2’,3’-并环核苷的合成与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核苷类化合物是人们对抗病毒尤其是艾滋病毒的最主要手段,近年来研究发现构象限制的并环核苷所嵌入的寡核苷酸具有明显的“反义”活性。本论文设计了两种合成2′,3′-并环核苷的方法,并对所合成的并环核苷进行了结构表征和构象分析。
     论文第一章探讨了以硒烯核苷为关键中间体合成2′,3′-并环核苷的方法,合成了2′和3′-硒二氧化物取代的硒烯尿苷,并发现了Mitsunobu试剂合成核苷2′,3′-双键的方法。同时对硒烯腺苷的合成进行了探索。探讨了硒烯尿苷为中间体与双亲试剂反应合成2′,3′-并环尿苷的的合成条件。
     第二部分设计了分子内Michael加成和Mitsunobu反应合成2′,3′-并环尿苷的方法,并合成出了2′,3′-oxathiine和2′,3′-thiazine并环尿苷。对它们的结构进行了表征、由单晶数据对两个构象限制的核苷进行了构象分析。
Chapter one provides the background and significance of the thesis. Anitviral drugs derived from nucleoside have played an essential role in therapy against epidemical diseases caused by virus infection. Most of nucleoside drugs on the market or drug candidates in clinical phases structurally belong to a category of 2′,3′-modified nucleosides. Several synthetic methods have been developed for the preparation of these nucleoside analogues, including: 1) nucleophilic addition or nucleophilic substitution reaction; 2) radical reaction; 3) palladium catalyzed coupling reaction; 4) 2′,3′-double bonds formation. Sugar modified nucleosides not only exert biological activities but also generate substantial impact on antisense therapy by virtue of conformational restriction. The so called“antisense”strategy is to design and synthesize an oligonucleotide fragment with defined sequence complementary with the target mRNA by Watson-Crick base paring and thus selectively form duplex with the target mRNA blocking its translation process in formation of biologically functional proteins. Construction of a new ring system on sugar moiety of nucleoside and incorporation of such modified nucleoside into oligonucleotide constitutes the so called“locked nucleic acid”(LNA). It has been reported that LNA/DNA polymers demonstrated distinct“antisense”activity. Therefore, it is an effective strategy to search for potent and low toxic antiviral drug via fused ring nucleosides which are with novel structure feature, capability for fine turning the conformation of sugar and practicability inserted into oligonucleotide.
     The research work in this thesis is to synthesize 2′,3′-bicyclic nucleosides and to study their molecular structure and biological activity. The significant interest of these molecules rely on :1) retain the 5′-hydroxyl for phosphorylation and nucleobase for recognition; 2) restrict the conformation of nucleoside by the ring fusion to the 2′,3′-positions of the furanose ring especially with the six member ring; 3) adjust the conformation of furanose by introduction of hetero atoms on different positions with different valence; 4) subsititution of 2′or 3′position with NH allows the formation of LNA; 5) molecular structure and biological activities is of interest for the unique nucleosides.
     The Second Chapter discusses the synthesis of 2′,3′-fused nucleoside via 2′,3′-eneselenone nucleosides as the key intermediates. Selenonyl is a strong electron withdrawing group when connected with a unsaturated carbon, while turns to be a good leaving group when connected with a saturated carbon (sp3 carbon). Combining these characters, the carbon-carbon double bond in eneselenone possesses chemical properties equivalent to dication +CH2=CH2+.
     In this chapter, bicyclic nucleosides were designed to be synthesized via reaction of 2′or 3′-selenonyl-2′,3′-double nucleosides with reagents containing two nucleophilic groups. The sulfur containing bicyclic nucleosides could be oxidized to corresponding sulfoxide and sulfone nucleosides. The synthesis of dinucleotides was designed when the substituents were NH group. Starting from uridine 2′,3′-anhydrouridine was synthesized, the epoxide was opened up by an attack of PhSe- ion and two region isomers were isolated in 28% and 57% respectively. Mesylation 2′-hydroxyl of 3′-phenylselenyl uridine and followed elimination by the treatment with base produced 3′-phenyl-2′,3′- unsaturated uridine, oxidation of this product with m-CPBA resulted 3′-eneselenone uridine. But under the same condition elimination could not be achieved with the regioisomer of 3′-hydroxyl- 2′-phenylselenyl uridine. Thus Mitsunobu reagent was first introduced to produce the 2′-phenylselenyl-2′,3′- double bond which was oxidized with m-CPBA to offer 2′-eneselenone uridine. Synthesis of eneselenone adenosine was also studied, 3′-phenyl selenyl adenosine was synthesized via 2′,3′-O-anhydro-andenosine, but only elimination of phenyl selenyl was obtained when mesylation of 2′-hydroxy, and possible mechanism of the elimination was given.
     Reactions of 3′-eneselenone uridine with 1,2-Ethylenediamine and 1,2-Ethanedithiol were intensively examined under different conditions (such as changing solvent, temperature, concentration, bases, ratio of nucleophiles and protecting groups) to find suitable condition for the synthesis of six-membered fused ring. Reaction of 3′-eneselenone uridine with acetamide produced oxazole fused bicylic uridine, but with thioacetamide only gave complicated mixtures.
     Chapter three presents the results of synthesis, structure elucidation and conformational analysis of 2′3′-bicyclic nucleosides. Intermolecular Michael addition was unprecedented employed in synthesis the target molecules. Mitsunobu reaction was intended for cyclization to achieve 2′3′-oxathiine and the further derivatizations.
     2′,3′-anhydrouridine was reacted with 2-(tert-butyldimethylsilyloxy) ethanethiol in the presence of TMG to generate a mixture of 2′-S-CH2CH2 -OTBS-3′-hydroxyl and its regioisomer, which were separated by silica gel in 26% and 57% isolated yield respectively. Then 3′-isomer was oxidized and 2′-hydroxyl eliminated to double bond. Silyl group was deprotected by TBAF, in same time cyclization was furnished. Depreotection of trityl of 5′-hydroxyl to produce the final 2′,3′-oxathiine fused uridine. Similarly, tert-butyl-2- mercaptoethylcarbamate attacked 2′,3′-epoxide uridine, the isolated 3′-S -CH2CH2NHBoc isomer via oxidation and elimination gave vinyl sulfonyl uridine, After depretecting both the Boc and trityl group in acidic condition, cyclization was carried out in the presence of potassium carbonate, and desired 2′,3′-thiazine fused uridine was obtained.
     2,2′-anhydro-uridine was used to synthesis 2′-sulfonyl bicylic uridine by the same procedure, but the 3′-hydroxyl cannot be eliminated in the presence of base. Ph3P/DIAD was also used to eliminate 3′-hydroxyl group and 2′- SO2 -CH2CH2NHBoc-2′,3′-double bond uridine was obtained in 65% yield. Deprotection and cylization of the 2′-vinyl sulfonyl uridine however led to depyrimidination under many tested conditions.
     Reaction condition of oxidation sulfide to sulfoxide was optimized dur- ing the synthsis of 3′-sulfinyl bicylic uridine. 2′-Hydroxyl was also success- fully eliminated by Mitsunobu reagent in high yield. Both of the Michael precursors were obtained and cylization was attempted. It was disclosed that sulfoxide was not as efficient as sulfone to be an electon-withdrawing group in this cyclization.
     The synthesized 2′,3′-oxathiine and 2′,3′-thiazine bicyclic nucleosides were characterized by 1HNMR, 13CNMR, NOSY, COSY, HRMS and X-ray Single Crystal Diffraction. The conformation of the products was analysed by crystal data, two novel bicyclic nucleosides adopt 4′-exo, 3′-endo conforma- tion with pesudoroation phase angle of 36.8(2)°, 36.9(2)°and sugar puckering amplitude of 47.5(3)°, 49.9(3)°respectively. The glycosydic torsion angleγshows the orientation of the pyrimidine ring in both nucleosi- des to be anti with respect to the sugar group, and the conformations of 5′-hydroxyl group are ap and +sc respectively.
     The biological tests of the bicyclic nucleosides and their incorporation into oligonucleotide are to proceed in near future.
引文
1. De Clercq E., Antiviral drugs: current state of the art, J. Clin. Virol., 2001, 22, 73
    2. a) De Clercq E., Recent highlights in the development of new antiviral drugs, Current Opinion in Microbiology, 2005, 8, 552; b) 沈灵佳, 核苷类抗病毒药物研究开发进展,全国医药学术交流会暨临床药理学研究进展培训班,2006。
    3. Pauwels, R., Aspects of successful drug discovery and development, Antivir. Res., 2006, 68, 77.
    4. a) De Clercq E., Antiviral drug discovery and development: Where chemistrymeets with biomedicine, Antivir. Res., 2005, 67, 56; b) 张淑玲,罗端德,艾滋病抗病毒药物的研究进展,国际流行病学传染病学杂志,2006,33,45。
    5. 吴问根,王尔华,HIV逆转录酶抑制剂的研究进展,药学进展,1996,20,11
    6. 闫任章,刘新泳,非核苷类以转录酶抑制剂的研究进展,中国药学杂志,2006,41,81
    7. Lena, C.; Mackenzie, G., Synthesis of 2′,3′-didehydro-2′,3′- dideoxynucleosides having variations at either or both of the 2′- and
    3′-positions, Tetrahedron, 2006, 62, 9085.
    8. 刘琨,谢蓝,新型核苷类抗病毒药物的研究进展,药学学报, 2006,41,689。
    9. 杨继章,陈大华,杨树民, 抗病毒药物的研究进展及临床应用,上海医药,2006,26,351
    10. 姚其正,核苷化学合成,化学工业出版社,2005年,第一版, 34-35。
    11. Huryn, D. M.; Okabe, M., AIDS-Driven nucleoside chemistry, Chem. Rev. 1992, 92, 1745.
    12. a) Ranganathan, R., Modification of the 2′-position of purine nucleosides: syntheses of 2′-α-substituted-2′-deoxyadenosine analogs, Tetrahedron Lett., 1977, 18, 1291; b) Robins, M. J.; Hawrelak, S. D.; Hernandez, A. E.; Wnuk, S. F., Nucleic Acid Related Compounds. LXXXI. Efficient General Synthesis of Purine (Amino, Azido, and Triflate)-Sugar Nucleosides, Nucleosides Nucleotides, 1992, 11, 821.
    13. a) Horwitz, J. P.; Tomson, A. J.; Urbanski, J. A.; Chua, J., Nucleosides. I. 5′-Amino-5′-deoxyuridine and 5′-Amino-5′-deoxythymidine, J. Org. Chem. 1962, 27, 3045.
    14. Fukukawa, K.; Uedao, T.; Hirano, T., Chem. Pharm. Bull. 1983, 31, 1582.
    15. a) Matsuda, A.; Yasuoka, J.; Sassaki, T.; Ueda, T., Nucleosides andnucleotides. 95. Improved synthesis of 1-(2-azido-2-deoxy-.beta.-D-arabino-furanosyl)cytosine (Cytarazid) and -thymine. Inhibitory spectrum of Cytarazid on the growth of various human tumor cells in vitro, J. Med. Chem., 1991, 34, 999; b) Abdel-Megied, A. E. S.; Pedersen, E. B.; Nielsen, Carsten M., Synthesis of 2′-Azido, 2,2′-Anhydro and 2′,5′-Anhydro Nucleosides with Potential Anti-HIV Activity, Synthesis, 1991, 313.
    16. Bender, D. M.; Hennings, D. D.; Williams, R. M., A Synthesis of 5′-Amino-3′,5′-dideoxyuridine, Synthesis, 2000, 399.
    17. Webb, T. R.; Mitauya, H.; Broder, S., 1-(2,3-Anhydro-β-D- lyxofuranosyl)cytosine derivatives as potential inhibitors of the human immunodeficiency virus, J. Med. Chem. 1988, 31, 1475.
    18. a) Mete, A.; Hobbs, J. B.; Scopes, D. I. C.; Newton, R. F., Novel nucleoside analogues via direct attack of carbon : Nucleophiles on nucleosides containing epoxy-sugars, Tetrahedron Lett., 1985, 26, 97; b) Ashwell, M.; Jones, A. S.; Walker, R. T., The synthesis of some branched-chain-sugar nucleoside analogues, Nucleic Acids Res. 1987, 15, 2157.
    19. a) Matauda, A.; Satoh, M.; Nakashima, H.; Yamamoto, N.; Ueda, T., Synthesis and Anti-HIV Activity of 3′-Cyano-2′,3′-dideoxythymidine and 3′-Cyano-2′,3′-didehydro-2′,3′-dideoxythymidine, Heterocycles 1988, 27, 2545; b) Hbich, D.; Barth, W., Synthesis of 3′-Cyano-3′-deoxy-β-D-arabino-nucleosides, Synthesis, 1988, 943.
    20. a) Huang, J. T.; Chen, L. C.; Wang, L.; Kim, M. H.; Warshaw, J. A.; Armstrong, D.; Zhu, Q. Y.; Chou, T. C.; Wat anabe, K. A.;Matulic-Adamic, J.; Su, T. L.; Fox, J. J.; Polsky, B.; Baron, P. A.; Gold, J. W. M.; Hardy, W. D.; Zuckerman, E., Fluorinated sugar analogs of potential anti-HIV-1 nucleosides, J. Med. Chem., 1991, 34, 1640; b) Perlman, M. E.; Watanabe, K. A., Nucleosides. 140. Stereoselectivity of the Reaction of 1-(2,3-Anhydro-5-O-Benzoyl-β-D-Lyxofuranosyl) Uracil with Ammonium Azide. Isolation and Characterization of 2-Azido-XYLO-Nucleoside Derivatives, Nucleosides Nucleotides, 1989, 8, 145.
    21. Wu, J. C.; Pathak, T.; Tong, W.; Vial, J.M.; Remaud, G.; Chattopadhyaya, J., New syntheses of 2′,3′-dideoxy-2′,3′-di-substituted & -2′-mono-substituted uridines & adenosines by michael addition reactions, Tetrahedron, 1988, 44, 6705.
    22. Wu, J. C.; Chattopadhyaya, J., Michael addition reactions of α β-ene-3′-phenylselenone of uridine. New synthesis of 2′,3′-dideoxy- ribo-aziridino-,2′,3′-dideoxy-2′,3′-ribo-cyclopropyl-& 2,2′-O-anhydro -3′-deoxy-3′-amino uridine derivatives, Tetrahedron 1989, 45, 4507.
    23. Wigerinck, P.; Van Aerschot, A.; Janssen, G.; Claw, P.; Balzarini, J.; De Clercq, E; Herdewijn, P., Synthesis and antiviral activity of 3′- heterocyclic substituted 3′-deoxythymidines, J. Med. Chem., 1990, 33, 868.
    24. a) Robins, M. J.; Fouron, Y.; Mengel, R., Nucleic acid related compounds. II. Adenosine 2′,3′-ribo-epoxide. Synthesis, intramolecular degradation, and transformation into 3′-substituted xylofuranosyl nucleosides and the lyxo-epoxide, J. Org. Chem., 1974, 39, 1564; b) Samano, M. C.; Robins, M. J., High-yield synthesis of 3′-amino-3′- deoxynucleosides. Conversion of adenosine to 3′-amino-3′-deoxy- adenosine, Tetrahedron Lett., 1989, 30, 2329; c) Norbeck, D. W.; Kramer, J. B., Synthesis of (-)-oxetanocin, J. Am. Chem. Soc., 1988, 110, 7217; c) Chen, Y.-C. J.; Hansske, F.; Janda, K. D.; Robm, M. J., Nucleic acid related compounds. 64. Synthesis of 2′,3′-diazido -2′,3′-dideoxyadenosine and 2′,3′-diamino-2′,3′- dideoxyadenosine from 9-( β-D-arabinofuranosyl)adenine, J. Org. Chem., 1991, 56, 3410.
    25. Reo, T. S.; Reese, C. B. J. Chem. Soc., Chem. Commun., 1989, 997.
    26. Mengel, R.; Guschlbauer, W., A Simple Synthesis of 2′-Deoxy-2′-fluorocytidine by Nucleophilic Substitution of 2,2′-Anhydrocytidine with Potassium Fluoride/Crown Ether, Angew. Chem., Int. Ed. Engl., 1978, 17, 525.
    27. a) Fox, J. J. Pure Appl. Chem., 1969, 18, 233; b) Ikehara, M.; Maruyama, T.; Takatsuka, Y., Chem. Pharm. Bull., 1977, 25, 754; c) Brown, D. M., Parihar, D. B.; Todd, A.; Varadarajan, S., J. Chem., Soc., 1958, 3028.
    28. a)Camarasa,M. J.; Diaz-Ortiz, A.; Calvo-Mateo, A.; De las Heras,F. G.; Balzarini, De Clercq, J. E. Synthesis and antiviral activity of 3'-C-cyano-3'-deoxynucleosides, J. Med. Chem. 1989, 32, 1732; b) Mantlo, N. B.; Chakravarty, P. K.; Ondeyka, D. L.; Siegl, P. K. S.; Chang, R. S.; Lotti, V. J.; Faust, K. A.; Schorn, T. W.; Chen, T. B.; Schorn, T. W.; Sweet, C. S.; Emmert, S. E.; Patchett, A. A.; Greenlee, W. J., Potent, orally active imidazo[4,5-b]pyridine-based angiotensin II receptor antagonists., J. Med. Chem. 1991, 34, 2919.
    29. a) Wu, J. C.; Chattopadhyaya, J., New synthesis of 2′,3′-dideoxy-3′-C-cyano-2′-substituted thymidines by michael addition reactions, Tetrahedron, 1989, 45, 855; b) Caramaea, M. J.; Diaz-Ortiz, A.; Calvo-Mateo, A.; De lae Heras, F. G.; Balzarini, J.; De Clercq, E., Synthesis and antiviral activity of 3′-C-cyano-3′-deoxynucleosides, J. Med. Chem., 1989, 32, 1732; c) Matauda, A.; Nakajima, Y.; Azuma, A.; Tanaka, M.; S d , T., Potent, orally active imidazo[4,5-b]pyridine-based angiotensin II receptor antagonists, J. Med. Chem., 1991, 34, 2919.
    30. a) Webb, T. R., The direct conversion of 5′-O-trityl-3′-keto-2′- deoxythymidine to 1-(2-deoxy-3-methyl-β-D-xylosyl)thymine, Tetrahedron, 1988, 29, 3769; b) Matauda, A.; Takenuki, K.; Sasaki, T.; Ueda, T., Nucleosides and nucleotides. 94. Radical deoxygenation of tert-alcohols in 1-(2-C-alkylpento- furanosyl)pyrimidines: synthesis of (2′S)-2′-deoxy-2′-C-methylcytidine, an antileukemic nucleoside, J. Med. Chem. 1991, 34, 234; c) HW, S.; De las Heras, F. G.; Camaraaa, M. J., Synthesis of 3′-C-ethynylnucleosides of thymine, Tetrahedron, 1991, 47, 1727.
    31. Bergstrom, D.; Romo, E.; Shum, P., Fluorine Substituted Analogs of Nucleosides and Nucleotides, Nucleosides Nucleotides, 1987, 6, 53.
    32. Tong, W.; Xi, Z.; Gioeli, C.; Chattopadhyaya, J., Synthesis of new 2′, 3′-modified uridine derivatives from 2′,3′-ene-2′-phenylselenonyl uridine by Michael addition reactions, Tetrahedron, 1991, 47, 3431.
    33. a) Barton, D.H.R.; Jang, D.O.; Jaszberenyi, J. Cs., The invention of radical reactions. Part XXXI. Diphenylsilane: a reagent for deoxygenation of alcohols via their thiocarbonyl derivatives, deamination via isonitriles, and dehalogenation of bromo- and iodo- compounds by radical chain chemistry, Tetrahedron, 1993, 49, 7193; b) Crich, D.; Puintero, L., Chem. Rev., 1989, 89, 1413; c) Lopez, R. M.; Hays, D. S.; Fu, G. C., Bu SnH-Catalyzed Barton-McCombie Deoxygenation of Alcohols,3J. Am. Chem. Soc., 1997, 119, 6949; d) Jung, P. M. J.; Burger, A.; Biellmann, J.-F., Diastereofacial Selective Addition of Ethynylcerium Reagent and Barton-McCombie Reaction as the Key Steps for the Synthesis of C-3′-Ethynylribonucleosides and of C-3′-Ethynyl-2′-deoxyribonucleosides, J. Org. Chem., 1997, 62, 8309; e) Chu, C.K.; Doboszewski, B.; Schmidt, W.; Ullas, G. V., Synthesis of pyrimidine 3′-allyl-2′,3′-dideoxyribonucleosides by free-radical coupling, J. Org. Chem., 1989, 54, 2767.
    34. Robins, M.J.; Wilson, J. S. Smooth and efficient deoxygenation of secondary alcohols. A general procedure for the conversion of ribonucleosides to 2′-deoxynucleosides, J. Am. Chem. Soc., 1981, 103, 932.
    35. Wu, J. C.; Bazin, H.; Chattopadhyaya, J., Regiospecific synthesis of 2′-deoxy-2′,2′ -dideuterio nucleosides, Tetrahedron, 1987, 43, 2355.
    36. a) Chu, C.K.; Doboszewski, B.; Schmidt, W.; Ullas, G. V., Synthesis of pyrimidine 3′-allyl-2′,3′-dideoxyribonucleosides by free-radical coupling, J. Org. Chem., 1989, 54, 2767; b) Fiandor, J.; Tam, S. Y., Synthesis of 3′-deoxy-3′-(2-propynyl)thymidine and 3′-cyanomethyl- 3′-deoxythymidine, analogs of AZT, Tetrahedron Lett., 1990, 31, 597; c) Fiandor, J.; Huryn, D. M.; Sluboski, B. C.; Todaro, L. J.; Tam, S. Y., Synthesis of 3′-C-Substituted-2′,3′-Dideoxynucleosldes as Potential Antcaids Agents, Nucleosides Nucleotides, 1989, 8, 1107.
     37. a) Matsuda, A.; Takenuki, K.; Tanaka, M.; Sasaki, T.; Ueda, T., Nucleosides and nucleotides. 97. Synthesis of new broad spectrum antineoplastic nucleosides, 2′-deoxy-2′-methylidenecytidine (DMDC) and its derivatives, J. Med. Chem., 1991, 34, 812; b) Lin, T. S.; Luo, M. Z.; Liu, M. C.; Clarke-Katzenburg, R. H.; Cheng, Y. C.; Prusoff. W. H.; Mancini. W. R.; Bimbaum. G. I.; Gabe. E. I. J.; Giziewicz, J., Synthesis and anticancer and antiviral activities of various 2′- and 3′-methylidene-substituted nucleoside analogs and crystal structure of 2′-deoxy-2′-methylidenecytidine hydrochloride, J. Med. Chem., 1991, 34, 2607; c) Samano, V.; Robins, M. J., Stereoselective Addition of a Wittig Reagent To Give a Single Nucleoside Oxaphosphetane Diastereoisomer. Synthesis of 2′(and 3′)-Deoxy-2′(and 3′)-methyleneuridine (and cytidine) Derivatives from Uridine Ketonucleosides, Synthesis, 1991, 283; d) Afrofoglio, L. A.; Gillaizeau, I.; Saito, Y., Palladium-Assisted Routes to Nucleosides, Chem. Rev., 2003, 103, 1875.
    38. a) Williams, J. M., The Ups and Downs of Allylpalladium Complexes in Catalysis, Synlett, 1996, 705; b) Trost, B. M., New rules of selectivity: allylic alkylations catalyzed by palladium, Acc. Chem. Res., 1980, 13, 385; d) Trost, B. M., Cyclizations via Palladium-Catalyzed Allylic Alkylations, Angew. Chem., Int. Ed. Engl., 1989, 28, 1173. e) Tsuji, J.; Minami, I., New synthetic reactions of allyl alkyl carbonates, allyl .beta.-keto carboxylates, and allyl vinylic carbonates catalyzed by palladium complexes, Acc. Chem. Res., 1987, 20, 140. f) Consiglio, G.; Waymouth, R. M., Enantioselective homogeneous catalysis involving transition-metal-allyl intermediates, Chem. Rev., 1989, 89, 257.
    39. a) Martin, J. A.; Busshnell, D. J.; Duncan, I. B.; Dunsdon, S. J.;Hall, M. J.; Machin, P. J.; Merrett, J. H.; Parkes, K. E. B.;Roberts, N. A.; Thomas, G. J.; Galpin, S. A., Synthesis and antiviral activity of monofluoro and difluoro analogs of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1), J. Med. Chem., 1990, 33, 2137; b) Tann, C. H.; Brodfueher, P. R.; Brundidge, S. P.; Sapino, C.; Howell, H. G., Fluorocarbohydrates in synthesis. An efficient synthesis of 1-(2-deoxy-2-fluoro-.beta.-D-arabinofuranosyl)-5-iodouracil (β -FIAU) and 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)thymine (β-FMAU), J. Org. Chem., 1985, 50, 3644.
    40. a) Paulmier, C., Selenium reagents and intermediates in organic synthesis, Pergamon press, Oxord, U. K.,1986; b) 梦双明,李晓陆,陶学郁,有机硒化合物的反应选择性及其在有机合成中的应用, 河北大学学报(自然科学版),1994, 14, 93。
    41. a) Haraguchi, K.; Itoh, Y.; Tanaka, H.; Miyasaka, T., Preparation and reactions of 2′- and 3′-vinyl bromides of uracil-nucleosides: versatile synthons for anti-hiv agents, Uracil and adenine nucleosides having a 2′,3′-bromovinyl structure: highly versatile synthons for the synthesis of 2′-C- and 3′-C-Branched 2′,3′-Unsaturated Derivatives, Tetrahedron Lett., 1991, 32, 3391; b) Haraguchi, K.; Itoh, Y.; Tanaka, H.; Akita, M.; Miyasaka, T., Uracil and adenine nucleosides having a 2′,3′-bromovinyl structure: highly versatile synthons for the synthesis of 2′-C- and 3′-C-Branched 2′,3′-Unsaturated Derivatives, Tetrahedron, 1993, 49, 1371.
     42. Czernecki, S.; Ezzitouni, A., Synthesis of various 3′-branched 2′,3′-unsaturated pyrimidine nucleosides as potential anti-HIV agents, J. Org. Chem., 1992, 57, 7325. 43. Czernecki, S.; Ezzitouni, A., Synthesis of branched nucleosides closely related to AZT, involving SN ′ opening of anhydronucleosides, Recent advances in olefin metathesis and its application in organic synthesis,2 Tetrahedron Lett., 1993, 34, 315.
    44. Chiacchio, U.; Rescifina, A.; Iannazzo, D.; Romeo, G., Stereoselective Synthesis of 2′-Amino-2′,3′-dideoxynucleosides by Nitrone 1,3-Dipolar Cycloaddition: A New Efficient Entry Toward d4T and Its 2-Methyl Analogue, J. Org. Chem., 1999, 64, 28.
    45. a) Schrock , R. R. ; Murdzek , J . S. ; Bazan , G. C. ; Robbins , J . ; DiMare , M. ; O′Regan , M., Synthesis of molybdenum imido alkylidene complexes and some reactions involving acyclic olefins, J . Am. Chem. Soc., 1990 , 112 , 3875; b ) Fu , G. C. ; Nguyen , S. T. ; Grubbs , R. H., Catalytic ring-closing metathesis of functionalized dienes by a ruthenium carbene complex , J . Am. Chem. Soc., 1993 , 115 , 9856; c) Schwab , P. ; France , M. B. ; Ziller , J . W. ; Grubbs , R. H., A Series of Well-Defined Metathesis Catalysts-Synthesis of [RuCl 2 (=CHR′)(PR _3)_2 ] and Its Reactions, Angew. Chem. , Int. Ed. Engl., 1995, 34 , 2039; d) Schuster , M. ; Blechert , S., Olefin Metathesis in Organic Chemistry Angew. Chem., Int. Ed. Engl., 1997, 36, 2036; e) Armstrong, S. K., Ring closing diene metathesis in organic synthesis, J. Chem. Soc. , Perkin Trans. 1, 1998, 371; f) Fürstner, A., Olefin Metathesis and Beyond Angew. Chem., Int . Ed., 2000, 39, 3012.
    46. 付颖寰,李继贞,吴通好,关环转换反应在天然产物合成中的应用,化学通报,2005,481
    47. a) Amblard, F.; Nolan, S. P.; Agrofoglio, L. A., Metathesis strategy in nucleoside chemistry, Tetrahedron, 2005, 61, 7067; b)Ewing, D.; Glac?on, V.; Mackenzie, G.; Postel, D.; Len, C., A novel approach to unsaturated acyclic nucleoside analogues and the first synthesis of d4T by ring closure metathesis, Tetrahedron Lett., 2002, 43, 3503; c) Ewing, D.; Glac?on, V.; Mackenzie, G.; Postel, D.; Len, C., Synthesis of acyclic bis-vinyl pyrimidines: a general route to d4T via metathesis, Tetrahedron, 2003, 59, 941.
    48. IUPAC Compendium of Chemical Terminology, 1997, 2nd Edition.
    49. Sanger, W., Principles of Nucleic Acid Structure, edited by C. R. Cantor. 1984, New York: Springer Verlag, 9-50
    50. 姚其正,核苷化学合成, 化学工业出版社,2005,第一版,1-19。
    51. Kilpatrick, J. E.; Pitzer K. S.; Spitzer R., The Thermodynamics and Molecular Structure of Cyclopentane, J. Am. Chem. Soc., 1947, 69, 2483.
    52. a) Altona, C.; Sundaralingam, M., Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation, J. Am. Chem. Soc., 1972, 94, 8205; b) Altona, C.; Sundaralingam, M., Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants, J. Am. Chem. Soc., 1973, 95, 2333.
    53. a) Steffens, R.; Leumann, C. J., Tricyclo-DNA: A Phosphodiester-Backbone Based DNA Analog Exhibiting Strong Complementary Base-Pairing Properties, J. Am. Chem. Soc., 1997, 119, 11548; b) Kool, E. T., Preorganization of DNA: Design Principles for Improving Nucleic AcidRecognition by Synthetic Oligonucleotides, Chem. Rev., 1997, 97, 1473; c) Meldgaard, M.; Wengel, J., Bicyclic nucleosides and conformational restriction of oligonucleotides, J. Chem. Soc., Perkin Trans. 1, 2000, 3539; e) Leumann, C. J., DNA Analogues: From Supramolecular Principles to Biological Properties, Bioorg. Med. Chem., 2002, 10, 841; f) Kvaerno, L.; Wengel, J., Antisense molecules and furanose conformations is it really that simple, Chem. Commun., 2001, 16, 1419.
    54. a) Micklefield, J.; Fettes, K., Synthesis of sulfamide linked dinucleotide analogues, Tetrahedron Lett., 1997, 38, 5387; b) Huang, Z.; Benner, S.A., Oligodeoxyribonucleotide Analogues with Bridging Dimethylene Sulfide, Sulfoxide, and Sulfone Groups. Toward a Second-Generation Model of Nucleic Acid Structure, J. Org. Chem., 2002, 67, 3996.
    55. a) Koshkin, A. A.; Fensholdt, J.; Pfundheller, H. M.; Lomholt, C., A Simplified and Efficient Route to 2′-O, 4′-C-Methylene-Linked Bicyclic Ribonucleosides (Locked Nucleic Acid), J. Org. Chem., 2001, 66, 8504; b) Boon, E. M.; Barton, J. K.; Pradeepkumar, P. I.; Isaksson, J.; Petit, C.; Chattopadhyaya, J., An Electrochemical Probe of DNA stacking in an Antisense Oligonucleotide Containing a C3′-endo Locked Sugar, Angew. Chem. Int. Ed., 2002, 41, 3402; c) Leumann, C. J., DNA Analogues: From Supramolecular Principles to Biological Properties, Bioorg. Med. Chem., 2002, 10, 841.
    56. Obika, S.; Nanbu, D.; Hari, Y.; Andoh, J. I.; Morio, K. I.; Doi, T.; Imanishi, T., Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O, 4′-C-methyleneribonucleosides, Tetrahedron lett., 1998, 39, 5401.
    57. Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard, M.; Olsen, D. E.; Wengel, J., LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition, Tetrahedron, 1998, 54, 3607.
    58. Meldgaard, M.; Wengel, J., Bicyclic nucleosides and conformational restriction of Oligonucleotides, J. Chem. Soc., Perkin Trans. 1, 2000, 3539.
    59. Tark?y, M.; Bolli, M.; Schweizer, B.; Leumann, C., Nucleic-Acid Analogues with Constraint Conformational Flexibility in the Sugar-Phosphate Backbone (“Bicyclo-DNA”). Part 1. Preparation of (3S,5′R)-2′-Deoxy-3′,5′-ethano-α,β-D-ribonucleosides (‘Bicyclonucleo –sides’), Helv. Chim. Acta, 1993, 76, 481.
    60. a) B?hringer, M.; Roth, H. J.; Hunziker, J.; G?bel, M.; Krishnan, R.; Giger, A.; Schweizer, B.; Schreiber, J.; Leumann, C.; Eschenmoser, A., Warum Pentose- und nicht Hexose-Nucleins?uren. Teil II. Oligonucleotide aus 2′,3′-Dideoxy-β-D-glucopyranosyl-Bausteinen (′Homo-DNS′): Herstellung, Helv. Chim. Acta, 1992, 75, 1416; b) Hunziker, J.; Roth, H. J.; B?hringer, M.; Giger, A.; Diederichsen, U.; G?bel, M.; Krishnan, R.; Jaun, B.; Leumann C.; Eschenmoser, A., Warum pentose-und nicht hexose-nucleins?uren Teil III. Oligo(2′,3′-dideoxy-β-D-glucopyranosyl) nucleotide (′homo-DNS′): Paarungesigenschaften, Helv. Chim. Acta, 1993, 76, 259.
    61. a) Bolli, M.; Trafelet, H. U.; Leumann, C., Watson-Crick base-pairing properties of bicyclo-DNA, Nucleic Acids Res., 1996, 24, 4660; b) Tark?y, M.; Leumann, C., Synthesis and Pairing Properties of Decanucleotides from (3′S,5′R)-2′-Deoxy-3′, 5′-ethano-β-D-ribo- furanosyl-adenine and –thymine, Angew. Chem., Int. Ed. Engl., 1993, 32, 1432; c) Tark?y, M.; Bolli, M.; Leumann, C., Nucleic-Acid Analogues with Restricted Conformational Flexibility in the Sugar-Phosphate Backbone (′bicyclo-DNA′). Part 3. Synthesis, pairing properties, and calorimetric determination of duplex and triplex stability of decanucleotides from [(3′S,5′R)-2′-deoxy-3′,5′-ethano-β-D-ribo- furanosyl]adenine and –thymine, Helv. Chim. Acta, 1994, 77, 716.
    62. a) Pradeepkumar, P. I.; Zamaratski. E.; Foldesi A.; Chattopadhyaya J., Transmission of the conformational information in the antisense/RNA hybrid duplex influences the pattern of the RNase H cleavage reaction, Tetrahedron Lett., 2000, 41, 8601; b) Pradeepkumar, P. I.; Zamaratski E.; Foldesi A.; Chattopadhyaya J., Conformation-specific Cleavage of Antisense Oligonucleotide-RNA Duplexes by RNase H., J. Chem. Soc., Perkin Trans. 2, 2001, 402; c) Pradeepkumar, P. I.; Chattopadhyaya J., Conformation-specific Cleavage of Antisense Oligonucleotide-RNA Duplexes by RNase H, J. Chem. Soc., Perkin Trans. 2, 2001, 2074; d) Boon, E. M.; Barton, J. K.; Pradeepkumar, P. I.; Isaksson, J.; Petit, C.; Chattopadhyaya, J., An Electrochemical Probe of DNA stacking in an Antisense Oligonucleotide Containing a C3'-endo Locked Sugar, Angew. Chem., Int. Ed., 2002, 41, 3402; e) Ami′khanov, N. V.; Pradeepkumar, P. I.; Chattopadhyaya, J., Kinetic Analysis of the RNA Cleavage of the oxetanemodified Antisense-RNA Hybrid Duplex by RNase H., J. Chem. Soc.,Perkin Trans. 2, 2002, 976; f) Pradeepkumar, P. I.; Amirkhanov, N. V.; Chattopadhyaya, J., Antisense oligonuclotides with oxetane- constrained cytidine enhance heteroduplex stability, and elicit satisfactory RNaseH response as well as showing improved resistance to both exo and endonucleases., Org. Biomol. Chem., 2003, 1, 81; g) Pradeepkumar, P. I.; Cheruku, P.; Plashkevych, O.; Acharya, P.; Gohil, S.; Chattopadhyaya, J., Synthesis, Physicochemical and Biochemical Studies of 1',2'-Oxetane Constrained Adenosine and Guanosine Modified Oligonucleotides, and their Comparison with those of the Corresponding Cytidine and ThymidineAnalogs., J. Am. Chem. Soc., 2004, 126, 11484.
    63. Honcharenko, D.; Varghese, O. P.; Plashkevych, O.; Barman, J.; Chattopadhyaya, J., Synthesis and Structure of Novel Conformationallyconstrained 1′,2′-Azetidine-Fused Bicyclic Pyrimidine Nucleosides: Their Incorporation into Oligo-DNAs and the Thermal Stability of the Heteroduplexes., J. Org. Chem., 2006, 71, 299.
    64. Kifli, N.; Htar, T. T.; De Clercq, E.; Balzarinib, J.; Simons, C., Novel bicyclic sugar modified nucleosides: synthesis, conformational analysis and antiviral evaluation, Bioorg. Med. Chem., 2004, 12, 3247.
    65. a) Singh, S. K.; Nielsen, P.; Koshkin, A. A.; Wengel, J., LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition, Chem.Commun., 1998, 455; b) Koshkin, A. A.; Singh, S. K.; Nielsen, P.; Rajwanshi, V. K.; Kumar, R.; Meldgaard, M.; Olsen, C. E.; Wengel, J., LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition, Tetrahedron, 1998, 54, 3607; c) Obika, S.; Nanbu, D.; Hari, Y.; Andoh, J.; Morio, K.; Doi, T.; Imanishi, T., Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides, Tetrahedron Lett., 1998, 39, 5401; d) Koshkin, A. A.; Nielsen, P.; Meldgaard, M.; Rajwanshi, V. K.; Singh, S. K.; Wengel, J., LNA (Locked Nucleic Acid): An RNA Mimic Forming Exceedingly Stable LNA:LNA Duplexes, J. Am. Chem. Soc., 1998, 120, 13252; e) Wengel, J., Synthesis of 3′-C- and 4′-C-Branched Oligodeoxynucleotides and the Development of Locked Nucleic Acid (LNA), Acc. Chem. Res., 1999, 32, 301; f) Obika, S.; Hari, Y.; Sugimoto, T.; Sekiguchi, M.; Imanishi, T., Triplex-forming enhancement with high sequence selectivity by single 2′-O,4′-C-methylene bridged nucleic acid (2′,4′-BNA) modification, Tetrahedron Lett., 2000, 41, 8923.
    66. a) Singh, S. K.; Kumar, R.; Wengel, J., J. Org. Chem., 1998, 63, 6078; b) Singh, S. K.; Kumar, R. Wengel, J., Synthesis of Novel Bicyclo[2.2.1] Ribonucleosides: 2′-Amino- and 2′-Thio-LNA Monomeric Nucleosides, J. Org. Chem., 1998, 63, 10035; c) Kumar, R. S.; Singh, K. A.; Koshkin, A.; Rajwanshi, V. K.; Meldgaard, M.; Wengel, J., The first analogues of LNA (Locked Nucleic Acids): Phosphorothioate-LNA and 2′-thio-LNA, Bioorg. Med. Chem. Lett., 1998, 8, 2219.
    67. a) Rajwanshi, V. K.; Kumar, R.; Kofod-Hansen, M.; Wengel, J., Synthesis and restricted furanose conformations of three novel bicyclic thymine nucleosides: a xylo-LNA nucleoside, a 3′-O,5′-C- methylene-linked nucleoside, and a 2′-O,5′-C-methylene-linked nucleoside, J. Chem. Soc., Perkin Trans. 1, 1999, 1407; b) Rajwanshi, V. K.; H?kansson, A. E.; Dahl, B. M. Wengel, J., LNA stereoisomers: xylo-LNA (β-D-xylo configured locked nucleic acid) and α-L-LNA (α-L-ribo configured locked nucleic acid), Chem. Commun., 1999, 1395; c) Rajwanshi, V. K.; H?kansson, A. E.; Kumar, R.; Wengel, J., High-affinity nucleic acid recognition using ′LNA′ (locked nucleic acid, β-D-ribo configured LNA), ‘xylo-LNA’ (β-D-xylo configured LNA) or ‘α-L-LNA’ (α-L-ribo configured LNA) Chem. Commun., 1999, 2073. d) H?kansson, A. E.; Koshkin, A. A.; S?rensen, M. D.; Wengel, J., Synthesis of Abasic Locked Nucleic Acid and Two seco-LNA Derivatives and Evaluation of Their Hybridization Properties Compared with Their More Flexible DNA Counterparts, J. Org. Chem., 2000, 65, 5167.
    68. a) S. Gryaznov and J.-K. Chen, Oligodeoxyribonucleotide N3-->P5′ Phosphoramidates: synthesis and Hybridization Properties J. Am. Chem. Soc., 1994, 116, 3143; b) R. G. Schultz and S. M. Gryaznov, Oligo-2′-fluoro-2′-deoxynucleotide N3′-->P5′ phosphoramidates: synthesis and properties, Nucleic Acids Res., 1996, 24, 2966; c) E.De. Clercq, Chemotherapy of varicella-zoster virus by a novel class of highly specific anti-VZV bicyclic pyrimidine nucleosides, Biochim. Biophys. Acta, 2002, 1587, 258.
    1. 徐芳,邱德仁,杨芃原, 胡克季, 硒的化学与生物形态分析综述, 光谱学与光谱分析,2002,22,31.
    2. Paulmier, C., Selenium reagents and intermediates in organic synthesis, Pergamon press, Oxord, U. K., 1986.
    3. 梦双明,李晓陆,陶学郁,有机硒化合物的反应选择性及其在有机合成中的应用,河北大学学报(自然科学版),1994,14,93.
    4. a) Liotta, D., New organoselenium methodology, Acc. Chem. Res., 1984, 17, 28; b) Sharpless, K. B., Lauer, R. F., Electrophilic organoseleniumreagents. New route to allylic acetates and ethers, J. Org. Chem., 1974, 39, 429.
    5. Reich, H. J., Functional group manipulation using organoselenium reagents, Acc. Chem. Res., 1979, 12, 22.
    6. Reich, H. J. “Organoselenium Oxidations” in “Oxidation in Organic Chemistry” Part Ced. Trahanovsky W S. Academic Press, New York, 1978, 1-130.
    7. Nicolaou, K. B., Lauer, R. F., Electrophilic organoselenium reagents. New route to allylic acetates and ethers, J. Org. Chem., 1974, 39, 429.
    8. a) Krief, A., Carbon-carbon bond formation with new Mitsunobu reagents, Tetrahedron, 1980, 36, 2531; b) Remion, J., Krief, A., Thionyl chloride/triethylamine: a powerful reagent for regiospecific and stereospecific formation of olefins from β-hydroxyselenides: stereospecific deoxygenation of di- and trisubstituted epoxides a [C.C] connective route to di-, tri- and tetrasubstituted olefins., Tetrahedron lett., 1976, 17, 3743.
    9. Tiecco, M.; Chianelli, D.; Testaferri, L.; Tingoli, M.; Bartoli, D., Competition between vinylic substitution and conjugate addition in the reactions of vinyl selenoxides and vinyl selenones with nucleophiles in DMF, Tetrahedron, 1986, 42, 4889.
    10. a) Obika, S.; Morio, K. Nanbu, D.; Imanishi, T., Synthesis and conformation of 3′-O,4′-C-methyleneribonucleosides, novel bicyclic nucleoside analogues for 2′,5′-linked oligonucleotide modification, Chem. Commun. 1997, 1643; b) Obika, S.; Morio, K.; Hari, Y.; Imanishi, T., Facile synthesis and conformation of 3′-O,4′-C-methylene-ribonucleosides, Chem. Commun., 1999, 2423; (c) Raunkj?r, M.; Olsen, C. E.; Wengel, J., Oligonucleotide analogues containing (2″S)- and (2″R)-2′-O,3′-C-((2″-C-hydroxymethyl)ethylene)-linked bicyclic nucleoside monomers: Synthesis, RNA-selective binding, and diastereoselective formation of a very stable homocomplex based on T∶T base pairing, J. Chem. Soc., Perkin Trans. 1, 1999, 2543; (d) Kv?rn, L.; Wengel, J., Novel Bicyclic Nucleoside Analogue (1S,5S,6S)-6-Hydroxy-5-hydroxymethyl-1-(uracil-1-yl)-3,8- dioxabicyclo[3.2.1]octane: Synthesis and Incorporation into Oligodeoxynucleotides, J. Org. Chem., 2001, 66, 5498; (e) Koshkin, A. A.; Fensholdt, J.; Pfundheller, H. M.; Lomholt, C., A Simplified and Efficient Route to 2′-O, 4′-C-Methylene-Linked Bicyclic Ribonucleosides (Locked Nucleic Acid), J. Org. Chem., 2001, 66, 8504; (f) Sharma, P. K.; Nielsen, P., New Ruthenium-Based Protocol for Cleavage of Terminal Olefins to Primary Alcohols: Improved Synthesis of a Bicyclic Nucleoside, J. Org. Chem., 2004, 69, 5742; (g) Honcharenko, D.; Varghese, O. P.; Plashkevych, O.; Barman, J.; Chattopadhyaya, J., Synthesis and Structure of Novel Conformationally Constrained 1′,2′-Azetidine-Fused Bicyclic Pyrimidine Nucleosides: Their Incorporation into Oligo-DNAs and Thermal Stability of the Heteroduplexes, J. Org. Chem., 2006, 71, 299.
    11. Wang, J., Matteucci, M. D., The synthesis and binding properties of oligonucleotide analogs containing diastereomerically pure conformationally restricted acetal linkages, Bioorg. Med. Chem. Lett., 1997, 7, 229
    12. a) Amblard, F.; Nolan, S. P.; Agrofogli, L. A., Synthesis of mono- and polyhydroxylated cyclobutane nucleoside analogs, Tetrahedron, 2005, 61, 7067; b) Gurjar, M. K.; Reddy, D. S.; Bhadbhade, M. M.; Gonnade, R. G., Diastereoselective Reformatsky reaction of methyl 4-bromo -crotonate with 1,2:5,6-di-O-isopropylidene-α-D-ribo- hexofuranos-3- ulose: application to novel bicyclic nucleosides, Tetrahedron, 2004, 60, 10269; c) Montembault, M.; Bourgougnon, N.; Lebretona, J., Synthesis of 4′-C, 3′-O bicyclic thymidine analogues using ring closure metathesis, Tetrahedron Lett., 2002, 43, 8091; d) Busca, P.; Etheve-Quelquejeu, M.; Valery, J., Synthesis of 2′-O,3′-O bicyclic adenosine analogues using ring closing metathesis, Tetrahedron Lett., 2003, 44, 9131; e) Freitag, M.; Thomasen, H.; Christensen, N. K.; Petersen, M.; Nielsen, P., A ring-closing metathesis based synthesis of bicyclic nucleosides locked in S-type conformations by hydroxyl functionalised 3′,4′-trans linkages, Tetrahedron, 2004, 60, 3775.
    13. a) Tripathi, S.; Singha, K.; Achari, B.; Mandal, S. B., In situ 1,3-dipolar azide cycloaddition reaction: synthesis of functionalized D-glucose based chiral piperidine and oxazepine analogues, Tetrahedron 2004, 60, 4959; b) Xiang, Y.; Schinazi, R. F.; Zhao, K., Synthesis of [3.3.0] bicyclic isoxazolidinyl nucleosides, Bioorg. Med. Chem. Lett., 1996, 6, 1475.
    14. a) Wu, J. C.; Xi, Z.; Gioeli, C.; Chattopadhyaya, J., Intramolecular cyclization-trapping of carbon radicals by olefins as means to functionalize 2′- and 3′-carbons in β-D-nucleosides, Tetrahedron, 1991, 47, 2237; b) Tong, W.; Xi, Z.; Gioeli, C.; Chattopadhyaya, J., Synthesis of new 2′,3′-modified uridine derivatives from 2′,3′-ene-2′-phenylselenonyl uridine by Michael addition reactions, Tetrahedron, 1991, 47, 3431; c) Xi, Z.; Glemarec, C.; Chattopadhyaya, J., Synthesis of 2′,3′-cis-fused pyrrolidino-β-D-nucleosides and their conformational analysis by 500 MHz 1H-NMR, Tetrahedron, 1993, 49, 7525; d) Xi, Z.; Agback, P.; Sandstron, A.; Chattopadhyaya, J., Synthesis of furo[2,3-c]pyran-β-d-nucleosides by radical-cyclization & their conformational analysis by 500 mhz 1h-nmr spectroscopy, Tetrahedron, 1991, 47, 9675.
    15. a) J.-C. Wu and J. Chattopadhyaya, Michael addition reactions of α β-ene-3′-phenylselenone of uridine. New synthesis of 2′,3′-dideoxy-ribo-aziridino-, 2′,3′-dideoxy-2′, 3′-ribo-cyclopropyl- & 2,2′-O-anhydro-3′-deoxy-3′-amino uridine derivatives, Tetrahedron, 1989, 45, 4507; b) W. Tong, J. C. Wu, A. Sandstr?m and J. Chattopadhyaya, Synthesis of new 2′,3′-dideoxy-2′,3′-α- fused-heterocyclic uridines, & some 2′, 3′-ene-2′-substituted uridines from easily accessible 2′,3′- ene-3′phenylselenonyl uridine, Tetrahedron, 1990, 46, 3037.
    16. a) Kowollik, G.; Gaertner. K.; Langen. P., 2′- and 3′-O-Trityluridine, Tetrahedron Lett., 1972, 13, 3345; b) Ashwell, M.; Jones, A. S.; Walker, R. T., The synthesis of some branched-chain-sugar nucleoside analogues Nucleic Acids Res., 1987, 15, 2157; c) Faul, M. M.; Huff, B. E.; Dunlap, S. E.; Frank, S. A.; Fritz, J. E.; Kaldor, S. W.; LeTourneau, M. E.; Staszak, M. A.; Ward, J. A.; Werner, J. A.; Winnerosk, L. L., Synthesis of 2′,3′-dideoxy-3′-hydroxymethylcytidine; a unique antiviral nucleoside, Tetrahedron, 1997, 53, 8085.
    17. a) Hollenberg, D. H., Watanabe, K. A., Fox, J. J., Nucleosides. 102. Synthesis of some 3′-deoxy-3′-substituted arabinofuranosylpyrimidine nucleosides, J. Med. Chem., 1977, 20, 113; b) Robins, M. K. J., Fouron, Y., Mengel, R., Nucleic acid related compounds. II. Adenosine 2′,3′-ribo-epoxide. Synthesis, intramolecular degradation, and transformation into 3′-substituted xylofuranosyl nucleosides and the lyxo-epoxide, J. Org. Chem., 1974, 39, 1564.
    18. a) Mitsunobu, O., The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products, Synthesis, 1981, 1.; b) Buszek, K.R.; Jeong,Y., An improved synthesis of the octalactins, Tetrahedron Lett., 1995, 36, 7189; c) Cherney,R.J.; Wang,L., Efficient Mitsunobu Reactions with N-Phenylfluorenyl or N-Trityl Serine Esters, J. Org. Chem., 1996, 61, 2544.
    19. a) Robins, M. J.; Fouron, Y.; Menge R., Nucleic acid related compounds. II. Adenosine 2′,3′-ribo-epoxide. Synthesis, intramolecular degradation, and transformation into 3′-substituted xylofuranosyl nucleosides and the lyxo-epoxide, J. Org. Chem., 1974, 39, 1564; b) Robins, M. J.; H a w r e l a k, S. D.; Kanai, T.; ScSiefert, J. M.; Mengel, R., Nucleic acid related compounds. 30. Transformations of adenosine to the first 2′,3′-aziridine-fused nucleosides, 9-(2,3-epimino-2,3-dideoxy-β-D- ribo -furanosyl)adenine and 9-(2,3-epimino-2,3-dideoxy-β-D- lyxofuranosyl) adenine, J. Org. Chem., 1979, 44, 1317.
    20. 姚其正,核苷化学合成, 化学工业出版社,2005,第一版,288-290。
    21. a) Greenberg, S.; Moffatt, J. G., Reactions of 2-acyloxyisobutyryl halides with nucleosides. I. Reactions of model diols and of uridine, J. Am. Chem. Soc., 1973, 95, 4016; b) Russel, A. F.; Greenberg, S.; Moffatt, J. G., Reactions of 2-acyloxyisobutyryl halides with nucleosides. II. Reactions of adenosine, J. Am. Chem. Soc., 1973, 95, 4025; c)Jain, T. C.; Ruesell, A. F.; Moffatt, J. G., Reactions of 2-acyloxyisobutyryl halides with nucleosides. III. Reactions of tubercidin and formycin, J. Org. Chem., 1973, 38, 3179.
    22. Bazin, H.; Chattopadhyaya, J., A Convenient Preparation of 3′-Deoxyadenosine (Cordycepin) and 9-[3′(R)-Deuterio-β-D-2′(R)- pentofuranosyl]-adenine, Synthesis, 1985, 1108.
    23. S.Onuma, H. kumameto, M. Kawato, and H.Tanaka, A versatile intermediate for the synthesis of 3′-substituted 2′,3′-didehydro -2′,3′-dideoxyadenosine (d4A): preparation of 3′-C- stannyl-d4A via radical-mediated desulfonylative stannylation, Tetrahedron, 2002, 58, 2497.
    24. Reich, H. J.; Chow, F.; Shah, S. K., Selenium stabilized carbanions. Preparation of .alpha.-lithio selenides and applications to the synthesis of olefins by reductive elimination of .beta.-hydroxy selenides and selenoxide syn elimination, J. Am. Chem. Soc., 1979, 101, 6638.
    1. a) Jung, M. E., Comprehensive Organic Synthesis; Trost, B. M.,Fleming, I., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 4, Semmelhack, M. E., Ed., 24-30; b) Permutter, P., Conjugate Addition Reactions in Organic Synthesis; Pergamon Press: Oxford, U.K., 1992.
    2. a) Oare, D. A.; Henderson, M. A.; Sanner, M. A.; Heathcock, C. H., Acyclic stereoselection. 46. Stereochemistry of the Michael addition of N,N-disubstituted amide and thioamide enolates to .alpha.,.beta.-unsaturated ketones, J. Org. Chem., 1990, 55, 132; b) Kamimura, A. Sasatani, H.; Hashimoto, T.; Kawai, T.; Hori, K.; Onot, N., Anti-selective Michael addition of thiols and their analogs to nitro olefins, J. Org. Chem., 1990, 55, 2437; c) Patil, N. T.; Tilekar, J. N. Dhavale, D. D., Intermolecular Michael Addition of Substituted Amines to a Sugar-Derived α,β-Unsaturated Ester: Synthesis of 1-Deoxy -D-gluco- and -L-ido-homonojirimycin, 1-Deoxy-castanospermine and 1-Deoxy-8a-epi-castanospermine, J. Org. Chem., 2001, 66, 1065; d) Naidu, B. N.; Sorenson, M. E.; Connolly, T. P.; Ueda, Y., Michael Addition of Amines and Thiols to Dehydroalanine Amides: A Remarkable Rate Acceleration in Water, J. Org. Chem., 2003, 68, 10098.
    3. a) Maezaki, N., Yuyama, S., Sawamoto, H., Suzuki, T., Izumi, M., Tanaka, T., Highly Stereoselective Intramolecular Michael Addition Using -Sulfinyl Vinyllithium as an Unprecedented Michael Donor, Org. Lett., 2001, 3, 29; b) Vedejs, E.; Little, J. D., Synthesis of the Aziridinomitosene Skeleton by Intramolecular Michael Addition of -Lithioaziridines: An Aromatic Route Featuring Deuterium as a Removable Blocking Group, J. Org. Chem., 2004, 69, 1794; c) Sibi, M. P. Manyem, S., Enantioselective Conjugate Additions, Tetrahedron, 2000, 56, 8033; d) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M., Conjugate Additions of Nitroalkanes to Electron-Poor Alkenes: Recent Results, Chem. Rev., 2005, 105, 933; e) Fuchs, P. L.; Braish, T. F., Multiply convergent syntheses via conjugate-addition reactions to cycloalkenyl sulfones, Chem. Rev., 1986, 86, 903.
    4. Wu, J. C.; Pathak, T.; Tong, W.; Vial, J.M.; Remaud, G.; Chattopadhyaya, J., New syntheses of 2′,3′-dideoxy-2′,3′-di-substituted & -2′-mono-substituted uridines & adenosines by michael addition reactions, Tetrahedron, 1988, 44, 6705.
    5. Bera, S., Langley, G. J., Pathak, T., Sugar-Modified Uridine Bisvinyl Sulfone: Synthesis of a Bifunctionalized Nucleoside Michael Acceptor and Its Use in Stereoselective Tandem Cyclization, J. Org. Chem., 1998, 63, 1754.
    6. Greene, T. W., Wuts, P. G. M., Protecting groups in organic synthesis, 3rd Edition, Wiley-Interscience, New York, 1999, 457-482.
    7. Greene, T. W., Wuts, P. G. M., Protecting groups in organic synthesis, 3rd Edition, Wiley-Interscience, New York, 1999, 113-133.
    8. a) Hampton, A.; Nichol, A. W., Nucleotides. V. Purine Ribonucleoside 2′,3′-Cyclic Carbonates. Preparation and Use for the Synthesis of 5′-Monosubstituted Nucleosides, Biochemistry, 1966, 5, 2076; b) Ogilvie, K. K.; Iwacha, D. Can. J. Chem., 1969, 47, 495; c) D. P. C. McGee; A. Vaughn-Settle; C. Vargeese; Y. Zhai, 2′-Amino-2′-deoxyuridine via an Intramolecular Cyclization of a Trichloroacetimidate , J. Org. Chem., 1996, 61, 781.
    9. Greene, T. W., Wuts, P. G. M., Protecting groups in organic synthesis, 3rd Edition, Wiley-Interscience, New York, 1999, 518-522,102-104.
    10. 闻韧,药物合成反应,化学工业出版社,2003年,第二版,347.
    11. Maezaki, N.; Sawamoto, H.; Suzuki, T.; Yoshigami, R.; Tanaka, T., Highly Stereoselective Synthesis of Functionalized β,β-Di- and Trisubstituted Vinylic Sulfoxides by Cu-Catalyzed Conjugate Addition of Organozinc Reagents, J. Org. Chem., 2004, 69, 8387.
    12. Chan, W.; Lee, A. W. M.; Jiang, L., Chiral acetylenic sulfoxides in organic synthesis: Secondary amine cyclization and total synthesis of (S)-(?)-carnegine, Tetrahedron lett., 1995, 36, 715; b) Ma, D.; Zou, B.; Zhu, W.; Xu, H., A short synthesis of the HIV-protease inhibitor nelfinavir via a diastereoselective addition of ammonia to the α,β-unsaturated sulfoxide derived from (R)-glyceraldehyde acetonide, Tetrahedron lett., 2002, 43, 8511; c) Magnier-Bouvier, C.; Blazejewski, J. C.; Larpentb, C.; Magnier, E., Selective Michael additions of primary and secondary amines to perfluoroalkylated sulfoxides and sulfones as a tool for fluorous tagging, Tetrahedron lett., 2006, 47, 9121.
    13. a) Mitsunobu, O., The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products, Synthesis, 1981, 1; b) 任新锋,徐菁利,陈思浩, Mitsunobu反应研究进展, 有机化学,2006, 26, 454.
    14. Mitsunobu, O.; Yamada, M., Bull. Chem. Soc. Jpn., 1967, 40, 2380.
    15. Quallich, G. J.; Makowski, T. W.; Sanders, A. F.; Urban, F. J.; Vazquez, E., Synthesis of 1,2,3,4-Tetrahydroisoquinolines Containing Electron-Withdrawing Groups, J. Org. Chem., 1998, 63, 4116.
    16. Tsunoda, T.; Ozaki, F.; Shirakata, N.; Tamaoka, Y.; Yamamoto, H.; It?, S., Formation of heterocycles by the Mitsunobu reaction. Stereoselective synthesis of (+)-α-skytanthine, Tetrahedron Lett., 1996, 37, 2463.
    17. 赵瑶兴,孙祥玉,有机分子结构光谱鉴定,科学出版社,2003,第一版,106-185.
    18. a) Sanger,W., Principles of Nucleic Acid Structure, edited by C. R. Cantor. 1984, New York: Springer Verlag; b) IUPAC Compendium of Chemical Terminology, 1997, 2nd Edition; c) 姚其正,核苷化学合成, 2005, 1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700