单链抗体介导的小干扰RNA选择性沉默小鼠调节性T细胞Foxp3基因表达及效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Treg(regulatory T cells,Treg)是一群独特的、具有免疫调节功能的、在调控免疫应答、促进和维持自身免疫耐受中发挥重要作用的T细胞。目前,越来越多的证据表明,Treg在肿瘤免疫逃避中也扮演重要角色。研究发现,包括乳腺癌、卵巢癌、胃癌、肺癌、淋巴瘤、黑色素瘤及肝癌等各种肿瘤病人的外周血或肿瘤组织中Treg的数量增加;卵巢癌中存在的高比例Treg与肿瘤病人不良预后密切相关。目前在各种实验性肿瘤模型中获得的证据表明,Treg在肿瘤免疫逃避中发挥显著的作用,在这些肿瘤模型中直接清除Treg或抑制其功能有效增强了治疗性肿瘤疫苗的效果。
     肿瘤细胞能够利用一套精细的直接或间接的主动机制逃避免疫系统的攻击,这些机制包括:抗原递呈途径的丢失或改变、死亡受体信号通路的变化以及产生大量具有免疫抑制功能的细胞因子在肿瘤周围形成免疫抑制性微环境。重要的是,肿瘤细胞还能直接招募Treg至肿瘤局部或诱导不成熟的髓性DC分泌TGF-β和IL-10,在上述细胞因子的作用下使CD4~+CD25~-初始T细胞转化成Treg。基于Treg在肿瘤免疫逃避中的重要性,靶向Treg以提高抗肿瘤免疫应答已获得大家的共识。目前,各种靶向Treg的策略已在临床和临床前模型中进行验证,按其作用机制,归纳起来主要有以下两种:一、利用抗CD25抗体或IL-2免疫毒素直接清除Treg;二、通过靶向Treg表面抑制性受体抑制Treg的免疫调节功能或降低效应性T细胞对Treg的易感性。然后,通过白介素2受体(IL-2R,即CD25)清除Treg所带来的益处因为同时清除了激活的效应淋巴细胞以及潜在的诱导新的Treg的产生而丧失。理论上,功能性失活Treg不仅可以去除其免疫抑制活性,同时因维持其生理上的存在而避免源自外周淋巴细胞池的Treg再生成,这样将有效的增强效应淋巴细胞介导的抗肿瘤免疫应答。
     Foxp3是Treg发育、功能及维持外周生存最主要的调控因子。Foxp3基因突变(Scurfy小鼠)或敲除的小鼠,其体内Treg功能受损,早期就发展全身多器官自身免疫性疾病。同样在人类中,与小鼠Foxp3同源的FOXP3基因突变可引起人患IPEX综合征、I型糖尿病、克隆氏病等自身免疫性疾病,与Scurfy小鼠和Foxp3基因敲除小鼠的表型相似。Treg稳定特异地表达Foxp3转录因子,因此,在人和啮齿类动物中,Foxp3联合CD4和CD25分子能够用来鉴定Treg。
     Treg的功能需要Foxp3的持续表达,理论上,沉默Foxp3的表达能够逆转Treg的免疫抑制活性。然后,Foxp3主要在核内表达,因而传统的靶向策略鞭长莫及,而最近蓬勃发展的RNA干扰(RNA interfering,RNAi)技术为实现这一设想提供了实际可行的线路。RNAi的某些特性非常适合用于体内干扰Treg活性:首先,小干扰RNA(small interfering RNA,siRNA)沉默基因表达是暂时性的,允许灵活的掌握抑制时间的长短;其次,沉默Foxp3表达仅仅只抑制了Treg的活性,而并不干扰效应T细胞的功能;这两点对于临床应用很有价值。然后,目前应用siRNA面临的主要难点是体内把siRNA递送至细胞胞质内进而启动RNAi通路降解mRNA。虽然使用转染试剂能够局部递送siRNA,但是是非特异的,容易导致严重毒性。而通过细胞表面特异性受体介导siRNA递送将能使siRNA进入特殊细胞,达到最大的治疗效果,同时减少药物用量,避免非特异的基因沉默和细胞毒性。最近Song EW等利用人鱼精蛋白的核酸结合活性,构建了抗p24(一种HIV胞膜蛋白)Fab片段和鱼精蛋白的融合蛋白,这种蛋白能够把siRNA特异递送至HIV感染的淋巴细胞,进而沉默HIV胞膜糖蛋白gp160的表达。
     本研究中我们构建了小鼠CD3特异性单链抗体-鱼精蛋白融合蛋白(2C11scκtp),利用2C11scκtp中鱼精蛋白段的核酸结合活性以及CD3单链抗体的导向功能,递送Foxp3特异性siRNA至CD3~+T细胞中沉默Foxp3基因表达。体内外实验表明,2C11scκtp能够与siRNA结合并把siRNA特异递送至CD3~+小鼠淋巴瘤细胞或小鼠淋巴细胞;2C11scκtp递送的Foxp3特异性siRNA能够特异沉默Treg中Foxp3蛋白的表达;Foxp3表达下调的Treg“无能”表型和免疫抑制功能丧失,刺激TCR后分泌Th1型细胞因子,不再能够抑制初始T细胞的增殖应答;此外,单链抗体递送的siRNA体内没有诱发干扰素免疫应答。具体实验内容如下:
     第一部分:克隆2C11sCκ和2C11sCκtp基因
     1.克隆2C11sCκ和2C11sCκtp基因:我们采用一步法逆转录PCR直接从产生仓鼠抗小鼠CD3抗体2C11-145的杂交瘤中扩增出VH和VL,测序正确后通过重叠PCR构建2C11sCκ和2C11sCκtp,两个PCR产物装入pGEM-Teasy载体扩增。
     2.构建2C11sCκ和2C11sCκtp表达载体:我们用HindⅢ和EcoRⅠ双酶切上述pGEM-Teasy载体获得2C11sCκ(和2C11sCκtp片段,然后装入经相同酶切的pcDNA3.1(+)中成功构建出含上述两个基因的表达载体。
     第二部分:表达和纯化2C11sCκ和2C11sCκtp蛋白
     1.表达2C11sCκ和2C11sCκtp蛋白:抽提上述构建的表达载体质粒,瞬时转染CHO,72h后收获上清,通过流式检测与表达小鼠CD3的YAC-1淋巴瘤细胞的结合表明2C11sCκ和2C11sCκtp蛋白构象正确,结合活性良好,在此基础上我们进行了稳定转染,筛选出了两株稳定高表达2C11sCκ和2C11sCκtp蛋白的CHO细胞克隆。
     2.纯化2C11sCκ和2C11sCκtp蛋白:大量扩增CHO细胞克隆,收集细胞上清,采用Ni~(++)离子金属鳌合层析纯化目的蛋白。SDS-PAGE和WB实验显示纯化的蛋白为单一条带,纯度90%以上,分子量与预期相符。纯化的2C11sCκ和2C11sCκtp蛋白体外显示良好的小鼠CD3结合活性。
     第三部分:鉴定小鼠Foxp3基因特异高效的siRNA
     1.构建稳定高表达鼠Foxp3的细胞系:因为转染小鼠T细胞很困难,因此我们需要构建表达鼠Foxp3的易于转染的细胞系。我们利用表达鼠Foxp3的MIGR1-MFoxp3逆转录病毒感染HELA细胞成功构建了高表达鼠Foxp3的细胞系(HELA-MF),半定量、实时定量PCR和WB证实其高表达鼠Foxp3。
     2.筛选鼠Foxp3特异高效的siRNA:利用HELA-MF细胞,我们针对QIAGEN公司合成的3个鼠Foxp3特异的siRNA进行了筛选,发现siRNA A沉默效果最佳,因此,后续研究中我们主要使用siRNA A验证单链抗体介导的siRNA递送抑制Foxp3的效果。
     第四部分:2C11sCκtp蛋白递送siRNA
     1.2C11sCκtp蛋白把FAM荧光表达的siRNA特异递送至CD3~+细胞:这部分结果显示2C11sCκtp蛋白能够与CD3分子和FAM-siRNA结合,把后者特异递送至CD3~+YAC-1、EL-4鼠T淋巴瘤细胞和新鲜分离的小鼠T细胞中,而不是表达人CD3的Jurkat T细胞中。此外,注射2C11sCκtp蛋白与FAM-siRNA形成的复合物至小鼠体内,6h后流式检测小鼠脾细胞不同亚群的荧光摄取,发现只有CD3~+ T细胞检测到FAM荧光的存在,而CD14~+单核细胞、CD19~+B细胞及CD11~(c+)DC胞内无FAM-siRNA存在。
     2.2C11sCκtp蛋白递送的Foxp3特异的siRNA沉默了自然Treg和TGF-β诱导的Treg中Foxp3的表达:研究表面,Foxp3特异的siRNA能有效被2C11sCκtp蛋白而不是对照2C11sCκ蛋白递送至上述两种Treg中,实时定量PCR、WB和胞内Foxp3直接染色都证实Foxp3的表达下调。
     第五部分:Foxp3表达沉默后Treg的表型和功能变化
     1.Foxp3表达沉默后Treg的表型:结果表明,随着Foxp3表达下调,Foxp3调控的相关基因表达也发生改变,CD25、CTLA4和GITR等表面标记分子表达下降,而IL-2、IL-7Rα和PDE3B等受Foxp3抑制的基因表达上调。
     2.Foxp3表达沉默后Treg的功能:结果显示,低表达Foxp3的Treg功能发生改变,体外受CD3和CD28双抗刺激后发生强力增殖,并分泌IL-2,IFN-γ和TNF-α等Th1细胞因子。这部分的结果提示沉默Foxp3表达后Treg的表型和功能向Th1逆转。
     第六部分:应用siRNA相关的干扰素免疫应答
     体内外研究都表明利用2C11sCκtp蛋白递送siRNA不会促发干扰素等非特异炎症免疫应答。
     结论:
     综上所述,我们的研究表明2C11sCκtp蛋白能够通过3′羧基端的鱼精蛋白结合siRNA,利用5′氨基端的单链抗体导向作用,把siRNA特异递送至CD3~+T细胞内,递送的Foxp3特异的siRNA能够特异沉默Treg中Foxp3的表达,逆转Treg的表型和功能,使其向Th1细胞方向转变。我们的研究为逆转Treg免疫抑制功能进而增强肿瘤疫苗效果提供了新的策略。
It is now evident that CD4~+CD25~+Foxp3~+ regulatory T cells(Treg) represent a distinct lineage of T lymphocytes that plays a central role in controlling immune responses,and in promoting and maintaining self tolerance.In addition,Treg cells are.implicated in various immune evasion mechanisms used by cancers.Several studies have reported increased numbers of Treg cells in tumor tissue and/or peripheral blood of patients with various cancers,including breast,ovarian,gastric and lung cancers,lymphoma and melanoma associated with poor prognosis and survival of patients with ovarian cancer.Direct evident for the dominant role of Treg cells in immune evasion mechanisms has recently been provided in various experimental tumor models,where physical depletion of these cells or modulation of their function was the cause of therapeutic efficacy.
     Tumors employ an intricate set of direct and indirect active mechanisms to evade the immune system.These mechanisms include the loss or alterations of the antigen-presenting pathway,alterations in death receptor signaling,and production of an immunosuppressive cytokine milieu.Importantly,tumor cells can either directly recruit Treg cells into the tumor and/or induce immature myeloid DCs to secret TGF-βand/or IL-10 for conversion of CD4~+CD25~-na(?)ve T-cells into Treg cells within the tumor microenvironment. Tumor-induced expansion of Treg cells is an obstacle to successful cancer immunotherapy. Because of their dominant role in tumor immune evasion mechanisms,Treg cells have become the target of intense studies for therapeutic purpose.Disrupting Treg suppression in combination with cancer vaccines presents an important therapeutic approach with a great likelihood of success in the clinic.At present,various strategies were brought about for targeting Treg cells,mainly including two categories:physical depletion of Treg cells using anti-CD25 mAbs and IL-2 toxins,and inhibiting Treg cell suppressive function and reducing effector T cell susceptibility to suppression by targeting cell-surface suppressive molecules on Treg cells.However,the potential benefit of Treg cells depletion through the interleukin- 2 receptor is lost by the concurrent elimination of activated effector lymphocytes and possibly by the de novo induction of Treg cells replenishment.In theory, the functional inactivation of Treg cells will maintain them at high numbers in tumors and avoid their replenishment from the peripheral lymphocyte pool,which has the capacity to further suppress the effector lymphocyte anti-tumor response.
     Foxp3 represents a lineage-specific marker for Treg,and its detection is widely used to identify these cells in vivo.The importance of Foxp3 in the development and function of Treg is demonstrated by experiments of nature in which spontaneous mutations of the Foxp3 gene cause severe X-linked autoimmune lymphoproliferative disorders.The scurfy mutation in mice,which is associated with a null mutation of the Foxp3 gene,results in complete loss of Treg,autoimmunity,and premature death.Similarly,mutations of FOXP3 in humans are responsible for a disease-called immuno dysfunction polyendocrinopathy enteropathy X-linked syndrome(IPEX)-in which the impairment of Treg function is associated with several autoimmune disorders such as enteropathy and type 1 diabetes. That Foxp3 is not only a marker of murine Treg but that it is also necessary for their function is a broadly accepted concept.
     In theory,silencing Foxp3 expression in Treg cells could lead to functional reversion of Treg cells.Owing to the intracellular localization of Foxp3,however,it is not readily accessible using traditional methods of in vivo targeting.The recent emergence of RNAi offers a novel opportunity for post-transcriptional suppression of foxp3 production in vivo. Several traits of RNAi technologies,in their current state,bode well for the potential applicability of this tool toward in vivo suppression of Treg cells activity.First,the transient nature of knockdowns mediated by pre-synthesized small interfering RNAs, would be advantageous in a clinical setting,allowing for the suppression of regulatory cells, only as long as therapeutically necessary.Second,the greatest advantage of this technique lies in its ability to repress regulatory pathways without depleting effector lymphocytes. However,the main obstacle to developing siRNA for Foxp3 silence is delivering it in vivo to Treg cells.Although transfection can deliver siRNAs locally,a systemic method to deliver siRNA to specific cells via cell-surface receptors would provide a means to introduce siRNA into desired cells to achieve maximal therapeutic benefit,decrease the amount of drug required and avoid nonspecific silencing and toxicity in bystander cells. Recently,song et al designed a protamine-antibody fusion protein to deliver siRNA to HIV-infected or envelope-transfected cells.The fusion protein was designed with the protamine coding sequence linked to the C terminus of the heavy chain Fab fragment of an HIV-1 envelope antibody,siRNA bound to fusion protein induced silencing only in cells expressing HIV-1 envelope.
     In this paper,we designed a mouse CD3-specific single-chain antibody(scFv) fragment-protamine fusion protein(2C11scκtp)for delivering Foxp3-specific siRNA to Treg cells.It was demonstrated that 2C11scκtp could specifically deliver siRNA to CD3~+T lymphoma cells and mouse primary T cells in vivo and in vitro.Moreover,Foxp3-specific siRNA delivered by 2C11scκtp efficiently silenced Foxp3 expression in Treg cells. Importantly,Treg cells with down-regulated Foxp3 expression proliferated and secreted Th1-biased cytokines in response to TCR stimulation,which could not more inhibit na(?)ve T cell proliferation.Finally,siRNA delivered by 2C11scκtp do not trigger potentially toxic interferon responses.
     Part One:Cloning and construction of 2C11sCκand 2C11sCκtp fusion gene
     1.Cloning of 2C11sCκand 2C11sCκtp fusion gene.Antibody variable segments V_H and V_L were directly amplified from total mRNA of 2C11-145 hybridoma cells producing hamster anti-mouse CD3 antibody by one-step RT-PCR method.The sequences of VH and VL were verified by amplicon sequceing.After that,overlapping PCR was performed to generate 2C11 scFv.The 2C11 scFv was fused to human Cκchain and/or protamine gene to form 2C11sCκand 2C11sCκtp by second overlapping PCR.The PCR products of 2C11sCκand 2C11sCκtp were cloned into pGEM-Teasy vector to generate pGEM-2C11sCκand pGEM-2C11sCκp,and sequence verified.
     2.Construction of expression vector containing 2C11sCκand 2C11sCκtp gene. 2C11sCκand 2C11sCκtp gene removed from pGEM-2C11sCκand pGEM-2C11sCκtp were doublely digested by HindⅢand EcoRⅠendonucleases and cloned into pcDNA3.1(+) expression vector previously digested with the same enzyme to creat pcDNA3.1-2C11sCκand pcDNA3.1-2C11sCκtp,and sequence verified.
     Part Two:Expression and purification of 2C11sCκand 2C11sCκtp fusion protein
     1.Expression of 2C11sCκand 2C11sCκtp fusion protein.The pcDNA3.1-2C11sCκand pcDNA3.1-2C11sCκtp plasmids were transfected into CHO cells by the use of Lipofactamine 2000 according to the manufacturer's protocol.After 72 hours,the supernatants were collected and assayed for fusion expression by flow cytometry.After one round screening,we identified two CHO cell clones which highly expressed 2C11sCκand 2C11sCκtp protein respectively.
     2.Purification of 2C11sCκand 2C11sCκtp protein.Supernatants were collected, and 2C11sCκand 2C11sCκtp protein were purified by Ni~(++) chromatography.SDS-PAGE and western-blotting assays confirmed that purified 2C11sCκand 2C11sCκtp proteins were homogeneous,of which molecular mass were right.In vitro bind assays showed that 2C11sCκand 2C11sCκtp proteins were capable of effectively binding to CD3 molecule on lymphoma cell line YAC-1 or freshly isolated mouse lymph node cells.
     Part Three:Identification of potent and specific siRNAs for mouse Foxp3 gene
     1.Construction of cell lines stably expressing mouse Foxp3 gene.Because mouse T cells can not be easily transfected by conventional transfection methods such as liposome transfection,we need to construct a cell line stably expressing mouse Foxp3 gene and easily transfected.HELA cells were infected with MIGR1-MFoxp3 retrovirus, which expressed mouse Foxp3 and GFP gene.As a control,Hela cells were infected with MIGR1 retrovirus,which only expressed GFP gene.As shown in semi-quantitative PCR, real-time PCR and western-blotting assays,MIGR1-MFoxp3 retrovirus-infected HELA cells(HELA-MF cell) expressed high level of mouse Foxp3 mRNA and protein, compared with MIGR1 retrovirus-infected HELA cells(HELA-MR cell).Thus, HELA-MF cells can act as an effective platform for screening mouse Foxp3 gene-specific siRNA.
     2.Identification of potent and specific siRNAs for mouse Foxp3 gene.We synthesized 3 siRNA from QIAGEN Corporation.After introduced into HELA-MF cells, siRNA A was shown to most potently and specifically silence mouse Foxp3 expression at the same concentration as siRNA B and siRNA C.
     Part Four:Delivering siRNA by 2C11sCκtp protein
     1.2C11sCκtp protein specifically delivered FAM-labeled siRNA to CD3~+T lymphoma cells in vitro,and mouse T lymphocytes in vivo or in vitro.The results showed that 2C11sCκp protein could bind to mouse CD3 molecule and FAM-labeled siRNA,and specifically delivered siRNA to CD3~+ YAC-1 and EL-4 lymphoma cell or freshly isolated mouse lymph node T cells,but not human CD3-expressing Jurkat lymphoma cells in vitro.Also,when complexes of 2C1sCκtp protein and FAM-labeled siRNA injected to C57BL/6 mice,FAM fluorescence could be easily detected in CD3~+ T cells,but not CD14~+ mononuclear cells,CD19~+ B cells and CD11c~+ DC by flow cytometry.
     2.Foxp3-specific siRNA delivered by 2C11sCκtp protein silenced Foxp3 expression in TGF-β-induced or naturally occurring Treg cells.Real-time PCR and Foxp3 staining by Foxp3-specific antibody showed that Foxp3-specific siRNA A delivered by 2C11sCκtp protein,but not 2C11sCκprotein significantly inhibited Foxp3 expression in TGF-β-induced or naturally occurring Treg cells at mRNA and protein level in vitro.
     Part Five:Phenotype and function alteration of Foxp3-silenced Treg cells
     1.Phenotype of Foxp3-silenced Treg cells.The results showed that Treg cells with low Foxp3 expression down-regulated CD25,CLTA4 and GITR expression and up-regulated IL-2,IL-7Rαand PDE3B expression,which genes were modulated by Foxp3 positively or negatively respectively.
     1.Function of Foxp3-silenced Treg cells.When stimulated by plate-coated anti-CD3 and CD28 mAbs,Foxp3-silenced Treg cells vigorously proliferated and secreted large quantities of IL-2,IFN-γand TNF-αcytokines,indicating biased toward Th1 immune response.
     Part Six:Interferon responses associated with application of siRNA
     The in vitro and in vivo assays demonstrated that siRNA delivered by 2C11sCκtp protein did not trigger IFN-αand inflammatory cytokine TNF-αproduction,indicating no induction of nonspecific immune responses.
     Conclusion
     2C11sCκtp fusion protein with mouse CD3 targeting capacity and nucleic acid-binding activity can effective deliver Foxp3-specific siRNA to mouse CD3~+ T cells, which resulted in efficient Foxp3 gene silence.Treg cells with down-regulated Foxp3 expression were reversed phenotypically and functionally,which have a tendency toward Th1 fate.In summary,our study may provide a promising approach for inhibiting Treg cells function and improving tumor vaccine efficacy.
引文
1.Jordan MS,et al.Thymic selection of CD4~+CD25~+ regulatory T cells induced by an agonist self-peptide.Nat Immunol 2001;2:301-6.
    2.Sakaguchi S,et al.Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25).Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.J Immunol 1995;155:1151-64.
    3.Shevach EM.Certified professionals:CD4CCD25C suppressor T cells.J.Exp.Med 2001;193:F41-46.
    4.Schabowsky RH,et al.Targeting CD4~+CD25~+FoxP3~+ regulatory T-cells for the augmentation of cancer immunotherapy.Curr Opin Investig Drugs 2007;8:1002-8.
    5.Curiel TJ,et al.Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival.Nat Med 2004;10:942-9.
    6.Kawaida H,et al.Distribution of CD4+CD25high regulatory T-cells in tumor-draining lymph nodes in patients with gastric cancer.J Surg Res 2005;124:151-7.
    7.Liyanage UK,et al.Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma.J Immunol 2002;169:2756-61.
    8.Viguier M,et al.Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells.J Immunol 2004;173:1444-53.
    9.Woo EY,et al.Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer.Cancer Res 2001;61:4766-72.
    10.Yang ZZ,et al.Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma.Blood 2006;107:3639-46.
    11.Sato E,et al.Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8~+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer.Proc Natl Acad Sci U S A 2005;102:18538-43.
    12. Elpek KG, et al. CD4~+CD25~+ T regulatory cells dominate multiple immune evasion mechanisms in early but not late phases of tumor development in a B cell lymphoma model. J Immunol 2007; 178:6840-8.
    13. Knutson KL, et al. IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 2006; 177:84-91.
    14. Ko K, et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3~+CD25~+CD4~+ regulatory T cells. J Exp Med 2005;202:885-91.
    15. Yu P, et al. Intratumor depletion of CD4~+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 2005;201:779-91.
    16. Zou w. Immunosuppressive networks in the tumor environment and their therapeutic relevance. Nat Rev Cancer 2005;5:263-274.
    17. Ghiringhelli F, et al. Tumor cells convert immature myeloid dendritic cells into TGF-beta-secreting cells inducing CD4~+CD25~+ regulatory T cell proliferation. J Exp Med 2005;202:919-29.
    18. Huang B, et al. Gr-1~+CD115~+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 2006;66:1123-31.
    19. Colombo MP, et al. Regulatory-T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 2007;7:880-7.
    20. Hori S, et al. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003;299:1057-61
    21. Fontenot JD, et al. Foxp3 programs the development and function of CD4CCD25C regulatory T cells. Nat. Immunol 2003:4:330-36
    22. Khattri R, et al. An essential role for Scurfin in CD4CCD25C T regulatory cells. Nat. Immunol. 2003;4:337-42
    23. Godfrey VL, et al. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol 1991;138:1379-87.
    24. Brunkow ME, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet 2001;27:68-73.
    25. Chatila TA, et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunityallergic disregulation syndrome. J. Clin. Invest 2000;106:R75-81.
    26. Wildin RS, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet 2001;27:18-20.
    27. Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet 2001;7:20-21.
    28. Williams LM, et al. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 2007;8:277-84.
    29. Klaiber N. Potential for stimulating host anti-tumor immune response via RNAi-mediated local FOXP3 knockdown. Cancer Gene Ther 2007;14:519-20.
    30. Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther 2006; 13:644-70.
    31. Song E, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005;23:709-17.
    32. Asseman C, et al. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190:995-1004.
    33. Barao I, et al. Suppression of natural killer cell-mediated bone marrow cell rejection by CD4~+CD25~+ regulatory T cells. Proc Natl Acad Sci U S A 2006; 103:5460-5.
    34. Green EA, et al. CD4~+CD25~+ T regulatory cells control anti-islet CD8~+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes. Proc Natl Acad Sci U S A 2003;100:10878-83.
    35. Grossman WJ, et al. Human T regulatory cells can use the perform pathway to cause autologous target cell death. Immunity 2004;21:589-601.
    36.Mellor AL,et al.IDO expression by dendritic cells:tolerance and tryptophan catabolism.Nat Rev Immunol 2004;4:762-74.
    37.Smyth MJ,et al CD4~+CD25~+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer.J Immunol 2006;176:1582-7.
    38.Thornton AM,et al.CD4~+CD25~+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production.J Exp Med 1998;188:287-96.
    39.Ghiringhelli F,et al.CD4~+CD25~+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner.J Exp Med 2005;202:1075-85.
    40.Bluestone JA,et al.Natural versus adaptive regulatory T cells.Nat Rev Immunol 2003;3:253-7.
    41.Wang HY,et al.Tumor-specific human CD4~+ regulatory T cells and their ligands:implications for immunotherapy.Immunity 2004;20:107-18.
    42.Kryczek I,et al.Cutting edge:induction of B7-H4 on APCs through IL-10:novel suppressive mode for regulatory T cells.J Immunol 2006;177:40-4.
    43.Sica GL,et al.B7-H4,a molecule of the B7 family,negatively regulates T cell immunity.Immunity 2003;18:849-61.
    44.Fallarino F,et al.Modulation of tryptophan catabolism by regulatory T cells.Nat Immunol 2003;4:1206-12.
    45.Gondek DC,et al.Cutting edge:contact-mediated suppression by CD4~+CD25~+regulatory cells involves a granzyme B-dependent,perforin-independent mechanism.J Immunol 2005;174:1783-6.
    46.de la Rosa M,et al.Interleukin-2 is essential for CD4+CD25+ regulatory T cell function.Eur J Immunol 2004;34:2480-8.
    47.von Boehmer H.Mechanisms of suppression by suppressor T cells..Nat Immunol 2005;6:338-44.
    48.Ziegler SF.FOXP3:of mice and men.Annu Rev Immunol 2006;24:209-26.
    49.Walker MR,et al.Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4~+CD25- T cells. J Clin Invest 2003;112:1437-43.
    50. Ambrosino E, et al. Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T - cell self-tolerance. Cancer Res 2006;66:7734-7740.
    51. Golgher D, et al. Depletion of CD25~+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur. J. Immunol 2002;32:3267-3275.
    52. Jones E, et al. Depletion of CD25~+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun 2002;2: 1.
    53. Onizuka S, et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor a) monoclonal antibody. Cancer Res 1999;59:3128-3133.
    54. Shimizu J, et al. Induction of tumor immunity by removing CD25~+CD4~+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol 1999;163:5211-5218.
    55. Comes A, et al. CD25~+ regulatory T cell depletion augments immunotherapy of micrometastases by an IL - 21 - secreting cellular vaccine. J. Immunol 2006;176:1750-1758.
    56. Berts G, et al. The impact of regulatory T cells on carcinogen-induced sarcogenesis. Br. J. Cancer 2007;96:1849-1854.
    57. Onizuka S, et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor a) monoclonal antibody. Cancer Res 1999;59:3128-3133.
    58. Valzasina B, et al. Tumor-induced expansion of regulatory T cells by conversion of CD4~+CD25~- lymphocytes is thymus and proliferation independent. Cancer Res. 2006;66:4488-4495.
    59. Barnett B, et al. Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am. J. Reprod. Immunol. 2005;54:369-377.
    60. Dannull J, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 2005;115:3623-3633.
    61. Attia P, et al. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother. 2005;28:582-592.
    62. Mahnke K, et al. Depletion of CD4~+CD25~+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int. J. Cancer 2007;120:2723-2733.
    63. Attia, P. et al. Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J. Immunother. 2006;29:208-214.
    64. Peng G, et al. Toll-like receptor 8-mediated reversal of CD4~+ regulatory T cell function. Science 2005;309:1380-1384 .
    65. Sutmuller RP, et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest. 2006;116:485-94.
    66. Read S, et al. Blockade of CTLA-4 on CD4~+CD25~+ regulatory T cells abrogates their function in vivo. J. Immunol. 177,4376-4383 (2006).
    67. Piconese S, et al. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med. 2008 Mar 24
    68. Wan YY, et al. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature. 2007;445:766-70.
    69. Dykxhoorn DM, et al. The Silent Revolution: RNA interference as basic biology, research tool and therapeutic. Annu. Rev. Med. 2005;56:401-423.
    70. Song E, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat.Med.2003;9:347-351.
    71. Peer D, et al. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci U S A. 2007;104:4095-100.
    72. Wen WH, et al. Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology. 2007;46:84-94.
    73. Eric HL, et al. T cell-directed therapies: lessons learned and future prospects. Nat Immunol. 2007;8:25-30.
    74. Norbert D, et al. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials. 2006;26:5958-5906.
    75. Balhorn R, et al. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia 1988;44:52-55.
    76. Kleene KC, et al. Nucleotide sequence of cDNA clone encoding mouse protamine 1. Biochemistry 1985;24:719-722.
    77. Oliva R, et al. Vertebrate protamine genes and the histone-to-protamine replacement reaction. Proc Nucleic Acid Res Mol Biol. 1991;40:25-94.
    78. Gershon RK., et al. On concomitant immunity in tumour-bearing hamsters. Nature 1967;213:674-676.
    79. Sakaguchi S, et al. Organ-specific autoimmune diseases induced in mice by elimination of T-cell subset. I. Evidence for the active participation of T cells in natural self-tolerance: deficit of a T-cell subset as a possible cause of autoimmune disease. J. Exp.Med. 1985;161:72-87.
    80. Nishizuka Y, et al. Thymus and reproduction: sex-linked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969;166:753-55.
    81. Vignali D. How many mechanisms do regulatory T cells need? Eur J Immunol. 2008;38:908-911.
    82. Sakaguchi S, et al. Emerging challenges in regulatory T cell function and biology. Science 2007;317:627-629.
    83. Wu Y, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 2006;126, 375-387.
    84. Ono M, et al.Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007;446:685-9.
    85. Zheng Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 2007;445:936-940.
    86. Marson A, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007;445:931-935.
    87. Pei Y, et al. On the art of identifying effective and specific siRNAs. Nature Methods 2006;3:670-676.
    88. Reynolds A, et al. Rational siRNA design for RNA interference. Nature Biotechnol. 2004;22:326-330.
    89. Kim DH, et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nature Biotechnol. 2005;23:222-226.
    90. Reynolds A, et al. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 2006;6:988-993.
    91. Schwarz DS, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003 ;115:199-208.
    92. Khvorova A, et al. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115:209-216.
    93. Aza-Blanc P, et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell 2003; 12:627-637.
    94. Schwarz, DS. et al. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genetics 2006;2:1307-1318.
    95. Jackson AL, et al. Expression profiling reveals offtarget gene regulation by RNAi. Nature Biotech 2003;21:635-637.
    96. Lin, X. et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res. 2005;33:4527-4535.
    97. Qiu S, et al. A computational study of off-target effects of RNA interference. Nucleic Acids Res. 2005;33:1834-1847.
    98. Jackson AL, et al. Wide-spread siRNA off-target transcript silencing mediated by seed region sequence complementarity. RNA 2006; 12:1179-1187.
    99. Birmingham A, et al. 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods 2006;3:199-204.
    100.Jackson AL, et al. Position-specific chemical modification of siRNAs reduces off-target transcript silencing. RNA 2006;12:l 197-1205.
    101.Fedorov Y, et al. Off-target effects by siRNA can induce toxic phenotype.. RNA 2006;12:1188-1196.
    102.de Fougerolles A, et al. Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007;6:443-53.
    103.Reich SJ, et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vision 2003;9:210-216.
    
    104.Tolentino MJ, et al. Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization. Retina 2004;24:132-138 & 660-661.
    105.Shen J, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 2006; 13:225-234.
    106.Bitko V, et al. Inhibition of respiratory viruses by nasally administered siRNA. Nature Med.2005;11:50-55.
    107.Soutschek J, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432:173-178.
    108.Zimmermann TS, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006;441, 111-114.
    109.Liu, S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol. Pharm 2006;3:472-487.
    110.Gilmore, I.R., Fox, S.P., Hollins, A.J., Sohail, M., and Akhtar, S. 2004. The design and exogenous delivery of siRNA for post-transcriptional gene silencing. J. Drug Target. 12:315-340.
    111.Gilmore IR, et al.. Delivery strategies for siRNA-mediated gene silencing. Current Drug Deliv.2006;3:147-155.
    112.Akhtar SI, et al. Toxicogenomics of non-viral drug delivery systems for RNAi: Potential impact on siRNA-mediated gene silencing activity and specificity. Adv. Drug Deliv. Rev 2007;59:164-182.
    113.Semple SC, et al. Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol-lipid conjugates and nucleic acid. J. Pharmacol. Exp. Ther. 2005;312:1020-1026.
    114. Ishida T, et al. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J. Control Release 2007;122:349-355.
    115.McNamara JO, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnol 2006;24:1005-1015.
    
    116.Chu TC, et al. Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006;34:e73.
    117.Chen W, et al. Conversion of peripheral CD4~+CD25- naive T cells to CD4~+CD25~+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198:1875-86.
    118. DiPaolo RJ, et al. Autoantigen-Specific TGFbeta-Induced Foxp3~+ Regulatory T Cells Prevent Autoimmunity by Inhibiting Dendritic Cells from Activating Autoreactive T Cells. J. Immunol. 12007;79: 4685-93
    119..Davidson TS, et al. Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3~+ T regulatory cells. J Immunol. 2007; 178:4022-6.
    120.Coombes JL, et al. A functionally specialized population of mucosal CD103~+ DCs induces Foxp3~+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007;204:1757-64.
    121.Tran DQ, et al. Induction of FOXP3 expression in naive human CD4~+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-{beta} dependent but does not confer a regulatory phenotype. Blood 2007; 110:2983-2990.
    122.Horwitz DA, et al. Critical role of IL-2 and TGF-β in generation, function and stabilization of Foxp3~+CD4~+ Treg Eur. J. Immunol. 2008;38:912-914.
    123.Tone Y, et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 2008;9:194-202.
    124.Enuprasad K, et al. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat Immunol 2008;9:245-53.
    125.Luo X,et al.Cutting Edge:TGF-{beta}-Induced Expression of Foxp3 in T cells Is Mediated through Inactivation of ERK.J Immunol.2008;180:2757-61.
    126.Zheng SG;et al.TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells.J Immunol 2006;176:3321-9.
    127.Marie JC,et al.TGF-betal maintains suppressor function and Foxp3 expression in CD4~+CD25~+ regulatory T cells.J Exp Med.2005;201:1061-7.
    128.Kretschmer K,et al.Inducing and expanding regulatory T cell populations by foreign antigen.Nat Immunol.2005;6:1219-27.
    129.Hill JA,et al.Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature.Immunity.2007;27:786-800.
    130.Mucida D,et al.Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid.Science.2007;317:256-60.
    131.Yoneyarna M,et al.The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.Nat.Immunol 2004;5:730-737.
    132.Kawai TK,et al.IPS-1,an adaptor triggering RIG-I-and Mda5-mediated type Ⅰinterferon induction.Nat.Immunol.2005;6:981-988.
    133.Lurid JM,et al.Recognition of single-stranded RNA viruses by Toll-like receptor 7.Proc.Natl.Acad.Sci.USA 2004;101:5598-5603.
    134.Heil FH,et al.Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8.Science 2004;303:1526-1529.
    135.Diebold SS,et al.Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA.Science 2004;303:1529-1531.
    136.Alexopoulou L,et al.Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3.Nature 2001;413:732-738.
    137.Hornung VM,et al.Sequence-specific potent induction of IFN-「 by short interfering RNA in plasmacytoid dendritic cells through TLR7.Nat.Meal.2005;11:263-270.
    138.Agrawal S, et al Antisense and siRNA as agonists of Toll-like receptors. Nat. Biotechnol. 2004;22:1533-1537.
    139.Kariko K, et al. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through Toll-Like receptor 3. J. Immunol 2004; 172:6545-6549.
    140.Sioud M, et al. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol 2005;348: 1079-1090.
    141. Judge AD, et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 2005;23:457-462.
    142.Heidel JD, et al. Lack of interferon response in animals to naked siRNAs. Nat. Biotechnol. 2004;22:1579-82.
    143.Bridge AJ, et al. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 2003;34:263-264.
    144.Sledz CA, et al. Activation of the interferon system by short-interfering RNAs. Nat. Cell. Biol. 2003;5:834-839.
    145.Marques JT, et al. Activation of the mammalian immune system by siRNAs. Nat. Biotechnol. 2005;23:1399-1405.
    146.Kariko K, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 2005;23:165-175.
    147.Chiu YL, et al. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 2002; 10:549-561.
    148.Schlee M, et al. siRNA and isRNA: two edges of one sword. Mol. Ther. 2006; 14: 463-470.
    149.Sioud M, et al. Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2'-hydroxyl uridines in immune responses. Eur. J. Immunol. 2006;36:1222-1230.
    150.Sioud M, et al. Suppression of immunostimulatory siRNA-driven innate immune activation by 2'-modified RNAs. Biochem. Biophys. Res. Commun. 2007;361:122-126.
    151.Robbins MA, et al. 2'-O-methyl-modified RNAs act as TLR7 antagonists. Mol. Ther 2007;15:1663-1669.
    152.Judge AD, et al. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 2006; 13:494-505.
    153.Cekaite LG, et al. Gene expression analysis in blood cells in response to unmodified and 2'-modified siRNAs reveals TLRdependent and independent effects. J. Mol. Biol 2007;356:90-108.
    154.Marques JT, et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat. Biotechnol 2006;24: 559-565.
    155.Kim DH, et al. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat. Biotechnol 2004;22:321-325.
    1.Gershon,R.K.,Carter,R.L.& Kondo,K.On concomitant immunity in tumour-bearing hamsters.Nature 213,674-676(1967).
    2.Zheng,Y.& Rudensky,A.Y.Foxp3 in control of the regulatory T cell lineage.Nature Immunol.8,457-462(2007).
    3.Miyara,M.& Sakaguchi,S.Natural regulatory T cells:mechanisms of suppression.Trends Mol.Med.13,108-116(2007).
    4. Bluestone, J. A. & Abbas, A. K. Natural versus adaptive regulatory T cells. Nature Rev. Immunol. 3, 253-257 (2003).
    
    5. Aschenbrenner, K. et al. Selection of Foxp3~+ regulatory T cells specific for self antigen expressed and presented by Aire~+ medullary thymic epithelial cells. Nature Immunol. 8, 351-358(2007).
    
    6. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25~+CD4~+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969-1980 (1998).
    
    7. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25~+CD4~+ regulatory T cells constitutively expressing cytotoxic T lymphocyteassociated antigen 4. J. Exp. Med. 192,303-310(2000).
    
    8. Shimizu, J., Yamazaki, S., Takahashi, T, Ishida, Y. & Sakaguchi, S. Stimulation of CD25~+CD4~+ regulatory T cells through GITR breaks immunological selftolerance. Nature Immunol. 3,135-142 (2002).
    
    9. Valzasina, B. et al. Triggering of OX40 (CD134) on CD4~+CD25~+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 105,2845-2851(2005).
    
    10. Takeda, I. et al. Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J. Immunol. 172, 3580-3589 (2004).
    
    11. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3~+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110,1225-1232 (2007).
    
    12. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204,1257-1265 (2007).
    
    13. Faria, A. M. & Weiner, H. L. Oral tolerance. Immunol. Rev. 206, 232-259 (2005).
    
    14. Roncarolo, M. G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28-50 (2006).
    
    15. Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGFβ-secreting cells inducing CD4~+CD25~+ regulatory T cell proliferation. J. Exp. Med. 202,919-929(2005).
    16. Zhou, G, Drake, C. G. & Levitsky, H. I. Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107, 628-636 (2006).
    17. Valzasina, B., Piconese, S., Guiducci, C. & Colombo, M. P. Tumor-induced expansion of regulatory T cells by conversion of CD4~+CD25- lymphocytes is thymus and proliferation independent. Cancer Res. 66,4488-4495 (2006).
    18. Zhou, G. & Levitsky, H. I. Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J. Immunol. 178, 2155-2162 (2007).
    19. Hsieh, C. S., Zheng, Y., Liang, Y., Fontenot, J. D. & Rudensky, A. Y. An intersection between the selfreactive regulatory and nonregulatory T cell receptor repertoires. Nature Immunol. 7, 401-410 (2006).
    20. Hsieh, C. S. et al. Recognition of the peripheral self by naturally arising CD25~+ CD4~+ T cell receptors. Immunity 21,267-277 (2004).
    21. Nishikawa, H. et al. Role of SEREX-defined immunogenic wild-type cellular molecules in the development of tumor-specific immunity. Proc. Natl Acad. Sci. USA 98, 14571-14576 (2001).
    22. Lutz, M. B. & Schuler, G Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23,445-449 (2002).
    23. Guiducci, C., Valzasina, B., Dislich, H. & Colombo, M. P. CD40/CD40L interaction regulates CD4~+CD25~+ T reg homeostasis through dendritic cell-produced IL-2. Eur. J. Immunol. 35, 557-567 (2005).
    24. Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4~+CD25~+ regulatory T cells. J. Immunol. 171, 3348-3352 (2003).
    25. Malek, T. R. & Bayer, A. L. Tolerance, not immunity, crucially depends on IL-2. Nature Rev. Immunol. 4, 665-674 (2004).
    26. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol. 8, 191-197 (2007).
    27. Liang, S. et al. Conversion of CD4~+ CD25- cells into CD4~+ CD25~+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J. Exp. Med. 201, 127-137 (2005).
    28. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunol. 6,1219-1227 (2005).
    29. Coombes, J. L. et al. A functionally specialized population of mucosal CD103~+ DCs induces Foxp3~+ regulatory T cells via a TGF-P and retinoic acid dependent mechanism. J. Exp. Med. 204, 1757-1764 (2007).
    30. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775-1785 (2007).
    31. Benson, M. J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R. J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204,1765-1774 (2007).
    32. Yates, S. F. et al. Induction of regulatory T cells and dominant tolerance by dendritic cells incapable of full activation. J. Immunol. 179, 967-976 (2007).
    33. Vukmanovic-Stejic, M. et al. Human CD4~+ CD25hi Foxp3~+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 116, 2423-2433 (2006).
    34. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329-360 (2004).
    35. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nature Rev. Immunol. 6, 295-307 (2006).
    36. North, R. J. & Bursuker, I. Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1~+2- suppressor T cells down-regulate the generation of Ly-1-2~+ effector T cells. J. Exp. Med. 159,1295-1311 (1984).
    37. Bursuker, I. & North, R. J. Generation and decay of the immune response to a progressive fibrosarcoma. II. Failure to demonstrate postexcision immunity after the onset of T cell-mediated suppression of immunity. J. Exp. Med. 159, 1312-1321 (1984).
    38. Hiura, T. et al. Both regulatory T cells and antitumor effector T cells are primed in the same draining lymph nodes during tumor progression. J. Immunol. 175, 5058-5066 (2005).
    39. Ambrosino, E. et al. Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance. Cancer Res. 66, 7734-7740 (2006).
    40. Betts, G. et al. The impact of regulatory T cells on carcinogen-induced sarcogenesis. Br. J. Cancer 96, 1849-1854 (2007).
    41. Clarke, S. L. et al. CD4~+CD25~+FOXP3~+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE 1, e129 (2006).
    42. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942-949 (2004).
    43. Liyanage, U. K. et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 169, 2756-2761 (2002).
    44. Sasada, T., Kimura, M., Yoshida, Y, Kanai, M. & Takabayashi, A. CD4~+CD25~+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98, 1089-1099 (2003).
    45. Schaefer, C. et al. Characteristics of CD4~+CD25~+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br. J. Cancer 92, 913-920 (2005).
    46. Bui, J. D., Uppaluri, R., Hsieh, C. S. & Schreiber, R. D. Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res. 66, 7301-7309 (2006).
    47. Liu, V. C. et al. Tumor evasion of the immune system by converting CD4~+CD25- T cells into CD4~+CD25~+ T regulatory cells: role of tumor-derived TGF-β. J. Immunol. 178, 2883-2892 (2007).
    48. Fallarino, F. et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 176, 6752-6761 (2006).
    49. Curti, A. et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25- into CD25~~+ T regulatory cells. Blood 109, 2871-2877 (2007).
    50. Beyer, M. et al. In vivo peripheral expansion of naive CD4~+CD25high FoxP3~+ regulatory T cells in patients with multiple myeloma. Blood 107, 3940-3949 (2006).
    51. Stephens, G. L., Andersson, J. & Shevach, E. M. Distinct subsets of FoxP3~+ regulatory T cells participate in the control of immune responses. J. Immunol. 178, 6901-6911 (2007).
    52. Golgher, D., Jones, E., Powrie, F., Elliott, T. & Gallimore, A. Depletion of CD25~+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur. J. Immunol. 32, 3267-3275 (2002).
    53. Jones, E. et al. Depletion of CD25~+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun. 2, 1 (2002).
    54. Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor a) monoclonal antibody. Cancer Res. 59, 3128-3133 (1999).
    55. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25~+CD4~+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211-5218 (1999).
    56. Comes, A. et al. CD25~+ regulatory T cell depletion augments immunotherapy of micrometastases by an IL-21-secreting cellular vaccine. J. Immunol. 176, 1750-1758 (2006).
    57. Waldmann, T. A. Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma. Oncogene 26, 3699-3703 (2007).
    58. Vlad, G. et al. Anti-CD25 treatment and FOXP3- positive regulatory T cells in heart transplantation. Transpl. Immunol. 18, 13-21 (2007).
    59. Barnett, B., Kryczek, I., Cheng, P., Zou, W. & Curiel, T. J. Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am. J. Reprod. Immunol. 54, 369-377 (2005).
    60. Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623-3633 (2005).
    61. Attia, P., Maker, A. V., Haworth, L. R., Rogers-Freezer, L. & Rosenberg, S. A. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother. 28, 582-592 (2005).
    62. Mahnke, K. et al. Depletion of CD4~+CD25~+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int. J. Cancer 120, 2723-2733 (2007).
    63. Ruddle, J. B., Harper, C. A., Honemann, D., Seymour, J. F. & Prince, H. M. A denileukin diftitox (Ontak) associated retinopathy? Br. J. Ophthalmol. 90, 1070-1071 (2006). 64. Attia, P. et al. Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J. Immunother. 29,208-214 (2006).
    64. Attia, P. et al. Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J. Immunother. 29, 208-214 (2006).
    65. North, R. J. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med. 155, 1063-1074(1982).
    66. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4~+CD25~+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641-648 (2007).
    67. Hermans, I. F., Chong, T. W., Palmowski, M. J., Harris, A. L. & Cerundolo, V. Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model. Cancer Res. 63, 8408-8413 (2003).
    68. Lutsiak, M. E. et al. Inhibition of CD4~+25~+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105, 2862-2868 (2005).
    79. Peng, G. et al. Toll-like receptor 8-mediated reversal of CD4~+ regulatory T cell function. Science 309,1380-1384 (2005).
    80. Sugamura, K., Ishii, N. & Weinberg, A. D. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nature Rev. Immunol. 4,420-431 (2004).
    81. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132-13137 (2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700