自由曲面高速铣削工艺规划与自主决策技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速加工技术经过几十年发展,以其独有的技术特点,广泛应用于各个领域。目前,高速加工设备越来越受到企业青睐,在某些行业的产品生产中具有不可替代作用,如模具制造、航空航天产品制造等。实际生产加工中,工件的自由曲面越来越多,对表面质量和加工效率要求越来越高。高速加工技术的使用经验较少;工艺理论研究相对不足;高速加工工艺的智能决策技术水平还不高;工艺的制定多依赖于实际生产经验的积累,效率较低,受生产地点限制。为解决以上问题,最大限度的发挥高速加工的优势,对自由曲面高速加工的工艺规划和自主决策技术进行深入研究已经势在必行。
     高速加工切削参数的研究是高速加工工艺自主决策的前提条件,也是高速加工工艺参数自主决策的判断基础和依据,决策理论和方法是自主决策的必备条件。本文在对国内外自由曲面高速加工的工艺技术和自主决策技术的研究现状与发展趋势进行分析的基础上,以自由曲面的高速铣削工艺为核心,以实现工件材料高速铣削的工艺自主决策为目标,进行了深入研究。主要研究内容、采用方法和结论如下:
     (1)在典型工件材料高速切削试验基础上,对高速铣削的切削参数及其交互影响项与表面粗糙度间的关系进行了研究。针对试验室试验、随机数据和生产数据的数据特点,采用了不同的试验和数据处理办法,并进行了对比分析。利用试验数据,对相关切削参数进行了回归分析,获得相应公式;深入讨论了各工艺参数对表面粗糙度的影响,并对切削参数间的交互作用对表面粗糙度的影响进行了分析。
     研究了球头铣刀高速铣削倾角变化对表面质量的影响规律。分析表明,在试验参数范围内,铣刀倾角对表面粗糙度的影响最显著,影响规律为:当倾角由0度开始到25度变大,表面粗糙度由急剧变坏到急剧变好;讨论分析了最差切削倾角的形成原因,并进行了确定。
     (2)对切削参数进行了规划,讨论了曲面加工中的相关约束条件。对轴负载力和轴加速度与进给速度的关系进行了分析;对轴约束下的高速加工S曲线进给进行了速度规划;根据环形铣刀的可铣充分条件,推导了球头铣刀可铣充分条件;本文用等价圆弧拟合工件表面曲线,并推导得到球头铣刀三轴铣削自由曲面的径向进给公式,对于曲率变化大的的情况,如一些拐角,根据待加工曲面上曲线与球头铣刀刀心间的几何关系,用等距线的矢量方程来描述其生成的轨迹,提出了精确的径向进给确定方法。
     (3)对高速加工中刀具的寿命进行了估计。根据相对Miner理论,在已知其他刀具寿命,且与当前刀具相似、负载相似的基础上,对当前刀具寿命进行了确定。在当前高速切削刀具寿命数据较少的情况下,可以避免加工中途换刀,提高刀具使用效率,减少刀具寿命试验,具有很强实用性;针对相对Miner理论使用的前提条件,本文根据刀具材料自身属性和刀具的形状特点,对刀具间的相似性进行判定;利用粗糙集理论中的容差关系,对缺失数据进行补足或舍弃,可以尽量的减少有限的刀具属性数据缺失带来的不利影响。
     提出了一种工件材料连续属性离散方法。针对数据处理中工件材料的连续属性需要离散化处理问题,本文对影响灰色绝对关联度的数据离散区间进行了分析,结合灰熵定义,对连续数据区间的均衡度进行了确定。在此基础上,提出了一种多阶段的基于灰色绝对关联度和灰熵的动态离散方法,可以在不破坏数据间分类能力基础上,对连续属性进行离散;结合灰色绝对关联度的关于空缺值的定理,以及粗糙集的属性约简办法,对不完备信息的工件材料属性进行了约简,并获得唯一的属性相对约简组合。
     (4)对高速加工工艺参数的自主决策方法进行了研究,提出了三种适用于自由曲面高速精加工工艺自主决策的方法。对于几个给定的工艺方案优选情况,采用了改进的层次分析法进行决策判断,并根据高速铣削中生产规律,重新给出确定权重的方法,提高了使用精度;对于已知切削参数与表面粗擦度的回归关系的情况,应用数学规划的方法进行了切削参数优化;对于切削参数未知的给定材料切削,本文考虑了切削环境的影响,首先以最近邻算法,对以材料可切削性和以刀具规格为代表的切削环境进行相似度计算,并获得相似范例,进而采用最小二乘支持向量机算法,进行范例推理的工艺自主决策。
HSM(High Speed Milling)has been wildly used in many fields after decades years of development. It is more and more important to enterprise and has irreplaceable function on some product manufacturing, such as dies and aviation products.Workpieces have more and more free form surfaces. The quality and efficiency of workpieces is reguired more and more highly.The operation experience of HSM is relatively less.The research on theory of HSM process is a relative shortage.The intelligent decision technology of HSM process is not high.Its process planning depends on experiences and is limited by working environment. Therefore, it is necessary to study on HSM process planning of free-form furface and autonomous decision technology.
     The research on HSM parameters is a precondition and of HSM process planning .The decision theorires and methods are essential conditions. On the base of analysis on research status and development of HSM process planning and autonomous decision, this paper has further researched on the HSM process and autonomous decision technology .The main research contents and methods include:
     (1) On the basis of tests of HSM typical materials, this paper researched on the relationship between milling parameters and surface roughness. Using the different test methods to fit different milling conditions.By using test datas, the milling parameters were made regression analysis, some formulas were got, the influence of single parameters on surface roughness was discussed, and the influence of interaction items on surface roughness was analysised.
     The influence law of ball end mill pitch angle was researched. The test indicated that the influence of ball end mill pitch angle on roughness is obvious in test. The influence law is that the roughness largen quckly at first,then becomes smaller quickly in the range of pitch angle from 0 degree to 25 degree.The forming reason of the poorest pitch angle was discussed and formula was determined.
     (2)The HSM parameters were planned, and the relative constraints of HSM free form surface were discussed in this paper. The relationship between the axis force,aixis acceleration and feed velocity was analysised.The S curve feed velocity was planned under the axis constraints.The sufficient milling conditions of ball end mill were derivated according to the sufficient milling conditions of ring mill cutter. By using equicalent arc to fit the curve on workpiece surface, the radial feed formulas were got which three axis constant scallop height milling free form surface with ball end mill.According to the offset curve vector equation and the geometry relationship between the workpiece surface and tool path, this paper has given a more precise method which getting the radial feed when using equivalent arc is not suitable. For instance, there are some corners or curves with rapid currage change.
     (3)The tool life was determined in HSM. On the basis of having known the tool and load is similar with another, this paper determinded the tool life according to the relative Miner theory. In the condition of lack of tool life datas, it could avoid tool changing during cutting, increase the use efficiency, decrease the times of tool life test,and is practical.The similarity between tools was evaluated according to the material attributes and shape characteristics of tools. To fill or forsake the missing datas could decrease the unfavorable influence by using tolerance relation of rough set theory.
     A discrete method of continous attributes of workpiece material was proposed. This paper analysis the interval of data discretization about the grey absolute incidence degree ,give a determinding method of banlance of contimuous data interval with grey entropy and propose a dynamic multi-stage discrete method of continuous attributes based on absolute degree of grey incidence and balance degree of grey entropy. It can keep the classification ability.With the theorem of grey absolute incidence degree, the incomplete attributes are reduced, and the result is unique.
     (4)This paper researched on the autonomous decision of HSM parameters,and has proposed three methods to meet different conditions of HSM free form surface.In the condition of several given process plan optimal selection,AHP is a good decision method.According to machining laws of HSM, a new method of measuring weights was given,and has good effect. In the condition of known cutting formula,the cutting parameters is optimized by using mathematical programming.In the condition of unknown cutting formula, similarity which is about materials machinability and tool spectfication was calculate firstly considering cutting environment. Then the similar case was get, At last the process decision was done based on CBR by using LS-SVM.
引文
[1] King P I, Vaughn R L. A synaptic view of high-speed machining from salmon to the present [J]. High Speed Machining, 1984: 1-3.
    [2]陈光明.高速铣削与模具制造[J].机床与液压, 2005, (9): 6-8.
    [3]李伟.高速加工技术在现代模具制造中的应用[J].装备制造技术, 2010, (3): 75-76
    [4] Smith S, Tlusty J. Current trends in high-speed machining [J]. Transaction of the ASME, Journal of Manufacturing and Engineering, 1997, 119: 664-666.
    [5]国家自然科学基金委员会工程与材料科学部.学科发展战略研究报告(2006年~2010年)[M].北京:科学出版, 2010.
    [6]丁泽庆.高速加工技术初探[J]. OCCUPATION, 2010, (12) : 82-83.
    [7]郭铁君.模具高速加工技术与策略[J].科技咨询导报, 2007, (20): 96.
    [8]王万中.试验的设计与分析[M].北京:高等教育出版社, 2004.
    [9]王素玉.高速铣削加工表面质量的研究[D].济南:山东大学, 2006.
    [10]陈建岭.钛合金高速铣削加工机理及铣削参数优化研究[D].山东大学,2009.
    [11] B. K. Fussell, R. B. Jerard, J. G. Hemmett, Modeling of cutting geometry and forces of 5-axis sculptured surface machining[J]. ComPuter-Aided Design, 2003, 35: 333-346.
    [12] Vivancos J, Luis C J, Costa L et al. Optimal machining parameters selection in high speed milling of hardened steels for injection moulds [J]. Journal of Materials Processing Technology, 2004, 155: 1505-1512.
    [13] Ghani J A, et al. Application of taguchi method in the optimization of end milling parameters [J]. Journal of Materials Processing Technology, 2004, 145: 84-92.
    [14]刘玉波,赵灿,冯明军.基于正交试验法的高速铣削工艺参数优化设计[J].组合机床与自动化加工技术, 2008, 9: 68-71.
    [15]吴德林,周云飞.高速铣削切削参数的模糊正交优化方法[J].机械工程师, 2008,(8): 91-93.
    [16] Suresh N, Kumar R P, Venkateswara R. Selection of an optimal parametric combination for achieving a better surface finish in dry milling using genetic algorithms [J]. International Journal Advanced Manufacturing Technoogy, 2006, 28: 463–473.
    [17] Wen H H, Jinn T T, Lin B T et al. Adaptive network based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm[J]. Expert Systems with Applications, 2009, 36: 3216-3222.
    [18]金涤尘,宋放之.现代模具制造技术[M].北京:机械工业出版社,2001.
    [19]曹清园,赵军,李月恩,韩式.高速铣削P20模具钢复杂曲面粗糙度试验研究[J].工具技术,2009,43(2):23-26.
    [20]陈小润,方沂,田美丽,贺琼义.高速铣削1Cr18Ni9不锈钢切削力建模及实验分析[J].制造技术与机床, 2007, 8:41-44.
    [21]卫国,王贵成,沈春.球头铣刀高速铣削淬硬Cr12模具钢的研究[J].工具技术[J], 2009, 43(10): 26-28.
    [22]唐委校,高速切削稳定性及其动态优化研究[D].山东大学,2005.
    [23]宋清华,高速铣削稳定性及加工精度研究[D],山东大学, 2009.
    [24]李迎.高速切削工艺参数优化模型研究及发展趋势[J].电子机械工程, 2010, 26(1): 1-9.
    [25]模具高速铣削加工技术以及数控编程[J].模具工艺, 2005, (7): 35-38.
    [26]孟少农.机械加工工艺手册[M].北京:机械工业出版社, 1991.
    [27]吴卉.基于生产数据的高速铣削综合评价模型研究[D].南京:南京理工大学, 2006.
    [28] Rajkumar Roy, et al. Recent advances in engineering design op ti mizati on: Challenges and future trends [J]. CIRP Annals Manufacturing Technology, 2008, (57): 697– 715.
    [29] Longbottom J M, et al. A review of research related to salomon’s hypothesis on cutting speeds and temperatures [J]. International Journal of Machine Tools & Manufacture, 2006 (46) : 1740– 1747.
    [30] Jenq Shyong By Chen, et al. Freedrate optimization and tool profile modification for the high efficiency ball end milling process [J]. International Journal of Machine Tools & Manufacture, 2005,(45): 1070-1076.
    [31] Vivancos J, Costa C J, Ortiz J A. Optimal machining parameters selection in high speed milling of hardened steels for injection moulds [J]. J Mater Process Technol, 2004, 155: 1505-1512.
    [32]朱晓春,屈波,孙来业. S曲线加减速控制方法研究[J].中国制造业信息化, 2006, (12): 38-40.
    [33]郭新贵,李从心.S曲线加减速算法研究[J].机床与液压,2002, (12): 38-40.
    [34] Kaan E, Yusuf A. High speed CNC system design Part I: jerk limited trajectory generation and quintic spline interpolation [J]. International Journal Manufacturing Tools Manufact, 2001, 41: 1323-1345.
    [35]俞鸿斌.基于高速加工的加减速控制方法研究及实现.[J].制造技术与机床, 2008, 4: 43-47.
    [36]许良元,桂贵生,彭丹丹.加速度连续可变的加减速控制规律研究[J].组合机床与自动化加工技术, 2005, 3: 12-13..
    [37]樊晶明,周后明,周玉梅,唐德文.模具高速加工中基于灰色理论的材料可切削性评价[J].机械设计与制造,2008,6:208-209.
    [38]倪侃.随机疲劳累积损伤理论研究进展[J].力学进展, 1999.29(1): 43-65.
    [39]刁军臣,崔玉祥,刘国新.硬质合金刀具的粘结破损机理[J].哈尔滨科学技术大学学, 1993, 17(3):1-6.
    [40] Mills B, Redford A H. Machinability of Engineering Materials [M]. Applied Science Publishers, 1983.
    [41]谭天.高性能铣削时的刀具寿命[J].世界制造技术与装备市场, 2002,(10): 59-60.
    [42]艾兴.高速切削加工技术[M].北京:国防工业出版社, 2003.
    [43]黎永明,王志新,金瑞龄.先进制造技术与企业自主开发能力[M].北京:机械工业出版社, 1999.
    [44]张宝忠,范进桢.模具高速铣削加工及其关键技术系统[J].机械工程师, 2004,(4), 36-37.
    [45]李迎,吴卉,庞迎春.高速切削工艺的评价与决策模型研究[J].电子机械工程, 2008, 24(2): 47-50.
    [46]汪振华.防锈铝合金弱刚度复杂构件高速铣削工艺研究[D].南京理工大学, 2009.
    [47] Juan H, Yu S F, Lee B Y. The optiona l cutting parameterse lection o f production cost in HSM for SKD61 too l steels [J]. Internation Journal of Machine Tools & Manufacture 2003, 43: 679- 686.
    [48] Palanisamy P. Optimization ofmachining parameters using genetic algorithm and experimental validation for end milling operations [J]. International Journal Advanced Manufacturing Technoogyl, 2007, 32: 644-655.
    [49] Ablerti M, Gurana J, Casedesus M. A system for optimising cutting parameters when planning milling operation in high-speed machining [J]. Journal of Materials Processing Technology 2005, 168: 25- 35.
    [50] Pascal Mognol, Loic Jegou, Mickael Rivette, Benoit Furet. High speed milling, electro d ischarge machining and directmetal laser sintering: A method to optimize these process in hybridrapid tooli ng [J]. Int. J. Adv. Manuf Technol 2006,29: 35- 40.
    [51] Victor Flores, Carlos Ortega, Marta Albert. Evalution and modeling of productivity and dynamic capability in high speed machining centers [J]. Int. J. Adv. Manuf Technol 2007, 33: 403- 411.
    [52]张小明.五轴数控铣削加工几何—动力学建模与工艺参数优化[D],上海交通大学,2009.
    [53] Antonio J. Vallejo, Ruben Morales-Menendez. Cost-effective supervisory control system in peripheral milling using HSM[J]. Annual Reviews in Control, 2010,34: 155–162.
    [54] Ozcelik. B, Bayramoglu, M. The statistical modeling of surface roughness in high-speed flat end milling[J]. International Journal of Machine Tools & Manufacture,2006, 46:1395–1402.
    [55] Abouelatta.O, Madl, J. Surface roughness prediction based on cutting parameters and tool vibrations in turning operations[J]. Journal of Materials Processing Technology,2001, 118:269–277.
    [56] Benardos.P, Vosniakos, G. Predicting surface roughness in machining[J]: A review. International Journal of Machine Tools and Manufacture,2003: 833–844.
    [57]刘泉,吕锋,刘翔.灰色趋势关联分析及其应用[J].系统工程理论与实践, 2001, 7:77-86.
    [58] Baskar N, et al. Optimization of machining parameters for milling operations using nonconventional methods [J]. International Journal Advanced Manufacturing Technoogyl, 2005, 25: 1078-1088.
    [59] Wang Z G. Multi objective optimization of high-speed milling with parallel genetic simulated annealing [J]. International Journal Advanced Manufacturing Technoogyl, 2006, 31: 209-218.
    [60] Ali R Y. A novel hybrid immune algorithm for global optimization in design and manufacturing [J]. Robotics and Computer-Integrated Manufacturing, 2009, 25: 261–270.
    [61]倪志伟,蔡庆生.基于知识发现的范例推理系统[J].计算机科, 2003, 30(5): 26-29.
    [62]杨化林,童水光,吴荣仁.基于范例推理的注塑模具设计自动化技术[J].机械工程学报, 2008,
    [63]刘思峰.灰色系统理论及其应用[M].北京:科学出版社, 1999.
    [64]刘思峰,郭天榜.党耀国.灰色系统理论及其应用[M].北京:科学出版社, 1999.
    [65] Liu S F, Lin Y. Grey Information Theory and Practical Applications [M]. London: Springer-Verlag, 2006.
    [66] Deng J L. Grey Prediction and Grey Decision [M]. Press of Huazhong University of Science & Technology, 2002.
    [67] Zhang Q S, Li X C, Deng J L. Decision Method of Uncertain Grey Entropy [J]. Decision Reference, 1995, 6. 4(10): 288-293.
    [68] Tsao C C. Grey-taguchi method to optimize the milling parameters of aluminum alloy [J]. International Journal of Advanced Manufacturing Technology, 2009, 40: 41–48.
    [69] Vapnik V N. The Nature of Statistical Learning Theory [M]. New York:Springer-Verlag, 1995.
    [70] Suykens J K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters (S1370-4621), 1999, 9(3): 293- 300.
    [71]张义平.淬硬钢Cr12MV高速铣削加工试验研究[J].现代制造工程, 2007,7:86-88.
    [72] Pawlak Z. Rough sets theoretical aspects of reasoning about data [M]. Kluwer Acade mic Publishers, 1991.
    [73]张文修,吴伟志,梁吉业.粗糙集理论与方法[M].北京:科学出版社, 2001.
    [74]赵荣泳,张浩,李翠玲等.粗糙集连续属性离散化的MDV方法[J].计算机工程, 2006, 32(3):52-54.
    [75] Yong H L, Lee P C,Ting H I. Dynamic Multi-Stage Attribute Decision Making Model with Grey Number Evaluations [J]. Expert Systems with Applications, 2008, 11.
    [76] Wang G Y, Yu H, Yang D C. Decision Table Based on Conditional Information Entropy [J]. Computer Science, 2002, 7.
    [77] Zhao R Y, Zhang H, Li C L, et al. MDV Method of Rough Discretization of Continuous Attributes [J]. Computer Engineering, 2006, 2.
    [78] Wang Y Q, Zhang Z S. Dynamic multi-stage discrete method of continuous attributes based on absolute degree of grey incidence and balance degree of grey entropy [J]. 2010 International Conference on Computer,Mechatronics,Control and Electronic Engineering, 2010, 2: 240-243.
    [79]黄昱.高速铣削技术对CAD/CAM系统的要求[J].现代制造,2004, (5): 38-39.
    [80]翟万略.全程无过切的智能高速CAM软件_谈高速加工软件powerMILL[J].制造技术与机床, 2004,2 : 83- 87.
    [81]谢玉书.基于PowerMILL的高速铣削加工技术[J].模具制造技术, 2006, 9: 59-61.
    [82]杨敏.基于Cimatron模具高速加工编程及应用研究[J].应用科学, 2010, (4): 133-139.
    [83]刘凯.高速铣的加工策略_CimatronE与高速铣[J].机械加工与自动化, 2002,5:16-18.
    [84]谢小星. CAXA制造工程师在汽车零部件高速加工中的应用[J].金属加工(冷加工), 2011, 11:33-34.
    [85]王建华,王妮.. UG在高速加工数控编程中的应用[J].航天制造技术, 2006, 10(5): 9-11.
    [86]姚瑞敏, UG高速加工的编程方法[J].机械工程与自动化. 2010, (2):195-196.
    [87]陈锡栋,周小玉.实用模具技术手册[M].北京:机械工业出版社, 2001.
    [88]邓明.现代模具制造技术[M].北京:化学工业出版社, 2005.
    [89]邱言龙,陈德全,张国栋.模具钳工技术问答[M].北京:机械工业出版社, 2001.
    [90]刘战强,艾兴.高速切削刀具磨损表面形态研究[J].摩擦学学报, 2002, 22(6): 468-471.
    [91]吕彦明.球头刀高速铣削残留高度研究[J].模具技术, 2002,(6): 13-15.
    [92] Christoffel K.Tools for high-speed machining [M]. Werkstaff and Betrieb, 1996: 33-36.
    [93]翟绪圣.表面粗糙度测量[M].北京:中国计量出版社, 1989.
    [94]杨德武,彭芳瑜,周云飞.基于主曲率匹配的五坐标刀位轨迹优化[J].华中科技大学学报, 2001, 29(12): 8-11.
    [95]陈金成,徐志明,钟庭修.机床沿曲线高速加工时的运动学与动力学特性分析[J].机械工程学报, 2002, 38(1): 31-35.
    [96]华茂发,王建红.复杂曲线、曲面高速加工中的最高恒定进给速度算法研究[J].机械设计与制造, 2009, (12): 23-25.
    [97] Schulz H, Hock S. High speed milling of dies and moulds cutting conditions and technology [J]. CIRP Ann, 1995: 35-44.
    [98]王爱玲.计算几何及图形处理(CAD基础)[M].北京:国防工业出版社, 1988.
    [99]张莹,张定华,吴宝海.复杂曲面环形刀五轴加工的自适应刀轴矢量优化方法[J].中国机械工程, 2008,(4):945-948.
    [100] Yoon J H, Pottmann H, Lee Y S. Locally Optimal Cutting Positions for 5-axis Sculptured Surface Machining [J]. Computer-aided Design, 2003, 35: 69-81.
    [101] Makino Machine Tool Company. The Myths of High-Speed Machining [J]. Mold-making Technology, 1998: 53–56.
    [102]杨晓华,姚卫星,段成美.确定性疲劳累积损伤理论进展[J].中国工程科学, 2003,(4): 81-87.
    [103]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社, 2002.
    [104]吴从炘.微分几何讲义[M].北京:高等教育出版社, 1995.
    [105]艾兴.高速切削加工技术[M].北京:国防工业出版社, 2003.
    [106]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社, 2002.
    [107]刘战强,艾兴.高速切削刀具磨损表面形态研究[J].摩擦学学报, 2002, 22(6): 468-471.
    [108]张幼桢.金属切削理论[M].北京:航空业出版, 1988.
    [109]清华大学.数学手册[M].北京:高等教育出版社, 2006.
    [110] Writer Mathematics Handbook. Mathematics Handbook [M]. Higher Education Press, 2004, 3.
    [111] Mills B, Redford A H. Machinability of Engineering Materials [M]. Applied Science Publishers, 1983.
    [112]邓明.现代模具制造技术[M].北京:化学工业出版社, 2005.
    [113] Wong S KM, Ziarko W. On optimal decision rules in decision tables [J]. Bulletin of Polish Academy of Sciences, 1985, 33: 693-696.
    [114]王桂莲.微小研抛机器人加工大型曲面工艺规划技术[D].长春:吉林大学, 2010.
    [115]王玉.模具高速铣削的工艺参数研究[D].长春:吉林大学, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700