stuart R. Batten,Jian-Ge Wang, Self-Assembly of a Series of Cobalt (II) Coordination Polymers Constructed from H2tbip and Dipyridyl-Based Ligands Inorg. Chem., 2009,48 (3): 915-924.
    [6] Ying-Ying Bai, Yan Huang, Bing Yan, Yi-Shan Song, Lin-Hong Weng, A novel three-dimensional 3d-4f heterometallic coordination polymer:Crystal structure and photoluminescence, Inorg. Chem.Comm. 2008, 11: 1030-1032.
    [7] K. Barthelet, D. Riou, M. Nogues, G. Fe'rey, Synthesis, Structure, and Magnetic Properties of Two New Vanadocarboxylates with Three-Dimensional Hybrid Frameworks, Inorg. Chem., 2003,42(5): 1739-1743.
    [8] Malabika Nayak, Rajesh Koner, Helen Stoeckli-Evans, Sasankasekhar Mohanta, Hydrogen-Bonded One-Dimensional Zigzag Pairs and Helical Dimers in an Enolic 4-Terpyridone Based Nickel(II) Dicyanamide Supramolecule, Crystal growth &design, 2005, 5(5): 1907-1912.
    [9] Xuanjun Zhang, Yi Xie, Wentao Yu, Qingrui Zhao, Minhua Jiang, Yupeng Tian, Formation of A Novel 1D Supramolecule [HgCl_2(ptz)]_2·HgCl_2(ptz=Phenothiazine): A New Precursor to Submicrometer Hg_2Cl_2 Rods, Inorg. Chem. 2003, 42(12): 3734-3737.
    [10] Diana Visinescu, Jean-Pascal Sutter, Catalina Ruiz-Pe'rez, Marius Andruh, A new synthetic route towards heterotrimetallic complexes. Synthesis, crystal structure and magnetic properties of a [CuIIMnIICrIII] trinuclear complex, Inorg. Chim.Acta, 2006, (359): 433-440.
    [11] D. Ghoshal, A. K. Ghosh, J. Ribas, E. Zangrando, G. Mostafa, T. K. Maji, N. Ray Chaudhuri, Synthesis, Crystal Structure, and Magnetic Behavior of Two Dicyanamido-Bridged Complexes of Manganese(II): Effect of Weak Interaction in Carving Regular Geometry, Crystal Growth & Design, 2005, 5(3): 941-947.
    [12] Xiao-Jun Zhao, Zhi-Hui Zhang, Ying Wang, Miao Du, Robust anionic building blocks[M(malonate)_2(H_2O)_2]_2 for crystal engineering of inorganic-organic hybrid materials, Inorga. Chim. Acta, 2007, 360, 1921-1928.
    [13] Owen R. Evans, Wenbing Lin. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks, Acc.Chem. Res., 2002, 35, 511-516.
    [14] O. R. Evans, R. G. Xiong, Z. Y. Wang, Crystal Engineering of Acentric Diamondoid Metal-Organic Coordination Network, Angew. Chem. Int. Ed., 2004, 38, 536-549.
    [15] 郝志峰,唐宗薰,史启祯。新型Cn [Ni(dmit)_2]类导电配位化合物的研究,化学学报,1998,56(10):1004-1008。
    [16] Daniel Maspoch, Jordi Gmez-Segura, Neus Domingo, Daniel Ruiz-Molina, Klaus Wurst, Concepci Rovira, Javier Tejada, Jaume Veciana, An Unusually Stable Trinuclear Manganese(Ⅱ) Complex Bearing Bulk Carboxylic Radical Ligands, Inorg. Chem., 2005, 44 (20): 6936-6938.
    [17] Mei Wang, Cheng-Bing Ma, Da-Qiang Yuan, Hui-Sheng Wang, Chang-Neng Chen, Qiu-Tian Liu, Synthesis and Characterization of a Family of Pentaand Tetra-Manganese(Ⅲ) Complexes Derived from an Assembly System Containing tert-Butylphosphonic Acid, Inorg. Chem., 2008, 47 (13): 5580-5590.
    [18] Ying-Bing Lu, Ming-Sheng Wang, Wei-Wei Zhou, Gang Xu, Guo-Cong Guo, Jin-Shun Huang, Novel 3-D PtS-like Tetrazolate-Bridged Manganese(Ⅱ) Complex Exhibiting Spin-Canted Antiferromagnetism and Field-Induced Spin-Flop Transition, Inorg. Chem., 2008, 47 (19): 8935-8942.
    [19] Theocharis C. Stamatatos, Brian S. Luisi, Brian Moulton, George Christou, Employment of 2,6-Diacetylpyridine Dioxime as a New Route to High Nuclearity Metal Clusters: Mn6 and Mn8 Complexes, Inorg. Chem., 2008, 47 (3): 1134-1144.
    [20] Hitoshi Iikura, and Toshi Nagata,,Structural Variation in Manganase Complexes: Synthesis and Characterization of Manganese Complexes from Carboxylate-containing Chelating Ligands,Inorg. Chem., 1998, 37 (18): 4702-4711.
    [21] Gema Fernndez, Montserrat Corbella, Montserrat Alfonso, Helen Stoeckli-Evans, Isabel Castro,A Comparative XAS and X-ray Diffraction Study of NewBinuclear Mn(Ⅲ) Complexes with Catalase Activity. Indirect Effect of the Counteranion on Magnetic Properties, Inorg. Chem., 2004, 43 (21): 6684-6698.
    [22] Caneschi A, Gatteschi D, Rey P, Structure and magnetic properties of ferrimagnetic chains by mangnese (Ⅱ) and nitronyl nitroxides. Inorg Chem, 1988, 27(10): 1756-1761
    [23] 王利亚,刘志亮,张晨曦,刘占泉,廖代正,姜宗慧,阎世平,自由基-Mn(Ⅱ)链状配合物的合成、晶体结构和磁性研究,中国科学B,2003,33(4):332-340。
    [24] Zhu X D, Wang C G, Dang Y L, The Schiff base N-salicylidene-O, S-dimethylthio phosphorylimine and its metal complexes: synthesis, characterization and insecticidal activity studies .Synth React Inorg Met-Org Chem, 2000,304, 30(4): 625-636.
    [25] Geary W J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds .Coord Chem Rev, 1971, 7 (7): 81-122.
    [26] Boris K. Semin, Michael Seibert,A carboxylic residue at the high-affinity, Mn-binding site participates in the binding of iron cations that block the site, Biochimica et Biophysica Acta 2006,(1757): 189-197
    [27] L. V. Kulik, W. Lubitz, J. Messinger, Electron Spin-Lattice Relaxation of the SO State of the Oxygen-Evolving Complex in Photosystem Ⅱ and of Dinuclear Manganese Model Complexes, Biochemistry, 2005, 44, 9368-9374
    [28] Sumitra Mukhopadhyay, William H. Armstrong, Multinuclear Oxo-Bridged Manganese Complexes with a Bulky Substituted Benzoate Ligand: Novel Species Obtained by Using Steric Control, J. AM. CHEM. SOC. 2003, 125, 13010-13011
    [29] 蔡艳林,梁福沛,陈自卢,黄衍强,陆海峰,含二茂铁基的锌配合物的结构及其生物活性,无机化学学报,2008,24(2):167-174
    [30] 张军军,乐学义,诺氟沙星-铜(Ⅱ)-吡啶衍生物配合物的合成、表征及生物活性,化学研究与应用,2008,22(2):126-132。
    [31] Wang S W, Tang X L, Vega A, Coordination and Reactivity Diversity of N-Piperidineethyl-Functionalized Indenyl Ligands:Synthesis,Structure,Theoretical Calculation,and Catalytic Activity of Organolanthanide Complexes with the Ligands.Organometallics. 2007, 26: 1512-1522.
    [32] Wang S W, Zhou S L,Sheng E H. Homolysis of the Eu-N Bond: Synthesis,Structural Characterization, and Catalytic Activity ofNovel Europium(Ⅱ)Complexes.Organometallics, 2003, (22): 3546-3552 .
    [33] Ready J M, Jacobsen E N. Highly active oligomeric (salen) co catalysts for asymmetric epoxide ring-opening reactions. J. Am. Chem. Soc., 2001,123 (11): 2687-2688.
    [34] Yao X Q, Chen H. L, L(?) W R, Enantioselective epoxidation of olefins catalyzed by two novel chiral poly - salen- Mn (Ⅲ) complexes. Tetrahetron Lett, 2000,41 (52): 10267-10271.
    [35] 项萍,陈龙海,邬金才,唐宁,Salen Mn(Ⅲ)配合物的合成及其在离子液体中对苯乙烯环氧化反应的催化性能,化学研究,2008,19(4):97-103.
    [36] 赵凤起,陈三平,范广,谢钢,焦宝娟,高胜利,含能配合物[Pb(AZTZ)(bpy)(H_2O)·2H_2O]_n合成、结构及燃烧催化性能,高等学校化学学报,2008,29(8):1519-1522.
    [37] H. M. Partridge, Applications of the Photo-Electric Cell to Chemical Analysis and Control, Ind. Eng. Chem. Anal. Ed., 1930, 2 (3): 207-213.
    [38] Ralph H. M(?)ller, Herman M. Partridge, Application of the Photo-Electric Cell to Automatic Titrations, Ind. Eng. Chem., 1928, 20 (4): 423-425.
    [39] D. M. Adams, J. Kerimo, C. Y. Liu, A. J. Bard, P. F. Barbara, Electric Field Modulated Near-Field Photo-Luminescence of Organic Thin Films, J. Phys. Chem. B, 2000, 104 (29): 6728-6736.
    [40] Shoichi Kubo, Zhong-Ze Gu, Kazuyuki Takahashi, Akira Fujishima, Hiroshi Segawa, Osamu Sato,Control of the Optical Properties of Liquid Crystal-Infiltrated Inverse Opal Structures Using Photo Irradiation and/or an Electric Field, Chem. Mater., 2005, 17 (9): 2298-2309.
    [41] Michael W. Holman, Ruchuan Liu, and David M. Adams, Single-Molecule Spectroscopy of Interfacial Electron Transfer, J. Am. Chem. Soc, 2003, 125 (41): 12649-12654.
    [42] Oksana Cherniavskaya, Aleksandar Adzic, Carl Knutson, Benjamin J. Gross, Ling Zang, Ruchuan Liu, David M. Adams, Edge Transfer Lithography of Molecular and Nanoparticle Materials, Langmuir, 2002, 18 (18): 7029-7034.
    [43] Harold Kwart, George C. Gatos, Factors Involved in the Stereochemistry of Diol Complexes, J. Am. Chem. Soc, 1958, 80 (4): 881-883.
    [44] Robert E. Day, Geoffrey D. Parfitt, Adsorption at the solid-liquid interface. III. The thickness of the adsorbed layer for adsorption on rutile from alcohol + hydrocarbon solutions. J. Phys. Chem., 1967, 71 (9): 3073-3075.
    [45] J. A. Kafalas, H. C. Gatos, M. J. Button, Hydrolysis of A~ⅢB~Ⅴ Intermetallic Compounds, J. Am. Chem. Soc., 1957, 79(16): 4260-4261
    [46] L. Kronik, Y. Shapria, Surface photovoltage phenomena: theory, experiment, and applications, Surface Sxience Reports, 1999, 37, 1-206.
    [47] W. A. Orr, S. C. Dahlberg, Effect of iodine incorporation on the electrical conductivity of films of nickel phthalocyanine, J. Am. Chem. Soc, 1979, 101 (11): 2875-2877.
    [48] Castaldini A., Cavalcolid. Surface photovoltage analysis of crystalline silicon for photovoltaic applications. Sol. Ene. Mat. &Sol. Cel, 2002, (72): 559 -569.
    [49] Shouvikdatta, Sandip Ghosh. Surface photovoltage spectroscopies of semiconductor structures using an indium-tin-oxide-coated glass electrode in soft contact mode. Rev. Sci. Ins, 2001,(72): 171-182.
    [50] Sharma, T. K., Porwal, S. Absorption edge determination of thick GaAs wafers using surface photovoltage spectroscopy. Rev. of Sci. Ins, 2002, (73): 1835-1840.
    [51] I. Lee, B.L. Justus, J.W. Lee, E.Greenbaum, Molecular Photovoltaics and Surface Potentials at the Air-Water Interface, J. Phys. Chem. B 2003, 107, 14225-14230
    [52] Y. H. Zhang, Y.A.Cao, C. Wang, J.B. Gao, T.F. Xie, Y. B.Bai, Study of charge transition between interface of hetero-structured assemblies based on phenyl-capped aniline tetramer/n(p)-silicon, Journal of Photochemistry and photobiology A: chemistry, 2001, 139, 175-179.
    [53] Y.Maehara, S. Takenaka, K. Shimizu, M. Yoshikawa, S. Shiratori, Buildup of multiplayer s tructure of organic -inorganic hybrid ultra thin films by wet process, Thin Solid Films, 2003, (438-439): 65-69
    [54] Svrcekv, Pelant. I. Surface photovoltage measurements in μ C-Si: H Manifestation of the bottom space charge region J.Appl. Phy, 2002, (92): 2323-2329.
    [55] Burstein, L., Shapira, Y. Surface photovoltage spectroscopy of porous silicon. Phys Rev.B. 1997,(15):1930-1933.
    [56] P. Zhang, S. J. Zhang, Z.W. Wu, S. J. Wang, J. Z. Liu, T.J. Li, Heterostructrue of silicon/organized-polymer-film with varied liguid crystalline states: a photovoltaic study. Thin Solid Film, 1998, 327-329,412-414.
    [57] T. Stergiopoulos , I. M. Arabatzis, H. Cachet, P. Falaras, Photoelectro chemistry at SnO_2 particulate fractal electrodes sensitized by a ruthenium complex Solid-state solar cell assembling by incorporating a composite polymer electrolyte, ournal of Photochemistry and Photobiology A: Chemistry, 2003, 155,163-170.
    [58] Ellen Moons, Albert Goossens, Surface Photovoltage of Porphyrin Layers Using the Kelvin Probe Technique, J. Phys. Chem. B, 1997,101 (42): 8492-8498.
    [59] Klaus Schwarzburg, Frank Willig Origin of Photovoltage and Photocurrent in the Nanoporous Dye-Sensitized Electrochemical Solar Cell, J. Phys. Chem. B, 1999, 103 (28): 5743-5746.
    [60] X. Gao, S. Yee, Comparison of Metal Oxide Semiconductor Capacitance-Time and Surface Photovoltage Methods in Investigating Annealing Behavior of Iron Contamination in Boron-doped Silicon. J. Electrochem. Soc., 1993, 140(7): 2042-2046.
    [61] W. H. Howland, S. J. Fonash, Errors and Error-Avoidance in the Schottky Coupled Surface Photovoltage Technique, J. Electrochem. Soc., 1995, 142(12): 4262-4269.
    [62] Leeor Kronik, Yoram Shapira, Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering, Surf. Interface Anal. 2001,31:954-965.
    [63] A. Cacciato, S. Vteeshouwers, S. Evseev, Fast-Feedback Iron Contamination Monitoring Using Surface Photovoltage Measurements, J. Electrochem. Soc., 1998,145(2): 702-708.
    [64] Ivan Mora-Sero(?), Juan Bisquert, Fermi Level of Surface States in TiO_2 Nanoparticles, Nano Lett. 2003, 3 (7): 945-949.
    [65] Lin Y. H., Wang D. J., Zhao Q. D., Yang M., Zhang Q. L., A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy, J. Phys. Chem. B 2004, 108, 3202-3206.
    [66] 王华英,朱海丰,何杰,李丽宏,半导体光电特性的表面光电压谱表征,河北建筑科技学院学报,2004,21(12):90-93.
    [67] Yang, Z. H., Zhang P. Surface photovoltage behavior of porous silicon modified with SO_4 specimens. Mat.Che & Phy, 2000, (63): 167-169.
    [68] 王德军,刘旺,肖良质,李铁津。表面光电压谱在化学中的应用,化学通报,1989,(10): 32-37.
    [69] Ochsner M.. Light scattering of human skin: a comparison between zinc (Ⅱ) phthallocyanine and photofrinII. J. Photochem. Photobiol. B: Biol., 1996, 32: 3-9.
    [70] Chevallier, C. B., Chouaiba, H., Camonea, J. A., Benyattou, T., Echeb, H. L., Bove, P. Photo reflectance spectroscopy for the study of GaAsS by In Pheterojunction bipolar transistors, Thin Solid Films, 2004, 450, 151-154
    [71] A.Komolov, K. Schaumburg, P. J. M(?)ller, V.Monakhov, Characterization of conducting molecular films on silicon: Auger electron spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and surface photovoltage, Applied Surface Science 1999,142, 591-597
    [72] Y.A. Cao, O.J. Meng, W.S. Yang, J.H. Hao, Y.C. Shu, W. Wang, G.H. Chen, Effect of plasma treatment on surface properties of TiO2 nanoparticulate films, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 262, 181-186
    [73] 尚静,徐自力。TiO_2纳米粒子的结构、表面特性及其光催化活性研究,无机材料学报,2001,16,1211
    [74] Q. H.Yao, Y.Y. Huanga, L.Q. Song, B.W. Zhang, C.H. Huang , Z.S. Wang, F.Y. Li, X.S. Zhao, Structure and photoelectrochemical properties of ruthenium(Ⅱ) polypyridyl complexes as sensitizers for nanocrystalline TiO_2 electrodes, Solar Energy Materials & Solar Cells 2003, 77,319-330.
    [75] K. Tennakone, G.R.R.A. Kumara, I.R.M. Kottegoda, V.P.S. Perera, P.S.R.S. Weerasundara, Sensitization of nano-porous films of TiO2 with santalin (red sandalwood pigment) and construction of dye-sensitized solid-state photovoltaic cells, Journal of Photochemistry and Photobiology A: Chemistry 1998,117, 137-142.
    [76] Chakrabarti, R., Dutta, J. Surface photovoltage measurement in DdS/ CdTe solar cell: Grain boundary effect. Sol. Ene.Mat &Sol. Cel, 2000, (61):113-126.
    [77] Y.M. Koo, J. H. Kim, Y. K. Choi, H. Lee, K.W. Jung, Intracluster Ion-Molecule Reactions of Ti+ with Methanol Clusters, J. Phys. Chem. A 2002,106, 2465-2472
    [78] W. Chen, H.M. Yuan, J.Y. Wang, Z.Y. Liu, J.J. Xu, M. Yang, J.S. Chen, Synthesis, Structure, and Photoelectronic Effects of a Uranium-Zinc-Organic Coordination Polymer Containing Infinite Metal Oxide Sheets, J.ACS., 2003, 125, 9266-9267
    [79] K. Nonomura, T. Yoshida, D. Schlettwein, H. Minoura, One-step electrochemical synthesis of ZnO/Ru(dcbpy)_2(NCS)_2 hybrid thin films and their photoelectrochemical properties, Electrochimica Acta, 2003,48, 3071-3078
    [80] Y.H. Lin, D.J. Wang, Q.D. Zhao, M. Yang, Q.L Zhang, A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy, J. Phys. Chem. B, 2004, 108, 3202-3206.
    [81] Pivovarov A P, KaplunovM G, Yakushchenko I K, Nanotructure ZnO electrodes for dye-sensitized solar cell applications, Russian Chemical Bulletin, International Edition, 2002,51
    [82] 井立强,孙晓君,蔡伟民,徐自力,杜尧国,傅宏刚,ZnO纳米粒子的表面光电压谱和光催化性能,化学学报,2002,60,1778-1783。
    [82] E. Vuorimaa, T. Vuorinen, N. Tkachenko, O. Cramariuc, T. Hukka, S. Nummelin, A. Shivanyuk, K. Rissanen, H. Lemmetyinen, Photoinduced Electron Transfer between a Self-Assembled Resorcinarene-[60]Fullerene Complex and Poly(3-hexylthiophene) in Langmuir-Blodgett Films, Langmuir, 2001,17, 7327-7331.
    [84] Xie T. F., Wang D. J., Zhu L. J.,Wang C, Li T. J.,Zhou X. Q., Wang M., Application of Surface Photovoltage Technique to the Determination of Conduction Typesof Azo Pigment Films J. Phys. Chem. B 2000, 104, 8177-8181.
    [85] 谢腾峰,王德军,王瑛,李铁津。四甲基-四乙基钯卟啉的表面光伏特性研究,高等学校化学学报,1999,20(6):937-940
    [86] J.H. Yang, J. Zhang, D.J. Wang, Y.B. Bai, H.R. Sun, D.F. Shen, T.J. Li, Photosensitization effects of porphyrin on n-Si (111) and n-GaAs (100), Journal of Photochemistry and photobiology A; Chemistry, 1998, 112,225-229.
    [87] M. J. Crossley, P. L. Burn, An approach to porphyrin-based molecular wires: synthesis of a bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system, J. Chem. Soc., Chem. Commun., 1991, 21, 1569-1571.
    [88] D. A. Parthenopoulos, P. M. Rentzepis, Three-dimensional optical strorage memory, Science, 1989, 245, 843-845.
    [89] M. J. Feldstein, P. Vorhringer, W. Wang, et ah, Femtosecond Optical Spectroscopy and Scanning Probe Microscopy, J. Phys. Chem., 1996, 100,4739-4748.
    [90] S. I. Yang, J. Seth, T. Balasubramanian, et al., Interplay of Orbital Tuning and Linker Location in Controlling Electronic Communication in Porphyrin Arrays, J. Am. Chem. Soc., 1999,121,4008-4018.
    [91] F. Li, S. I. Yang, J. Seth et al., Design, synthesis, and photodynamics of light-harvesting arrays comprised of a porphyrin and one, two, or eight boron-dipyrrin accessory pigments, J. Am. Chem. Soc., 1998,120,10001-10017.
    [92] R. W. Wagner, J. S. Lindsey, J. Seth, et al., Molecular Optoelectronic Gates, J. Am. Chem. Soc., 1996, 118,3996-3997.
    [93] D. Gust, T. A. Moore, A. L. Moore, Molecular mimicry of photosynthetic energy and electron transfer, Acc. Chem. Res., 1993, 26, 198-205.
    [94] M. S. Chio, T. Aida, T. Yamazaki, et al., A large dendritic multiporphyrin array as a mimic of the bacterial light-harvesting antenna complex: molecular design of an efficient energy funnel for visible photons, Angew. Chem. Int. Ed., 2001, 40(17): 3194-3198.
    [95] D. Gust, T. A. Moore, A. L. Moore, Mimicking Photosynthetic Solar Energy Transduction, Acc. Chem. Res., 2001, 34, 40-18.
    [96] S. I. Yang, R. K. Lammi, J. A. Riggs, et al., Excited-State Energy Transfer and Ground-State Hole/Electron Hopping in p-Phenylene-Linked Porphyrin Dimers, J. Phys. Chem. B, 1998, 102, 9426-9436.
    [97] S. C. Dahlberg, M. E.Musser, Electron acceptor states due to oxygen adsorption on metal phthalocyanine films. J.Chem. Phys. 1980, 72 (12): 6706-6712.
    [98] 王宝辉,王德军,曹云伟,张杰,李铁津,酞菁铜与Q-CdS超微粒子界面的光致电荷转移研究,物理化学学报,1996,12,177-180
    [99] J. Cao, J.Z. Sun, G.Q. Shi, H.Z. Chen, Q.L. Zhang, D.J. Wang, M. Wang, Photovoltaic properties of polythiophene nano-tubule films, Material Chemistry and Physics, 2003 ,82, 44-48
    [100] L.S. Li, A.D. Q. Li, Probing Surface Electronic Potentials and Photovoltaic Effects of Self-Assembled Multilayers of Metal Phthalocyanine and Oligomeric Viologen on Conductive Substrates, J. Phys. Chem. B, 2001,105, 10022-10028.
    [101] Van Faassen E., Kerp H., Explanation of the low Oxygen sensitivity of thin film phthaloocyanine gas sensor, Sensor and Actuators B, 2003, 88, 329-333.
    [102] Luer L., Egelhaaf D., Oelkrug D., Oxygen diffusion in alkul-substituted titaniumoxo phthalocyanine film, Synthetic Metal, 2003, 138, 305-310
    [103] Parton R. F., Vankelecom I. F. J., Casselman M. J. A., An efficient mimic of cytochrome P-450 from a zeolote-encaged Fe complex in a polymer membrane, Nature, 1994, 370, 541-545.
    [104] Zagal J., Sen R., Yeager E., Oxygen reduction by Co (Ⅱ) tetrasulfonatephth alocyanine irreversibly adsorbed on a stree-annealed pyrolytic graphite electrode surface, J. Electroanal. Chem. 1997,83,207-213.
    [105] Passard M., Maleysson C., Pauly A., Dopping mechanisms of phthalocyanines by oxidizing gases, Thin Solid Films, 1994, 239, 161-165.
    [106] Leznoff C.C., Lever A. B. P., Phthalocyanines properities and applications, New York: VCH Publishers, 1989, 45-355.
    [107] Gloria I. C. J., Jose H. Z., Donor-Accepter intermolecular hardness on charge transfer raction of substitude Cobalt phthalocyanine, J. Electroanal. Chem. 2001, 497, 55-60.
    [108] Braun A., Tcherniac T. C., Uber die produckte der einwirkung von acetanhydrid auf phthalamid. Ber., 1907, 40: 2709-2714.
    [109] Diesbach H. De, von. der Weid E., Quelques sels compleses deso-dinitriles avec le cuivre etla pyridine. Helv. Chim. Acta, 1927, 10: 886-888.
    [110] Linstead R. P., Phthalocyanines. Part Ⅰ. A new type of synthetic colouring matter, J. Am. Chem. Soc., 1934, 1016-1017.
    [111] Owens J. W., Smith R., Robinson R., Photophysical properties of porphyrins, phthalocyanines, and benzochlorins. Inorganica. Chimica. Acta, 1998,279: 226-231.
    [112] Robertson J. M., An X-ray study of the structure of the phthalocyanines. Part I.The metal-free, nickel, copper, and platinum compounds. J. Am. Chem. Soc., 1935, 615-621.
    [113] 吉林大学博士学位论文,回峥,1999
    [114] Wang B. H., Wang D. J. A comparative study of transition states of porous silicon by surface photovoatage spectroscopy J. Phys. Chem. Solids, 1997, 58(1): 25 -31.
    [115] Leeor Kronik, Yoram Shapira. Surface photovoltage spectroscopy of simiconductor structures: the crossroads of physics, chemistry and electrical engineering. Surf. Interface Anal, 2001, (31): 954-965.
    [116] Qi M. H., Liu G. F., Synthesis and properties of transition metal benzoporphyrin compound liquid crystals, J. Mater. Chem., 2003, 13, 2479-2484.
    [117] Dong D., Zheng D., Wang, F. Q., Yang X. Q, Wang N., Li Y. G., Guo L. H., Cheng J., Quantitative Photoelectrochemical Detection of Biological Affinity Reaction: Biotin-Avidin Interaction, Anal. Chem. 2004, 76,499-501
    [118] Chen W., Yuan H. M., Wang J.Y., Zhao-Yue Liu, Jin-Jie Xu, Min Yang, and Jie-Sheng Chen, Synthesis, Structure, and Photoelectronic Effects of aUranium-Zinc-Organic Coordination Polymer Containing Infinite Metal Oxide Sheets, J. Am. Chem. Soc. 2003, 125, 9266-9267.
    [119] Li, X. Q.; Wang, D. J.; Cuo, J. F.; Meng, H.; Liu, G. F., Synthesis and characterization of one-dimensional and two-dimensional prophyrin polymers, Chem. Research Chin. Univ., 2001, 17(2):226-227.
    [120] G.Kolks and S.J.Lippard, Magnetic exchange interaction in imidazolate bridged copper (II) complexes, J. Am. Chem. Soc., 1977, 99, 5804-5806
    [121] Feyissa Gadissa Gelalcha, Manfred Schulz, Ralph Kluge, Joachim Sieler, Molecular self-assembly: diastereoselective synthesis and structural chatacterisation of a novel binuclear copper(I) double hilicate, J. Chem. Soc, Dalton Trans., 2002, 2517-2521.
    [122] M.Nayak, R. Koner, H. Stoeckli-Evans,S. Mohanta, Hydrogen-Bonded One-Dimensional Zigzag Pairs and Helical Dimers in an Enolic 4-Terpyridone Based Nickel(II) Dicyanamide Supramolecule, Crystal Growth & Design, 2005, 5, 1907-1912.
    [123] J. C. Dai, S. M. Hu, X. T. Wu, Z. Y. Fu, W. X. Bu, H. H. Zhang, R. Q. Sun, A novel 2D bilayer architecture generated via π-π interaction and host-guest molecular recognition: assembly and structure of {[Cd(Htma)(bpy)(H_2O)]·(H_2tp)·0.5.2H_2O}_n polymer (tma=trimesate, bpy= 4,4'-bipyridine, tp=terephthalate), New J. Chem., 2003, 27,914-918.
    [124] Mohamed A.S.Goher, Franz A.Mautner, Morsy A.M.Abu-Youssef, Afaf K.Hafez, Ahmed M.A. Badr, Synthesis and crystal structure of three new 2D polymeric cadmium (II) complexes of some pyridine derivatives with different cadmium (II)-azide topologies, J. Chem. Soc, Dalton Trans., 2002, 3309-3312.
    [125] S. T. Wang, Y Hou, E. B. Wang, Y. G Li, L. Xu, J. Peng, S. X. Liu, C. W. Hu, A novel organic-inorganic hubrid material with fluorescenct emission:[Cd(PT)(H_2O)]_n(PT=phthalate), New J. Chem., 2003, 27, 1144-1147.
    [126] 王宝辉,崔毅,张杰,刘国发,张东,王德军,乙酰丙酮-5,10,15,20-四-对氯苯基卟啉稀土配合物表面光电压谱的研究,光谱学和光谱分析,1995,15,41-44.
    [127] D. J. Wang, J. Zhang, T.S. Shi, B.H. Wang, X. Z. Cao, T.J. Li, Transition identification of tailed portphyrin-Mn(Ⅲ) complex in the near-UV and near-IR regions using surface photovoltage spectrum, Journal of Photochemistry and Photobiology A: Chemistry, 1996, 93, 21-25.
    [128] M. H. Qi, G.F. Liu, Surface Photovoltage, Luminescence, and Cyclic Voltammetry on the First Series of Lanthanide (Ⅲ) Monobenzoporphyrin Compound Liquid Crystals and Relative Transition Metal Benzoporphyrin Compound Liquid Crystals, J. Phys. Chem. B 2003, 707, 7640-7646.
    [129] T. F. Xie, D. J. Wang, S. M. Chen, T. J. Li, Photovoltaic properties of movel conjugated oligomer/n-Si (111) heterostructures, Thin Solid Films 1998, 327-329, 415-418.
    [130] 谢腾峰,王德军,赵志新,徐金杰,朱连杰,刘国发,李铁津,二联体卟啉的光致电荷转移行为,高等学校化学学报,2001,22(8):1376-1378。
    [131] 回峥,徐金杰,谢腾峰,王德军,李铁津,孙家锤。TiO_2单晶的表面光电压谱研究,高等学校化学学报,1999,20(9):1458-1459。
    [132] F. Lenzamann, J. Krueger, S. Burnside, K. Brooks, M. Gratzel, D. Gal, S. Ruhle, D. Cahen, Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO_2, Nb_2O_5, and SrTiO_3 Nanocrystaline Photoanodes: Indication for Electron Injection from Higher Excited Dye States, J. Phy. Chem. B, 2001,105, 6347-6352.
    [133] 谢腾峰,王德军,朱连杰,李铁津,费浩生,周雪琴,汪茫,取代基对偶氮类颜料光伏特性的影响,高等学校化学学报,1999,20(12):1951-1953。
    [134] H. H. Deng, H. F. Mao, Z. H. Lu, H. J. Xu, Influence of molecular aggregation and orientation on the photoelectric properties of tetrasulfonated gallium phthaocyanine self-assembled on a microporous TiO_2 electrode, Thin Solid Films, 1998, 315, 244-250
    [135] 李松田,霍鹏伟,吴春笃,闫永胜,邓月华,王玲玲,金属酞菁及其取代衍生物的结构与光电性能研究进展,化学世界,2008,302-305。
    [136] J. Mizsei, J. A. Shrair, I. Zolomy, Investigation of Fermi-level pinning at silicon/porous-silicon interface by vibrating capacitor and surface photovoltage measurements, Applied Surface Science 2004, 235, 376-388.
    [137] T. Stergiopoulos, I.M. Arabatzis , H. Cachet, P. Falaras, Photoelectrochemistry at SnO_2 particulate fractal electrodes sensitized by a ruthenium complex Solid-state solar cell assembling by incorporating a composite polymer electrolyte, Journal of Photochemistry and Photobiology A: Chemistry 2003, 155, 163-170.
    [138] Benoy B. Bhowmika, Papia Ganguly, Photophysics of xanthene dyes in surfactant solution, Spectrochimica Acta Part A, 2005, 61, 1997-2003.
    [139] 曹健,汪茫,孙景志,周雪琴,表面光电压谱(SPS)在有机半导体材料研究中的应用,功能材料,2002,33(3):231-233。
    [140] 张青,刘燕刚,黄德音,何斌,钒氧酞菁的合成及其薄膜结构与光电性能的研究,感光科学与光化学,1999,17(2):141-144
    [141] Liping Sun, Shuyun Niu, Jing Jin, Guangdi Yang, Ling Ye, Synthesis, structure and surface photovoltage of a series of Ni (Ⅱ) coordination polymer, European Journal of Inorganic Chemistry. 2006, 5130-5137.
    [142] 张丽,牛淑云,金晶,孙丽萍,杨光第,叶玲。系列Mn(Ⅱ)配位超分子的合成、晶体结构和表面光电压研究。化学学报,2007,65(11):1032-1038.
    [143] Sun, L. P., Niu, S.Y., Jin, J., Yang, G. D., Ye, L., Crystal structure and surface photovoltage of a series of Ni (Ⅱ) coordination supramolecular polymer, Inorganic Chemistry Communication, 2006,9: 679-682.
    [144] 张丽,牛淑云,金晶,孙丽萍。含Mn(Ⅱ)配位超分子的晶体结构和表面光-电性能。科学通报,2007,52(24):2832-2839。
    [145] Li Zhang, Shu-Yun Niu, Jing Jin, Li-Ping Sun, Guang-Di Yang, Ling Ye, Synthesis, crystal structure and photo-electric property of Mn (Ⅱ /Ⅳ) coordination complexes, Inorg. Chim. Acta. 2009,362, 1448-1454.
    [146] Zhang Li, Niu Shu Yun, Jin Jing, Sun Li Ping, Crystal structure and surface photo-electric property of Mn (Ⅱ) coordination supramolecules, Chin Sci Bull, 2008, 53(3): 339-346.
    [147] 牛淑云,宫林崇,金晶,张丽,史忠丰。钒(Ⅳ)配位超分子的合成、晶体结构及光电性能。辽宁师范大学学报,2008,31(1):60-63。
    [148] 张丽,牛淑云,金晶,孙丽萍,杨光第,叶玲。系列Cu(Ⅱ/Ⅰ)配合物的制备及表面光电压研究。高等学校化学学报。2009,30(2):236-240。
    [149] 张丽,牛淑云,金晶,孙丽萍,杨光第,叶玲。系列Mn(Ⅱ)配位超分子的合成、晶体结构和表面光电压研究。化学学报,2007,65(11):1032-1038。
    [150] 张丽,牛淑云,金晶,孙丽萍。含Mn(Ⅱ)配位超分子的晶体结构和表面光-电性能。科学通报,2007,52(24):2832-2839。
    [151] 牛淑云,张丽,金晶。配位超分子[Mn(phen)_2Cl_2]·C_6H_5COOH的合成、结构及表面光-电性能。商丘师范学院学报,2008,24(3):1-6。
    [152] 孙丽萍,牛淑云,金晶,张丽,迟玉贤,杨光第,叶玲。双核Mn配合物的合成、结构及表面光电性能。应用化学,2007,24(8):905-910。
    [153] 金晶,陈朋,赵力民,张丽。配聚物{[Zn(C_4H_4O_6)(H_2O)_2]·2H_2O}。的合成、晶体结构及光谱。辽宁师范大学学报,2007,30(4):462-465。
    [154] Li-Ping Sun, Shu-Yun Niu, Jing Jin, Li Zhang. Crystal Structure and Surface Photovoltage Properties of Mn Ⅱ Coordination Supramolecules. Eur. J. Inorg. Chem. 2007, 3845-3852.
    [155] 赵力民,金晶,牛淑云,孙丽萍,由氢键构筑的Co(Ⅲ)配位超分子的合成、晶体结构及光电性能,辽宁师范大学学报,2006,29(2):459-462。
    [156] D. P. Cheng, M. A. Khan, R. P. Houser, Nickel(Ⅱ) and manganese(Ⅱ) 1D chain coordination polymers with 1,2,4,5-benzenetetracarboxylato anions, Inorganica Chimica Acta 2003,351,242-250.
    [157] Carlucci L., Ciani G., Proserpio D. M. Extended networks via hydrogen bond cross-linkages of [M(bipy)] linear coordination polymers, J. Chem. Soc., Dalton Trans., 1997, 1801-1803.
    [158] 陈满生,蔡金华,邓奕芳,邝代治,张春华,唐斯萍,甲酸桥联四核锰配合物[Mn_4(O_2CH)_4(phen)_8](ClO_4)_4·6H_2O的水热合成和晶体结构,无机化学学报,2008,24(3):479-482。
    [159] M. L. Tong, B. H. Ye, X. M. Chen, Clathration of two-dimensional coordination polymers: syntheses and structures of [Mn(4,4'-bipy)2(H2O)2] and [Cu(4,4'-bipy)2(H2O)2], Inorg. Chem., 1998,37,2645-2650.
    [160] H.Kumagai, K.W. Chapman, C. J. Kepert, M. Kurmoo, Binary metal (Ⅱ) pyromellitate coordination polymers, M_2(pm)(M_/Co, Fe, Mn): synthesis, structures and magnetic properties, Polyhedron. 2003, 22, 1921-1927.
    [161] J. L. Tian, S. P. Yan, D. Z. Liao, Z. H. Jiang, P.Cheng, Syntheses, structures and properties of two one-dimensional chain complexes: [Mn(Hpdc)(H2O)2]n and [Cu2(Hpdc)2][4,40-dpdo] (Hpdc 3,5-pyrazoledicarboxylic acid group, dpdo 4,40-dipyridyl-N,N0-dioxide hydrate), Inorganic Chemistry Communications, 2003, 6, 1025-1029.
    [162] K. J. Zhou, crystal structure of cis-dichlorobis-(1, 10-phenanthroline) manganese (Ⅱ), Chinese J. Struct. Chem., 1997, 16(1): 20-24.
    [163] R. Hauptmann, M. Kondo,S. Kitagawa, Crystal structure of diisonicotinatotetraaquamanganese(Ⅱ), [Mn(C_5H_4NCOO)_2(H_2O)_4], New Cryst. Struct, 2000, 215(1): 171.
    [164] X. Hao, Y.G. Wei, Q. Liu, S.W. Zhang, Poly [trans-diaquamanganese (Ⅱ)-1-(3-pyridinecarboxylato-N:O)-1-(3-pyri-dinecarboxylato-O:N)], Acta Crystallographica Section C:Crystal Structure Communications, 2000, C56, 296-298
    [165] J. J. Nie, L. J. Liu, Y. Luo, D.J. Xu, Synthesis and structure of a polymeric 1,3-benzenedicaboxylato complex of Mn (Ⅱ) with phenanthroline, J. Coord. Chem., 2001, 53(4):365-371.
    [166] K.Y. Choi, K.M. Chun ,I. H. Suh, Synthesis and characterization of one-dimensional nickel(Ⅱ)macrocyclic complexes with bridging organic ligands, Polyhedron, 2001, 20, 57-65.
    [167] P. M. Forster, A. K. Cheetha, Open-Framework Nickel Succinate, [Ni_7(C_4H_4O_4)_6(OH)_2(H_2O)_2]·2H_2O: A New Hybrid Material with Three-Dimensional Ni-O-Ni Connectivity, Angew. Chem. Int. Ed,. 2002, 41, 457-459.
    [168] Z. Shi, L. Zhang, S. Gao, G. Yang, J. Hua, L. Gao, and S. Feng, Coordination Polymers: Structural Transformation from Two to Three Dimensions through Ligand Conformation Change, Inorg. Chem., 2000,39, 1990-1993.
    [169] Y.C. Jiang, Y.C. Lai, S.L.Wang, and K.H.Lii, [Ni(4,4'-bpy)_2(H_2PO_4)_2]·C_4H_9OH·H_2O, a Novel Metal Phosphate That Exhibits Interpenetration of 2D Net into 3D Framework, Inorg. Chem. 2001,40,5320-5321
    [170] M. Yaghi, H. Li, T. L. Groy, A Molecular Railroad with Large Pores: Synthesis and Structure of Ni (4, 4'-bpy)_(2.5)(H_2O)_2(ClO_4)_2·1.5(4,4'-bpy)·2H_2O, Inorg. Chem., 1997, 36, 4292-4293.
    [171] M.Nayak, R. Koner, H. Stoeckli-Evans,S. Mohanta, Hydrogen-Bonded One-Dimensional Zigzag Pairs and Helical Dimers in an Enolic 4-Terpyridone Based Nickel(Ⅱ) Dicyanamide Supramolecule, Crystal Growth & Design, 2005, 5,1907-1912.
    [172] J.Koo, D.H.Kim, Y.S.Kim, Y.Do, Cyano-Bridged Homometallic 1-D and Bimetallic 2-D Assemblies:Synthesis, Structures, and Magnetic Properties of [Ni(baepn)(CN)]_n(ClO_4)_n and [Ni(baepn)]_(2n)[Fe(CN)_6]_n(H_2O)_(8n), Inorg.Chem., 2003,42,2983-2987.
    [173] 陈彦国,何治柯,张斓,陈琼,陆江林,邓真丽,陈灵,王卫东,配合物[Ni(IDB)_2]_2·(SO_4)_2·3CH_3CH_2OH·CH_3OH·5H_2O的合成、晶体结构及荧光光谱的研究,化学学报,2008,66(14):1651-1657。
    [174] L. Pan, N. Ching, X. Y. Huang, J.Li, A Reversible Structural Interconversion Involving [M(H2pdc)2(H2O)2] 2H2O (M.Mn, Fe, Co, Ni, Zn, H3pdc.3,5-pyrazoledicarboxylic acid) and the Role of A Reactive Intermediate [Co(H2pdc)2], Chem. Eur. J. 2001, 7, No. 20,4331-4337.
    [175] K. B. Shiu, Z.W.Chen, F. L. Liao, S. L.Wang,cis-Tetraaqua(pyridine-2,5-dicarboxylato- O,N) nickel(Ⅱ) dehydrate, Acta Crystallographica Section E:Structure Reports, 2003, E59, m1072-m1074.
    [176] Q. Shi, R. Cao, S. F. Sun, M. C. Hong, Y. C. Liang, Solvothermal syntheses and crystal structures of two metal coordination polymers with double-chain structures, Polyhedron, 2001,20, 3287-3293.
    [177] M. L. Tong, H. J. Chen, and X. M. Chen, Molecular ladders with multiple interpenetration of the lateral arms into the squares of adjacent ladders observed for [M_2(4,4'-bpy)_3(H_2O)_2 (phba)_2](NO_3)_2·4H_2O(M=Cu~(2+) or Co~(2+); phba=4-Hydroxy benzoate), Inorg. Chem., 2000, 39(10), 2235-2238.
    [178] G. Kolks, S. J. Lippard, Magnetic exchange interaction in imidazolate bridged copper (Ⅱ) complexes, J. Am. Chem. Soc., 1977, 99, 5804-5806.
    [179] Feyissa Gadissa Gelalcha, Manfred Schulz, Ralph Kluge, Joachim Sieler, Molecular self-assembly: diastereoselective synthesis and structural chatacterisation of a novel binuclear copper(Ⅰ) double hilicate, J. Chem. Soc., Dalton Trans., 2002,2517-2521.
    [180] R. Murugavel, D. Krishnamurthy and M. Sathiyendiran, Anionic metal-organic and cationic organic layer alternation in the coordination polymers {[M(BTEC)(H_2O)_4]·(C_4H_(12)N_2)·4H_2O}_n (M=Co, Ni, and Zn; BTEC=1,2,4,5- benzenetetra- carboxylate), J. Chem. Soc., Dalton Trans., 2002, 34-39.
    [181] L.C. Li, D.Z. Liao, Z.H. Jiang, S.P. Yan, Ferromagnetic Coupling in a Ladder-Type Copper (Ⅱ) Complex withSingle End-to-End Azido Bridges, Inorg. Chem. 2002, 41, 1019-1021.
    [182] R. Carballo, A. Castinerias, B. Covelo, E.M. VaZquez-Lopez, Coordination polymers of copper(Ⅱ) based on mixed N-and O-donor ligands: the crystal structures of [CuL_2(4,4'-bipy)]_n(L=lactate or a-methyllactate), Polyhedron, 2001, 20, 894-899.
    [183] Jeffrey M. Pietryga, Jamie N. Jones, Charles L.B. Macdonald, Jennifer A. Moore, Alan H. Cowley, Titanium(Ⅳ) complexes with amidinate and/or hydrazido ligands, Polyhedron. 2006, 25, 259-265.
    [184] 高玲香,高子伟,二茂钛氨基酸配合物的合成新方法,应用化学,2001,18(11):933-935.
    [185] Timothy J. Davis, Patrick J. Carroll, Patrick J. Walsh, Synthesis and X-ray structures of (biphenoxide)Ti species: four and five coordinate complexes that crystallize as mixtures of diastereomers, Journal of Organometallic Chemistry, 2002. 663, 70-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700