外生菌根真菌产漆酶能力和耐苯酚胁迫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用愈创木酚筛选法从13种外生菌根真菌中筛选具有产漆酶能力的菌种,研究最佳产漆酶菌种的产酶条件和酶的特性、以及该菌漆酶对苯酚的氧化作用;同时研究苯酚胁迫下,接种最佳产漆酶菌种灰鹅膏菌(Amanita vaginata)对油松(Pinus tabulaeformis)苗木生理生化特性的影响。得出以下结论:
     1.产漆酶菌株的筛选
     采用愈创木酚筛选法筛选出灰鹅膏菌(Amanita vaginata)、乳黄粘盖牛肝菌(Suillus lactifluus)、黄地勺菌(Spathularia flavida)、褐黄牛肝菌(Boletus luridus)、灰环粘盖牛肝菌(Suillus laricinus)、美丽褶孔牛肝菌(Phylloporus bellus)、粘盖牛肝菌(Suillus bovinus)和天台山5#(未鉴定菌株)8种外生菌根真菌具有产漆酶能力;漆酶点试试验和漆酶活性大小测定结果表明以灰鹅膏菌产漆酶能力最佳,培养11 d时其酶活性为13.25 U/L。
     2.培养条件对灰鹅膏菌产漆酶的影响
     灰鹅膏菌产酶培养条件测定表明,温度为25℃时漆酶活性最高,培养13 d时高达17.94 U/L;在PDA液体培养基中酶活性最高,培养11 d时为12.90 U/L;以葡萄糖为C源、蛋白胨为N源、C/N为4/1、初始pH为6.0时,酶活性和菌丝体干重最高;添加0.5 mmoL/L Cu2+和5 mmoL/L Mg2+时,可增强酶活性。
     3.灰鹅膏菌漆酶的温度和pH酶学特性
     灰鹅膏菌漆酶特性研究表明,该酶最适反应温度为25℃、pH为3.0,具有较高的热稳定性,65℃保温60 min剩余酶活为58%;该酶在酸性条件下表现出较强的稳定性,在pH2.0、3.0、4.0保持120 min后,仍保留有75%以上的酶活性;pH5.0和6.0时漆酶活性随着时间的延长下降较快;pH7.0时保持15 min剩余酶活仅为8.5%。
     4.灰鹅膏菌及其漆酶对苯酚的氧化作用
     在纯培养条件下,研究了灰鹅膏菌对苯酚的耐受性和苯酚胁迫下漆酶活性,测定了灰鹅膏菌及其漆酶对苯酚的氧化率,结果表明:不同浓度苯酚对灰鹅膏菌生长和漆酶有一定的抑制作用,且随着苯酚浓度的增大抑制作用增强,灰鹅膏菌和其分泌的漆酶对苯酚的氧化率均随着时间的延长而增大,且随着苯酚浓度的升高呈现下降趋势。
     5.苯酚胁迫下接种灰鹅膏菌对油松生理生化的影响
     苯酚胁迫下,接种灰鹅膏菌增加了油松苗木的株高、地径、干重和根系活力,苯酚浓度为0 mg/kg时接种幼苗株高比对照时提高8.5%、苯酚浓度为200 mg/kg时地径提高7.78%、苯酚浓度为300 mg/kg时干重增加20.29%,苯酚浓度为400 mg/kg时根系活力增加95.02%;接种外生菌根真菌后,油松叶绿素含量、根部游离脯氨酸含量、SOD、POD和PPO活性均高于非菌根化油松幼苗,在苯酚浓度为400 mg/kg时接种油松叶绿素总含量比对照提高21.67%、POD活性提高114.37%,苯酚浓度为0 mg/kg时游离脯氨酸含量接种比对照提高191.22%、SOD活性提高90.4%,在苯酚浓度为100 mg/kg时接种灰鹅膏菌油松根部PPO活性比对照提高45.42%。
In order to obtain the species with high extracellular laccase-productivity, colorful reactions of 13 species of ectomycorrhizal fungi were studied by using the selective method of guaiacol. At the same time, conditions for laccase-production and characteristic of laccase from the fungi which was the best fungi for laccase production——Amanita vaginata were studied too. And the oxidation of phenol by A. vaginata and its laccase was also tested. Effect of phenol on the biochemical change of pines inoculated with or without Amanita vaginata was evaluated. The main points of this dissertation are as follows:
     1. The selection of laccase production strain
     The study of selective method of guaiacol found that 8 species of ECMF (A. vaginata, Suillus lactifluus, Spathularia flavida, Boletus luridus, Suillus laricinus, Phylloporus bellus, Suillus bovinus and Tian Taishan 5# (unidentified strain)) had the ability to produce extracellular laccase. The study of spot tests for laccase enzyme and determination of laccase-activity showed that A. vaginata was the best one in 13 species of ectomycorrhizal fungi to produce laccase, with activity of 13.25 U/L on the eleventh day.
     2. Effects of culture conditions on laccase production by A. vaginata
     The activity of laccase from A. vaginata reached highest at 25℃, with 17.94 U/L on the thirteenth day. And it reached 12.90 U/L (highest) on the eleventh day, when PDA liquid medium was used as culture medium. The maximum activities of laccase and mycelial dry weight were obtained, when glucose and peptone were used as carbon and nitrogen sources respectively, C/N ratio was 4:1, and the initial pH value of medium was 6.0. The activity of laccase increased when Cu2+ (0.5 mM) and Mg2+ (5 mM) existed.
     3. The enzymatic characteristic of temperature and pH for laccase from A. vaginata
     Enzymatic characteristic of laccase from A. vaginata indicated that the optimal reaction temperature was 25℃and the optimal reaction pH value was 3.0. The enzyme had a high thermal stability: residual activity was 58% of the origin after 60 min at 65℃; and after 20 min at 75℃, the activity was only left 4% of the origin. And the laccase showed a high stability in acidic conditions: residual activity was above 75% of the origin after 120 min at pH 2.0, 3.0, 4.0; and it was reduced as time prolonged at pH 5.0, 6.0; after 15min at pH 7.0, the activity was only left 8.5% of the origin.
     4. The oxidation of phenol by A. vaginata and its laccase
     The growth effect, tolerance and laccase activitiy of A. vaginata under different concentrations of phenol were studied at the condition of pure culture. The oxidation ratios of phenol by A. vaginata and its laccase were also examined. The results showed that various phenol concentrations had inhibition on the growth of studied ectomycorrhizal fungi and the secretion of laccase. The inhibition increased as the concentration of phenol increased. The oxidation ratios of phenol by A. vaginata and its laccase increased as time prolonged. And the oxidation ratios decreased with the increasing of phenol concentration.
     5. Effect of phenol on the biochemical change of pines inoculated with or without A. vaginata
     Pine (Pinus tabulaeformis) were grown in pots containing sterilized soil with six phenol levels (0, 100, 200, 300, 400 and 500 mg/kg) and inoculated with or without ectomycorrhizal fungi——A. vaginata. The results showed that mycorrhizae inoculation promoted plants growth including height, diameter at ground level, dry weight and root activity of the seedling under the existence of phenol. The height of mycorrhizal seedlings was promoted 8.5% compared to non-mycorrhizal pines at 0 mg/kg of phenol, the diameter at ground level was promoted 7.78% at 200 mg/kg of phenol, the dry weight of mycorrhizal seedlings was promoted 20.29% at 200 mg/kg of phenol, and the root activity of mycorrhizal seedlings was higher than non-mycorrhizal ones, which was promoted 95.02% at 400 mg/kg of phenol. Chlorophyll content, proline content, SOD, POD and PPO activity of mycorrhizal seedlings were higher than that of non-mycorrhizal seedlings. The Chlorophyll content and POD activity of mycorrhizal seedlings were higher than that of non-mycorrhizal ones, which were promoted 21.67% and 114.37% respectively, at 400 mg/kg phenol. The proline content and SOD activity of mycorrhizal seedlings were promoted 191.22% and 90.4% respectively, which was compared to non-mycorrhizal pines, at 0 mg/kg of phenol. PPO activity of was promoted 45.42% at 100 mg/kg of phenol for mycorrhizal seedlings, which was compared to non-mycorrhizal ones.
引文
宝秋利,闫伟,梁显丽. 2005.土生空团菌(Cenococcum geophilum Fr. )菌丝体纯培养条件的初步研究. 内蒙古农业大学学报, 26(1): 33-36.
    晁元卿,黄艺,费颖恒,杨青. 2008.外生菌根真菌Xerocomus chrysenteron对DDT胁迫的耐受性及酶响应研究.环境科学, 29(3): 788-792.
    陈佳荣. 1996。水化学.北京:中国农业出版社, 200-201.
    陈琼华,周玉萍,陈晓,柯德森,程惠贞,田长恩. 2010.韦伯灵芝漆酶的分离纯化及其性质.食品科学, 31(5): 201-205.
    陈旭. 2004.苯酚对蛋白核小球藻及原生动物群落的毒性效应.工业卫生与职业病, 30(1): 35-36.
    程国玲,李培军. 2007.小叶白蜡接种外生菌根真菌对土壤石油烃的降解效果.生态学杂志, 26(3): 389-392.
    董旭杰,曹福祥,陈静,吕聪. 2007. 3种白腐菌木质素降解酶的比较].中南林业科技大学学报, 27(3): 131-135.
    董学卫,朱启忠,吕新萍,徐国英,于涛,王方忠. 2007a.漆酶高产菌株的筛选及产酶条件研究.河南工业大学学报(自然科学版), 28(3): 52-56.
    董学卫,朱启忠,吕新萍,徐国英,于涛,王方忠. 2007b.白毒鹅膏菌胞外漆酶的部分酶学性质研究. 石河子大学学报(自然科学版), 25(2): 133-136.
    范文霞,蔡友华,刘学铭,肖更生,张名位,陈卫东,徐玉娟,吴娱明. 2008.毛云芝菌产漆酶液体培养条件的优化.食品与生物技术学报, 27(3): 88-93.
    高俊凤. 2000.植物生理学实验技术.西安:世界图书出版公司.
    弓明钦,陈应龙,仲崇禄. 1997.菌根研究及应用.林业出版社.
    韩君莉,郭丽琼,林俊芳. 2004.漆酶结构的研究进展.生物加工过程, 24(4): 1-6.
    韩伟,于福涛. 2003. 4-氨基安替比林比色法测定土壤中挥发酚含量探讨.干旱环境检测, 17(3): 186-188.
    韩秀丽,贾桂霞,牛颖. 2006.外生菌根提高树木抗旱性机理的研究进展.水土保持研究, 13(5): 42-44.
    郝再彬,苍晶,徐仲. 2004.植物生理实验.哈尔滨:哈尔滨工业大学出版社.
    黄艺,姜学艳,梁振春,李婷. 2006.盐胁迫下外生菌根真菌对油松生长及生理的影响.农业环境科学学报, 25(6):1475-1480.
    黄艺,彭博,李婷,梁振春. 2007.外生菌根真菌对重金属铜镉污染土壤中油松生长和元素积累分布的影响.植物生态学报, 31 (5): 923-929.
    黄艺,杨青,敖晓兰. 2008.外生菌根真菌对五氯芬的耐受性及生理响应.环境科学学报, 28(10): 2078-2083.
    黄艺,赵曦,敖小兰. 2006. 4种外生菌根真菌对滴滴涕的耐受性及生理响应.环境科学研究, 19(4): 36-41.
    金显春,陈刚,徐翠莲. 2008.苯酚降解菌AF1的筛选、鉴定及对含酚废水的降解.河南科学, 26(12): 1546-1549.
    康从宝,赵建,李清心,曲音波,高培基. 2002.层孔菌产漆酶的摇瓶最适培养条件研究.微生物学通报, 29(3): 42-45.
    雷增普,金均然,王昌温. 1989.外生菌根菌对植物根部病原菌拮抗作用的研究.林业科学研究, 25(6): 502-507.
    李芳,张俊伶,冯固,李晓林. 2003.两种外生菌根真菌对重金属Zn、Cd和Pb耐性的研究.环境科学学报, 23(6): 807-812.
    李思龙,张玉刚,陈丹明,马健,郭绍霞.2009.丛枝菌根对高温胁迫下牡丹生理生化的影响.中国农学通报, 25(07): 154-157.
    励建荣,李丹. 2006.漆酶在食品工业中的应用.现代食品科技, 22(4): 262-264.
    梁帅,周德明,冯友仁. 2008.白腐真菌漆酶的研究进展及应用前景.安徽农业科学, 36(4):1317-1319.
    廖继佩,林先贵,曹志洪. 2003.内外生菌根真菌对重金属的耐受性及机理.土壤, 35(5): 370-377.
    刘润进,陈应龙. 2007.菌根学.北京:科学出版社.
    刘文科,冯固,李晓林. 2004. 4种菌根真菌对五氯酚耐受性及其生理基础研究[J].农业环境科学学报, 23(4): 801-805.
    吕小红. 2004.林木外生菌根作用及其机理综述.山西林业科技, 12(4): 1-3.
    栾庆书,李立,李希桥. 2000.中国外生菌根研究的20年成就.辽宁林业科技, (6): 36-39.
    彭红,罗开昆,高中洪,龚跃法. 2005.产漆酶真菌的筛选、培养及对苯酚的降解.华中科技大学学报(自然科学版), 33(7): 111-113.
    彭永康,祁忠占,宋玖雪,王瑜,邓文娟,罗燕,李可仙,甄颖. 1990.苯酚对蔬菜幼苗生长及氧化同工酶的影响[J].环境科学学报, 10(4): 501-505.
    钱晓鸣,黄耀坚, Kottke I. 2001.用电子能量消失谱法研究P.tinctorius- P. massoniana菌根.厦门大学学报(自然科学版), 40(5): 1156~1161.
    施翔,陈益泰,段红平. 2008.杞柳对水中2,4-二氯苯酚的降解.生态环境, 17(2): 500-505.
    斯琴高娃,乌云,田艳飞. 2006.浅析苯酚对环境的污染.内蒙古石油化工, (12): 50-51.
    宋美静. 1999.纸浆氯漂废水的处理.纤维素科学与技术, (2):22-25.
    宋小双,赵敏,刘桂丰,王玉成,杨谦. 2005.北方梭囊孔菌漆酶基因DNA片段的克隆与序列分析. 北京林业大学学报, 27(5): 59-64.
    苏国成,王剑锋,周常义,蔡慧农,苏文金,王璋,刘建玲. 2007.液态生产胞外漆酶大型真菌高产菌株筛选.生态学杂志, 26 (8): 1210- 1216.
    陶君,马爱民,郭爱玲,王慧杰,曾兴波. 2008.灵芝漆酶活性的测定及其产漆酶条件的优化[J].食品科学, 29, (03): 310-313.
    王成彬,林久志. 2006.中国外生菌根资源的研究进展与展望.中国林副特产, (4): 105 - 106.
    王华,金大勇,赵建夫. 2003.真菌漆酶及其在环境污染控制中的应用.环境科学技术, 26(4): 58-60.
    王岁楼,王琼波. 2008.灵芝突变株G1502漆酶的分离纯化及酶学性质研究.食品科学, 29(5): 287-291.
    王祎宁,赵国柱,谢响明,邸晓亮. 2009.漆酶及其应用的研究进展.生物技术通报, (5): 35-37.
    王宜磊,朱陶,邓振旭. 2007.愈创木酚法快速筛选漆酶产生菌.生物技术, 17(2): 40-42.
    王志勇,李晓宏,胡博. 2005.外生菌根菌的研究进展.湖北林业科技, (3): 42-45.
    魏振宏. 2005.紫外分光光度法直接测定废水及污染水中酚.青海国土经略, 1: 40-41.
    吴坤,朱显峰,张世敏,贾新成,闵航. 2001.杂色云芝产漆酶的发酵条件研究.菌物系统, 20(2): 207-213.
    谢青,杨广笑,何光源. 2009.苯酚降解菌PN6-15的分离及其苯酚降解特性.华中科技大学学报(自然科学版), 37(8): 129-132.
    许颖,兰进. 2005.真菌漆酶研究进展.食用菌学报, 12(1): 57-64.
    杨建明,张小敏,邢增涛,陈明杰,曹晖,谭琦,潘迎捷. 2005.毛木耳漆酶纯化及其部分漆酶特性的研究.菌物学报, 24(1): 61-70.
    张蓓蓓,赵敏,卢磊,董龙,赵丽艳,梁书诚. 2009.一色齿毛菌漆酶的酶学特性及染料脱色研究.微生物学报, 28(5):737-743.
    张银波,江木兰,胡小加,张桂敏,马立新. 2005.平菇漆酶基因在毕赤酵母中的分泌表达及酶学性质研究.微生物学报, 45(4): 625-629.
    张玉,洪枫. 2006.优化培养条件对提高香菇漆酶产量的研究.林产化学与工业, 26(2):74-78.
    章鸾. 2002.紫外分光光度法检测污染水中的酚.嘉兴学院学报, 4(6): 30-31.
    赵敏,杨谦,宋小双,刘桂丰. 2005.真菌漆酶分子生物学研究进展.林产化学与工业, 25(1): 115-118.
    赵敏,刘欣,王秋玉. 2009.漆酶在生物造纸中的应用.森林工程, 25(2): 28-31.
    周攀登,付时雨. 2004.漆酶催化对苯基苯酚的聚合.高分子学报, (4): 614-616.
    周启星. 1997.水-土壤-植物-动物连续体中挥发酚的迁移积累模型的研究.浙江农业大学学报, 23(1): 1-6.
    朱明旗,曹支敏,李振歧. 2006.栓菌属高产漆酶菌株的筛选及其发酵产酶条件研究初报.中国农学通报, 22 (2): 119- 121.
    朱先灿,宋凤斌,徐洪文. 2010.低温胁迫下丛枝菌根真菌对玉米光和特性的影响.应用生态学报, 21(2): 470-475.
    Arzola K G, Gimeno Y, Arévalo M C, Falcón M A, Creus A H. 2009. Electrochemical and AFM characterization on gold and carbon electrodes of a high redox potential laccase from Fusarium proliferatum. Bioelectrochemistry. in press.
    Baldrian P, Gabriel J. 2002. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiology Letters, 206(1): 69-74.
    Bertrand M G. 1985. Sur la laccase et sur le pouvoir oxydant de cette diastase. CR Acad Sci Paris, 120: 266-269.
    Bethlenfalvay G J, Mihara K L, Schreiner R P, McDaniel. 1996. Mycorrhizae, biocides, and biocontrol. 1. Herbicide-mycorrhiza interactions in soybean and cocklebur treated with bentazon. Applied Soil Ecology, 3: 197-204.
    Bhattacharya S S, Banerjee R. 2008. Laccase mediated biodegradation of 2, 4-dichlorophenol using response surface methodology. Chemosphere, 73 (1): 81-85.
    Bourbonnais R, Paice M G, Reid I D, Lanthier P, Yaguchi M. 1995. Lignin Oxidation by Laccase Isozymes from Trametes versicolor and Role of the Mediator 2, 2’-Azinobis (3-Ethylbenzthiazoline-6-Sulfonate) in Kraft Lignin Depolymerization. Applied and Environmental Microbiology, 61(5): 1876–1880.
    Brown M T, Wilkins D A. 1985. Zinc tolerance in Betula. New Phytologist, 99: 91-100.
    Chakravarty P, Huwang S F. 1991. Effect of an ectomycorrhizal fungus Laccaria laccatta on Fusarium damping-off in Pinus bankasiana seedlings. European Journal of Forest Pathology, 21:97-106.
    Chalot M, Brun A. 1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiology Reviews, 22: 21-44.
    Chen D M, Bastias B A, Taylor A F S, Gairney J W G. 2003. Identification of lacase-like genes inectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytologist, 157(3): 547- 554.
    Chen X, Wu C H, Tang J J, Hu S J. 2005. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere, 2005, 60: 665-671.
    Coll P M, Tabernero C, Santamaría R, Pérez P. 1993. Characterization and structural analysis of the laccase I gene from the newly isolated ligninolytic Basidiomycete PM1 (CECT 2971). Applied and Environmental Microbiology, 59(12): 4129 -4135.
    Cress W A, Throneberry G, Lindsey D. 1979. Kinetics of phosphorus absorption by mycorrhizal and non-mycorrhizal tomato roots. Plant Physiology, 64: 484-487.
    Dec J, Bollag J M. 1990. Detoxification of substituted phenols by oxidoreductive enzymes through polymerization reactions. Archives of Environmental Contamination and Toxicology, 19 (4): 543-550.
    Dong Y, Zhu Y G, Smith F A, Wang Y S, Chen B D. 2008. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn,) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution, 155: 174-181.
    Donnelly P K, Fletcher J S. 1995. PCB metabolism by ectomycorrhizal fungi. Bulletin of Environmental Contamination and Toxicology, 54(4): 507-513.
    Eggert C, Temp U, Eriksson K-E L. 1996. The Ligninolytic system of the white tot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Applied and Environmental Microbiology, 62(4): 1151-1158.
    Gramss G, Günther T H, Fritsche W. 1998. Spot tests for oxidative enzymes in ectomycorrhizal, wood and litter decaying fungi. Mycological Reseach, 102(1):67-72.
    Günther T H, Perner B, Gramss G. 1998. Activities of phenol oxidizing enzymes of ectomycorrhizal fungi in axenic culture and in symbiosis with Scots pine (Pinus sylvestris L.). Journal of Basic Microbiology, 38(3): 197-206.
    Hoshida H, Nakao M, Kanazawa H, Kubo K, Hakukawa T, Morimasa K, Akada R, Nishizawa Y. 2001. Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the yeast cDNA in yeasts. Journal of Bioscience and Bioengineering, 92(4): 372-380.
    Huang J G and Lapeyrie F. 1996. Ability of ectomycorrhizal fungus Laccaria bicolor S238N to increase the growth of Douglas fir seedlings and their phosphorus and potassium uptake. Pedosphere, 6(3): 217-23.
    Huang Y, Zhao X, Luan S J. 2007. Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi. Science of the Total Environment, 385: 235-241.
    Jang M Y, Ryu W R, Cho M H. 2002. Laccase production from repeated batch cultures using free mycelia of Trametes sp.. Enzyme and Microbial Technology, 30(6): 741-746.
    Juang R S, Tsai S Y. 2006. Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochemical Engineering Journal, 31: 133-140.
    Karahanian E, Corsini G, Lobos S, Vicu?a R. 1998. Structure and expression of a laccase gene from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochimica et Biophysica Acta, 1443(1-2): 65-74.
    Karhunen E, Niku-Paavola M L, Viikari L, Haltia T, Van der Meer R A, Duine J A. 1990. A novel combination of prosthetic groups in a fungal laccase; PQQ and two copper atoms. FEBS Letters,267(1): 6-8.
    Klonowska A, Petit J L, Tron T. 2001. Enhancement of minor laccase production in the basidiomycete Marasmius quercophilus C30. FEMS Microbiology Letters, 200 (1): 25-30.
    Kojima Y, Tsukada Y, Kawai Y, Tsukamoto A, Sugiura J, Sakaino M, Kita Y. 1990. Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. Biological Chemistry, 265(25):15224-15230.
    Kong F X, Liu Y, Hu W, Shen P P, Zhou C L, Wang L S. 2000. Biochemical responses of the mycorrhizae in Pinus massoniana to combined effects of Al. Ca and low pH. Chemosphere, 40: 311-318.
    Krishna H, Singh S K, Sharma R R, Khawale R N, Grover M, Patel V B. 2005. Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizalfungi (AMF) inoculation during ex vitro acclimatization. Scientia Horticulturae, 106: 554-567.
    Kurniawati S, Nicell J A. 2008. Characterization of Trametes versicolor laccase for the transformation of aqueous phenol. Bioresource Technology, 99(16): 7825-7834.
    Laura van Sch?ll, Keltjens W G, Hoffland E, Nico van Breemen. 2005. Effect of ectomycorrhizal colonization on the uptake of Ca, Mg and Al by Pinus sylvestris under aluminium toxicity. Forest Ecology and Management, 25(1-3): 352-360.
    Leontievsky A A, Myasoedova N M, Baskunov B P, Evans C S, Golovelva L A. 2000. Transformation of 2, 4, 6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor. Biodegradation, 11(5): 331-340.
    Lorenzo M, Moldes D, Sanromán Má. 2006. Effect of heavy metals on the production of several laccase isoenzymes by Trametes versicolor and on their ability to decolourise dyes. Chemospheere, 63: 912-917.
    Ma H L, Kermasha S, Gao J M, Borges R M, Yu X Z. 2009. Laccase- catalyzed oxidation of phenolic compounds in organic media. Journal of Molecular Catalysis B: Enzymatic, 57: 89-95.
    Mathur N, Vyas A. 2000. Infulence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritiana Lam, under water stress. Journal of Arid Environments, 45:191-195.
    Meharg A A, Cairnet J W G. 2000. Ectomycorrhizas-extending the capabilities of rhizospherere mediation? Soil Biology and Biochemistry, 32: 1475-1484.
    Meharg A A, Cairney J W G, Maguire N. 1997. Mineralization of 2,4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere, 34(12): 2495-2504.
    Mester T, Tien M. 2000. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. International Biodeterioration and Biodegradation, 46: 51-59.
    Nyanhongo G S, Gomes J, Gubitz G, Zvauya R, Read J S, Steiner W. 2002. Production of laccase by a newly isolated strain of Trametes modesta. Bioresource Technology, 84(3): 259–263.
    Palonen H, Saloheimo M, Viikari L, Kristiina K. 2003. Purification, characterization and sequence analysis of a laccase from the ascomycete Mauginiella sp.. Enzyme and Microbial Technology, 33(6): 854-862.
    Ranca?o G, Lorenzo M, Molares N, Couto S R, Sanromán Má. 2003. Production of laccase by Trametes versicolor in an airlift fermentor. Process Biochemistry, 39(4): 467-473.
    Revankar M S, Lele S S. 2006. Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochemistry, 41(3): 581-588.
    Rosales E, Couto S R, Sanromán Má. 2007. Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme and Microbial Technology, 40:1286-1290.
    Ruiz-lozano J M, Azcón R, Gómez M. 1996. Alleviation of salt stress by arbuscular mycorrhizal fungi Glomus species in Lactuca sativa plants. Physiologica plantarum, 98(4): 767-772.
    Ryan S, Schnitzhofer W, Tzanov T, Cavaco-Paulo A, Gübitz G M. 2003. An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzyme and Microbial Technology, 33: 766-774.
    Sadhasivam S, Savitha S, Swaninathan K, Lin F H. 2008. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochemistry, 43: 736-742.
    Salis A, Pisano M, Monduzzi M, Solinas V, Sanjust E. 2009. Laccase from Pleurotus sajor-caju on functionalised SBA-15 mesoporous silica: Immobilisation and use for the oxidation of phenolic compounds[J]. Journal of Molecular Catalysis B: Enzymatic, 58: 175-180.
    Saloheimo M, Niku-Paavola M L, Knowles J K C. 1991. Isolation and structural analysis of the laccase gene from the lignin degrading fungus Phlebia radiata. Journal of General Microbiology, 137(7): 1537-1544.
    Scragg A H. 2006. The effect of phenol on the growth of Chlorella vulgaris and ChlorellaVT-1. Enzyme and Microbial Technology, 39(4): 796-799.
    Shah T A, Zargar, M Y, Dar G H. 1999. Interaction of Rhizoctonia solani with ectomycorrhizal inocula ondeodar (Cedrus deodara). Applied Biological Research, 1(2):103-107.
    Smith S E, Read D J. 1997. Mycorrhizal symbiosis[M]. New York: Academic.
    Solomon E I, Sundaram U M, Machonkin T E. 1996. Multicopper Oxidases and Oxygenases. Chemical Reviews, 1996, 96(7): 2563-2605.
    Tang M, Sheng M, Chen H, Zhang F F. 2009. In vitro salinity resistance of three ectomycorrhizal fungi. Soil Biology and Biochemistry, 41: 948-953.
    Tewari R K, Kumar P, Neetu, Sharma P N. 2005. Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Science, 169(6): 1037-1045.
    Wang J W, Wu J H, Huang W Y, Tan R X. 2006. Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Biorescource Technology, 97: 786-789.
    Watanabe K, Teramoto M, Harayama S. 1999. An outbreak of nonflocculating catabolic populations caused the breakdown of a phenol-digesting activated-sludge process. Applied and Environmental Microbiology, 65(7): 2813-2819.
    Wu Y C, Teng Y, Li Z G, Liao X W, Luo Y M. 2008. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biology and Biochemistry, 40(3): 789-796.
    Yaver D S, Golightly E J. 1996. Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene, 1181(1-2): 95-102.
    Yaver D, Overjero M, Xu F, Nelson B A, Brown K M, Halkier T, Bernauer S, Brown S H, Kauppinen S. 1999. Molecular characterization of laccase gene from the Basidiomycete Coprinus cinereus and heterologous express of the laccase lcc1. Applied and Environmental Microbiology, 65(11):4943-4948.
    Yoshi H. 1883. Chemistry of lacquer. Journal of the Chemical Society, (43): 472- 486.
    Zhang G Q, Wang Y F, Zhang X Q, Ng T B, Wang H X. 2010. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochemistry, 45: 627-633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700