基于FPGA的便携式数字核谱仪研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核信息的获取与处理在许多基础科学研究和应用科学研究中都有重要的意义。多道脉冲幅度分析是核辐射能谱测量的一种基本方法,核谱仪是用于获取和处理多道脉冲幅度的基本设备。受ADC和数字信号处理器的发展制约,基于多道脉冲幅度分析的传统核谱仪大多是以对模拟脉冲信号峰值进行采样保持并作AD转换为特点的模拟核谱仪。随着高速高分辨率ADC和数字信号处理技术的迅猛发展,使以直接采集前置放大器输出脉冲波形、由数字信号处理进行多道脉冲幅度提取和分析为特点的全数字化核谱仪的实现成为可能。本文采用超高宽带集成运算放大器、125Msps的高速ADC和集逻辑控制与数据处理于一体的高速FPGA,完成了新一代全数字化的便携式核谱仪的研制。
     数字核谱仪对模拟放大电路的带宽和ADC的采样率要求较高,然而高带宽、高采样率要求往往以降低数据采集系统的信噪比为代价。因此,在噪声背景相对较高的情况下如何较精准地提取各数字脉冲幅度是本研究首先要解决的问题,否则,数字核谱仪因精确度和准确度还赶不上模拟核谱仪而失去研制的价值。本文采取曲线拟合算法来解决高噪声背景下的数字脉冲幅度提取问题。针对不同类型核辐射探测器,研究其相应的输出波形特征,采用快速曲线拟合算法提取其输出脉冲的幅度。实验表明,在信噪比为31.4dB左右的噪声背景下仿真半导体探测器的输出脉冲的后沿,采用曲线拟合算法提取其脉冲幅度,其结果与直接以该脉冲采样点中的最大值作为其幅度相比较,曲线拟合算法提取脉冲幅度的测量准确度和精确度分别改善了1个数量级。本文研制的数字核谱仪的信噪比达到了45.3dB左右,在该噪声背景下仿真计算的结果相较于信噪比为31.4dB左右的噪声背景下仿真计算的结果,其测量的准确度和精确度又改善了1个数量级。
     高信噪比数字化、实时甄别并存储核辐射探测器输出的随机脉冲信号是本文研究又一重点内容。通过附加相位补偿电路,本文设计出低噪声超宽带的信号放大电路,同时采用采样率高达125Msps的14位ADC实现了高信噪比的高速数据采集系统,为高保真数字化核辐射探测器输出的随机脉冲信号提供了保证。此外,本文通过巧妙地逻辑设计,实现了数字化的核辐射探测器输出的随机脉冲信号的实时甄别与存储。
     最后,论文通过实验详细测试了数字核谱仪的信噪比、精确度、能量分辨率等重要指标参数。实验结果表明,数字核谱仪测得的能谱与模拟核谱仪测得的能谱的能量刻度一致,数字核谱仪的能量分辨率要优于模拟核谱仪。
     论文的主要创新点主要表现在三个方面:
     1.基于FPGA集逻辑控制、数据处理、数据存储于一体的数字核谱仪设计方案,较传统的CPLD+RAM(或FIFO)+DSP实现逻辑控制和数据存储与处理功能的设计方案,减少了印制板走线数量,缩小了印制板面积,并且降低了功耗,更好地达到便携式要求。另外,通过巧妙地逻辑设计,在FPGA中实现了无处理器介入下的数字随机脉冲实时甄别与存储,突破了模拟核谱仪中因采样保持而产生脉冲处理死时间的局限。
     2.根据不同类型核辐射探测器输出的脉冲信号特征曲线,采用相应曲线拟合算法提取脉冲幅度,既能保证脉冲幅度提取的准确性和精确性,又简单易行且少占CPU处理时间以保证实时处理要求。
     3.本文研究了有关算法,对数字化后的核辐射探测器输出脉冲进行了弹道亏损补偿,突破了模拟核谱仪系统难以实现弹道亏损补偿的局限。这是数字核谱仪研制的又一创新点。
It is very important to extract and process nuclear information for the purpose of basic and applied researches.In nuclear spectroscopy measurement,multi-channel pulse height analysis is a commonly-adopted method,and the nuclear spectroscopy instrument is the key equipment.On account of the restrictions of ADC and digital signal processor development,traditional nuclear spectroscopy instrument is an analog equipment,which samples and holds the peak of analog pulse signal,and then converts it to digital pulse signal.The rapid development of high-sample-rate and high-resolution ADC and digital processing technology has made it feasible to design a digital nuclear spectroscopy instrument,which can sample the pulse signal output by employing preamplifier of nuclear detector,and then extract the pulse height via using digital signal processing method.The author of this paper has accomplished the design of a portable digital nuclear spectroscopy instrument by utilizing ultra-wideband amplifier,125Msps high-speed ADC and high-speed FPGA with the function of logic control and data processes.
     A digital nuclear spectroscopy instrument sets a high demand for broad bandwidth in analog amplifier circuit and high sample rate in ADC,which are usually realized at the cost of reducing the signal-to-noise ratio of analog-to-digital conversion.Consequently,the correct and accurate extraction of the digital pulse height in the background of intense noise becomes the foremost problem to be solved. Otherwise,the digital nuclear spectroscopy instrument,not superior to an analog one in terms of correction and accuracy,is not worthy of more researches.This paper, applying curve-fitting method to the extraction of the digital pulse height,firstly analyzes the pulse's curve feature output by various types of nuclear detectors,and then the high-speed curve-fitting algorithm is adopted to extract the pulse's height. With a simulation of the ideal pulse curve output via semiconductor detector when the signal-to-noise ratio is 31.4dB,the curve-fitting algorithm is utilized,and the noise-curve's height is extracted.The comparative study of the height to the maximum in the noise-curve's sample-point data reveals that the height's correction and accuracy extracted by curve fitting method is 1 magnitude better than that of the maximum.If the signal-to-noise ratio is improved—for example,it is up to 45.3dB, which is the instrument's signal-to-noise ratio designed by the paper—the height's correction and accuracy measured by the instrument via curve fitting method will be further improved by 1 magnitude.
     Another important task of this paper is to design a high signal-to-noise ratio data acquisition system so as to sample the random-pulse output by the nuclear detector and plan a logic unit to discriminate the pulse and noise and then only record the pulse. The author of this paper designs a low noise and ultra-wideband amplifier circuit with phase-compensated technology and uses a 14bit,125Msps ADC to accomplish a data acquisition system,which can convert the analog signal output by nuclear detector to digital signal with high fidelity.A logic unit is then ingeniously invented to capture the conditional pulse and record it at real time.
     In this paper,some parameters,e.g.signal-to-noise ratio,accuracy and energy resolution of the instrument,have been tested,which is better than that of analog nuclear spectroscopy instrument.
     To sum up,the following points are innovative:
     Firstly,the instrument is designed based on FPGA,which can simultaneously do logic control,data process and data recording.In contrast to CPLD+RAM(or FIFO)+DSP design,the new scheme can decrease power and reduce printed circuit area,which contributes to the realization of portability.
     Secondly,curve-fitting is employed to extract nuclear detector's pulse height. The algorithm is not only of easy feasibility,but also help improve the correction and accuracy on the pulse height measurement.
     Thirdly.the ingenious algorithm is successful in compensating the ballistic deficit of digital pulse while the analog nuclear spectroscopy instrument fails to do so. In the sight of this,digital nuclear spectroscopy instrument is better than an analog one.
引文
[1]陈世国.数字核仪器系统中高斯成形滤波的设计与实现:[D].成都:四川大学,2005.
    [2]肖无云,魏义祥,艾宪芸,等.数字化多道脉冲幅度分析技术研究[J].核技术,2005,28(10):787-790.
    [3]林月芳,古海彦.智能仪器及其发展趋势[J].仪表技术,2003,(1):37-39.
    [4]走向测控技术的新纪元--虚拟仪器系统简介[J].电子产品世界,1995,(10):49.
    [5]Simoes J.B,CorreiaC.M.B.A..Pulse processing architectures[J].Nucl Instr and Meth in Phys Research,1999,A422:405-410.
    [6]A.Pullia,A.Geraci,and G.Ripamonti.Quasi-optimum gamma and X spectroscopy based on real-time digital techniques[J].Nuclear Instruments & Methods in Physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2000,439(2-3):378-384.
    [7]E.Gatti,A.Geraci,and G.Ripamonti.Optimum filters from experimentally measured no noise in high resolution nuclear spectroscopy[J].Nuclear Instruments & Methods in Physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,1998,417(1):131-136.
    [8]Alberto Pullia.How to derive the optimum filter in presence of arbitrary noises,time-domain constraints,and shaped input signals:A new method[J].Nuclear Instruments & Methods in Physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,1997,397(2-3):414-425.
    [9]A.Geraci,M.Zambusi,and G.Ripamonti.Comparative study of the energy resolution achievable with digital signal processors in X-ray spectroscopy[J].IEEE Transactions on Nuclear Science,1996,43(2 pt 2):731-736.
    [10]Joao M.Cardoso,Tiago Menezes,Carlos M.B.A.Correia,and J.Basilio Simoes.CdZnTe spectra improvement through digital pulse amplitude correction using the linear sliding method[J].Nuclear Instruments & Methods in Physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2003,505(1-2):334-337.
    [11]Simoes P.C.P.S.,Veloso J.F.C.A,Dos Santos J.M.F.etc.Application of the digital pulse processing technique to gas proportional scintillation counters.IEEE Transactions on Nuclear Science,1997,44(3):521-526.
    [12]Paulo C.P.S.Simoes,Jose C.Martins,and Carlos M.B.A.Correia.New digital signal processing technique for applications in nuclear spectroscopy.IEEE Transactions on Nuclear Science 1996,43(3 pt 2):1804-1809.
    [13]V.T.Jordanov and G.F.Knoll.Digital pulse-shape analyzer based on fast sampling of an integrated charge pulse[J].IEEE Transactions on Nuclear Science,1995,42(4 pt 1):683-687.
    [14]Valentin T.Jordanov,Glenn F.Knoll,Alan C.Huber,etc.Digital techniques for real-time pulse shaping in radiation measurements[J].Nuclear Instruments & Methods in Physics Research,Section A:Accelerators,Spectrometers, Detectors and Associated Equipment,1994,353(1-3):261-264.
    [15]ValentinT.and Glenn F.Knoll.Digital synthesis of pulse shapes inreal time for high resolution radiation spectroscopy[J].Nuclear Instruments & Methods in Physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,1994,A345(2):337-345.
    [16]Valentin Jordanov and Glenn F.Knoll.Digital pulse processor usinga moving average technique[J].IEEE Transactions on Nuclear Science,1993,40(4 pt 1):764-769.
    [17]W.k.Warburton,M.Momayezi,B.Hubbard-Nelson,etc.Digital pulse processing:new possibilities in nuclear spectroscopy[J].Applied Radiation and Isotopes,2000,53(4):913-920.
    [18]V.T.Jordanov.Real time digital pulse shaper with variable weighting function[J].Nuclear Instruments & Methods in Physics Research,Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2003,505(1-2):347-351.
    [19]Argonne National Laboratory.Report of workshop on "Digital Electronics for Nuclear Structure Physics"[R].March 2-3,2001.
    [20]覃章健,葛良全,程峰.曲线拟合住核探测器信号幅度提取中的应用[J].成都理工大学学报:自然科学版,2007,:34(6):643-647.
    [21]杨强,赖万吕,花永涛.虚拟仪器在核数据采集中的应用[J].核电子学与探测技术,2007,27(6):116-118.
    [22]肖无云,魏义祥.艾宪芸.多道脉冲幅度分析中的数字基线估计方法[J].核山子学与探测技术,2005,25(6):601-604.
    [22]敖奇,魏义祥,文向阳.基于DSP的数字化多道脉冲幅度分析器设计[J].核技术,2007,30(6):532-536.
    [24]肖无云,魏义祥,艾宪芸.数字化多道脉冲幅度分析中的梯形成形算法[J].清华大学学报:自然科学版,2005,45(6):810-812.
    [25]张软玉,陈世国,罗小兵,等.数字化核能谱获取中信号处理方法的研究[J].原子能科学技术,2004,:38(5):252-255.
    [26]张软玉,陈世国,王鹏,等.数字核谱仪中条什线路的一种最佳实现方法[J].核电子学与探测技术,2003,2:3(6):544-547
    [27]Canberra.Multichannel and Digital Signal Analyzers Introduction[EB/OL].http://www.canberra.com/pdf/Products/MCA_pdf/MCA.pdf
    [28]XIA.User's Manual Digital Gamma Finder(DGF)[EB/OL](2007-03-01)[2007-03-01].http://www.xia.com/DGF-4C.html
    [29]Cremat Inc.CR-200 Gaussian shaping amplifier[EB/OL].http://www.cremat.com/CR-200-R2.pdf
    [30]Canberra Inc.Model 2026 Spectroscopy Amplifier[EB/OL].http://www.canberra.com/products/1105.asp
    [31]王芝英,楼滨乔,朱俊杰,等.核电子技术原理[M].北京:原子能出版社,1989.
    [32]丁富荣,班勇,夏宗璜.辐射物理[M].北京:北京大学出版社,2004.
    [33]王经瑾,范天民,钱永庚.核电子学[M].北京:原子能出版社,1983.
    [34]席德明,许延宝,郭瑞琪,等.常用核电子技术[M].科学出版社,1982.
    [35]复旦大学,清华大学,北京大学.原子核物理实验方法[M].北京:原子能出版社,1981.
    [36]周蓉生,瓦岗诺夫.核方法原理与应用[M].北京:地质出版社,1994.
    [37]林延畅.高灵敏度多元素现场 X 荧光探测系统的研制:[D].成都:成都理工大学,2006.
    [38]AMPTEK INC.Operating Manual XR-100CR X-ray Detector System and PX2CR Power Supply/Shaper[M].Revision 13,2003.
    [39]Texas Instruments Inc.14-Bit,125MSPS Analog-to-Digital Converter[EB/OL].(2003-12-01)[2007-02-08].http://focus.ti.com.cn/cn/docs/prod/folders/print/ads5500.html
    [40]Texas Instruments Inc.Ultra-Wideband,Current-Feedback Operational Amplifier With Disable[EB/OL].(2003-12-01)[2006-07-26].http://focus.ti.com.cn/cn/docs/prod/folders/print/opa695.html
    [41]Texas Instruments Inc.Wideband,Low-Distortion Fully Differential Amplifiers[EB/OL].(2002-04-01)[2003-12-16].http://focus.ti.com.cn/cn/docs/prod/folders/print/ths4503.html
    [42]ALTERA.Cyclone Ⅱ Device Handbook,Volume 1[EB/OL].(2005-11-1)[2008-02-01].http://www.altera.com.cn/literature/lit-cyc2.jsp
    [43]易丹辉.统计预测:方法与应用[M].北京:中国统计出版社.2001
    [44]同济大学数学教研室.高等数学(第三版)下册[M].北京:高等教育出版社,1987.
    [45]王吴,李昕.集成运放应用电路设计360例[M].北京:电子工业出版社,2007.
    [46]马场清太郎.运算放大器应用电路设计[M].北京:科学出版社,2007.
    [47]覃章健.基丁USB2.0的实时数据采集系统研究:[D].成都:成都理工大学,2004.
    [48]童诗白.模拟电子技术基础[M].北京:高等教育出版社,1995.
    [49]Henry w.Ott(著),王培清,李迪(译).电子系统中噪卢的抑制与衰减技术[M].北京:电子工业出版社,2003.
    [50]路坤,奚大顺,李之全,等.电子设计技术[M].成都:电子科技大学出版社,1997.
    [51]阎石.数字电子技术基础[M].北京:高等教育出版社,1998.
    [52]ALTERA.Configuration Handbook,Volume 1[EB/OL].(2005-08-01).http://www.altera.com.cn/literature/lit-config.jsp
    [53]ALTERA.Configuration Handbook,Volume 2[EB/OL].(2006-11-01).http://www.altera.com.cn/literature/lit-config.jsp
    [54]中华人民共利国地质矿产部.DZ/T 0011-91.1:5万地球化学普查规范[M].北京:中国标准出版社,1991.
    [55]王士元.C高级实用程序没计[M].北京:清华大学出版社,1996.
    [56]谭浩强.C程序设计(第二版)[M].北京:清华大学出版社,1999.
    [57]葛良全,周四春,赖万吕.原位 X 辐射取样技术[M].成都:四川科学技术出版社,1997.
    [58]葛良全,赖万吕,周四春,等.海底X射线荧光探测系统的研制[J].成都理工学院学报,2001,28(1):80-84.
    [59]葛良全,赖万吕,林玲,等.水底沉积物原位 X 射线荧光测量中水分的影响与校正[J].核技术,2004,27(4):273-276.
    [60]赖万吕,葛良全,吴永鹏,等.新型高灵敏度XRF分析仪的研制与应用[J].核技术,2003,26(11):891-895.
    [61]赖万吕,葛良全,吴永鹏,等.轻型XRF分析仪住铁精矿品质快速检测中的应用[J].金属矿山,2003,(7):48-52.
    [62]赖万吕,葛良全,周四春,等.新一代高灵敏度手持式X荧光仪的研制[J].物探与化 探.2002,26(4):321-324.
    [63]Ge Liangquan,Zhang Ye,Xie Tinzhou,etc.Proposed correction and influences of drilling fluids in X-ray fluorescence logging[J].X-ray Spectrometry,26(1997):303-308.
    [64]Ge liangquan,Lai Wangchang,Lin Yanchang,etc.Influence of and correction for moisture in rocks,soils and sediments on in situ XRF analysis.X-ray Spectometry,2005,34:28-34.
    [65]覃章健,黄洪全.葛良全.基于 USB2.0的实时数据采集系统研究[J].中国测试技术,2005,31(5):87-91.
    [66]覃章健,李才明,黄洪全,等.数字图像技术在重力异常地形校正中的应用[J].物探化探计算技术,2006,28(3):228-232
    [67]覃章健,葛良全.四川省成品油和天然气需求预测[J].资源科学,2006,28(5):120-126.
    [68]覃章健,杨珣,文彬,等.基于COM+技术的大型分布式网络测控系统的设计与研究[J].测控技术,2003,22(6):58-60.
    [69]覃章健,葛良全.时频分析在炮弹弹片飞行速率测量中的应用[J].计算机工程与应用,2008,44(11):208-211.
    [70]覃章健,葛良全.C++语言教学中类的本质深入剖析[J].现代计算机:专业版,2008,(1):104-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700