塔里木盆地原油高温高压热解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为考察深部地层原油在高温高压下的热解性能,采用高压封闭体系,在不同温度、压力下进行了不同类型原油及其组分、原油加水、加碳酸盐矿物的热模拟实验,并对热解气态烃产量进行了比较,探讨了原油热解机理。
     研究结果表明:在一定温度范围内,压力成为影响热解较重要的因素,温度越高,压力的影响作用越明显;当压力小于22MPa时,压力对原油的热解有促进作用,超过此压力,表现为抑制作用。油样越重(沥青质含量越多),热解气体产物中C3H8以上烃相对含量越少,CH4和C2H6相对含量越多。
     温度低于390℃,油样生气量较小。轻质油样Y2大量生烃温度约为390℃,而重质油样Y1,Y3大量生烃温度约为420℃,450℃为油样生烃高峰期,在此高峰期热解转化率均小于60%。沥青质热解最大生气量对应的温度比原油的高,因此,含沥青质较多的原油在地质条件下的保存温度更高。
     通过Y3油样四组分热解实验可知:总生气量的大小关系为:饱和分﹥胶质﹥沥青质﹥芳香分。热解生成甲烷量的大小关系为:沥青质>饱和分>胶质>芳香分,沥青质是热解气体中甲烷的最大贡献者。
     水对较重油样的热解影响不大,可以促进轻质油样的热解。碳酸盐矿物可以促进轻质油样的热解,抑制重质油样的热解。
     通过11级动力学模拟得出:油样Y1与Y3反应的活化能主要分布于57Kcal ? mol-1-63Kcal ? mol-1之间,油样Y2反应的活化能主要分布于49Kcal?mol-1-55Kcal?mol-1之间。油样Y2热解的活化能最小,最易热解;Y1与Y3热解难易程度相当。
     原油的常压DSC分析表明,油样热解明显吸热的起始温度小于高压热模拟曲线中生气量显著增加的温度。常压下,原油越重,开始发生热解的温度越高,吸热峰顶温度及放热峰顶温度也越高。
The thermal simulation of Tarim Basin crude oil and its fractions were carried out in closed and confined system in the temperatures range 350℃to 480℃and pressure range 10MPa to 50MPa, with and without water and carbonate mineral. The generated gas components were analyzed by gas chromatograph (GC). The differences or similarities of gas generation mechanism and pyrolysis behavior of crude oil were discussed on the basis of total gas yield and gas components yield.
     Pressure effected oil cracking in certain temperature range. High temperature made pressure’s effect more obvious. The increase in total gas yield was observed under 22MPa, and decrease was observed above 22MPa. The more asphaltene content in crude oil, the less relative content of hydrocarbons heavier than propane and more methane and ethane in total gas generation.
     Gas generation yield was small under 390℃. The temperature of obvious gas generation was 390℃for light oil-Y2, and 420℃for heavy oil-Y2 and Y3. Gas generation yield increased with temperature increasing, the maximum gas generation yield appeared at 450℃for the three oil samples, and then gas generation yield steady decreased with temperature increasing. However, oil to gas conversion rate at this temperature was less than 60%. The temperature at which generates maximum gas yield of asphaltene obtained was higher than that of crude oil. Thus, conclusion was made: crude oil which is rich in asphaltene was kept at higher temperature in geological condition. Total gas generation sequence of Y3’s four components was: saturate>resin>asphaltene>aromatics. Saturate was the first contributor to total gas generation, and then comes resin. Methane yield sequence generated from Y3’s four components was: asphaltene>saturate> resin >aromatics.
     Water had no obvious effect on heavy oil cracking; however, it propelled light oil cracking. Carbonate mineral promoted light crude oil cracking, while inhibit heavy oil cracking.
     Kinetic parameters were calculated by using first order parallel reaction: activation energy of Y2 and Y3 oil to gas activated energy was about 57Kcal?mol-1-63Kcal?mol-1, and 49Kcal?mol-1-55Kcal?mol-1 for light oil sample Y2.
     The conclusion from DSC experiments at normal pressure were obtained: dramatic endothermic temperature at normal pressure was lower than that of crude oil pyrolysis at high pressure. Moreover, the heavier the oil, the easier its pyrolysis at normal pressure. Thus, the maximum endothermal and exothermic temperatures were also high.
引文
[1]妥进才.深层油气研究现状及进展[J].地球科学进展,2002,17(4):565-571
    [2] Hill R J, Tang Y C, Kaplan I R. Insights Into oil cracking based on laboratory experiments [J]. Organic geochemistry,2003,34(12): 1651-1672
    [3] Waples D W. The kinetics of in-reservoir oil destruction and gas formation: constrains from experimental and empirical data, and from thermodynamics[J].Organic geochemistry, 2000,31: 553-576
    [4]刘文汇.塔里木盆地深层气[J].科学出版社,2007,104
    [5]贾承造.塔里木盆地构造特征与油气运移规律[J].新疆石油地质,1999,20(3):177-183
    [6]李慧莉,邱楠生,金之钧.塔里木盆地的热史[J].石油与天然气地质,2005,26(5):613-617
    [7]赵孟军,张水昌,廖志勤.原油裂解气在天然气勘探中的意义[J].石油勘探与开发,2001,28 (4):47-52
    [8] Jackson K J, Burnham A K, Braun R L, et al. Temperature and pressure dependence of n-hexadecane cracking[J].Organic Geochemistry,1995,23(10):941-953
    [9] Burnham A K, Gregg H R, Ward R L , et al. Decomposition kinetics and mechanism of n-hexadecane-1, 2-13C2 and dodece-1-ene-1, 2-13C2 doped in petroleum and n-hexadecane [J]. Geochimica et Cosmochemical Acta, 1997, 61: 3725-3737
    [10] Domine A F,Dessort D, Brevart O. Towards a new method of geochemical kinetic modeling: implications for the stability of crude oil [J]. Organic geochemistry, 1998, 28: 597-612
    [11] Behar F, Kressmann S, Rudkiewicz L, et al. Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking [J]. Organic Geochemistry, 1992, 19(1/2/3): 173-189
    [12] D.A. Wood, AAPG 72-1988:115-134
    [13]王治朝,米敬奎,李贤庆,等.生烃模拟实验方法现状与存在问题[J].天然气地球科学,2009,20(4):592-597
    [14]卢双舫,王民,王跃文,等.密闭体系与开放体系模拟实验结果的比较研究及意义[J].沉积学报,2006,24(2):281-288
    [15]田春志,卢双舫,李启明,等.塔里木盆地原油高压条件下裂解成气的化学动力学模型及其意义[J].沉积学报,2002,20(3):489-493
    [16]郭立果,田辉,靳永斌,等.原油裂解成气反应机理、介质影响因素与判识评价[J].地球化学,2008,37(5):499-511
    [17]胡晓庆.原油裂解成气热模拟实验研究进展[J].断块油气田,2007,14(3):7-10
    [18]陈晋阳,张红,肖万生,等.有机油气形成的影响因素[J].石油与天然气地质,2004,25(3):247-252
    [19]王振平,付晓泰,卢双舫,等.原油裂解成气模拟实验、产物特征及其意义[J].天然气工业,2001,21(3):12-15
    [20] Behar F. and Vandenbroucke M. Experimental determination of the rate constants of the n-C25 thermal cracking at 120,400 and 800 bars: Implications for high-pressure/high-temperature prospects [J]. Energy and Fuels, 1996, 10, 932-940
    [21]赵文智,王兆云,张水昌,等.不同地质环境下原油裂解生气条件[J].中国科学D辑地球科学,2007,37,增刊:63-68
    [22] N Tsuzuki, N Takeda, M Suzuki, et al. Kinetic modeling for hydrous pyrolysis of coal derived bitumen. In: Extended Abstract Book on Conference and Exhibition Modern Exploration and Gas Recovery Methods, Dom Wydawnictw Naukoych, Cracow, Poland, 1995, PE-03
    [23] N Tsuzuki, N Takeda, M Suzuki, et al. The kinetic modeling of oil cracking by hydrothermal pyrolysis experiments [J]. International Journal of Coal Geology 1999, 39:227–250
    [24] Hill R J, Tang Y C, Kaplan I R, et al. The influence of pressure on thermal cracking of oil [J]. Energy&fuel,1996,10(4):873-882
    [25] Domine F, Bounaceur R, Scacchi G, etal. Up to what temperature is petroleum stable? New insights from a 5200 free radical reactions model [J]. Organic Geochemistry,2002,33,(12): 1487–1499
    [26]耿新华,耿安松.源自海相碳酸盐岩烃源岩原油裂解成气的动力学研究[J].天然气地球科学,2008,19(5):695-699
    [27]蔡春芳,李伟.塔里木盆地油田水文地球化学[J].地球化学, 1996,25(6):614-623
    [28]高生军,陈义才,李延钧,等.东营凹陷沙四段原油裂解热模拟实验及产物特征[J].天然气地球科学,2009,20(1):32-35
    [29] Seewald J. Aqueous geochemistry of low molecular weight hydrocarbons at elevatedtemperatures and pressures: constraints from mineral buffered laboratory experiments [J]. Geochim Cosmochim Acta , 2001, 65(10):1641-1664
    [30] Mango F D, High tower J W. The catalytic decomposition of petroleum into natural gas [J]. Geochimca et Cosmochimica Acta, 1997, 61(24): 5347- 5350
    [31] Mango F D, Elrod L W. The carbon isotopic composition of catalytic gas: a comparative analysis with natural gas [J]. Geochimca et Cosmochimica Acta, 1999, 63(8): 1097-1106
    [32] Magdolma H. Simulated thermal maturation of type IandIII kerogens in the presence, absence of calcite and montmorionite. Organic Geochemistry, 1995, 23(2):121-127
    [33]雷怀彦,师育新,关平,等.铝硅酸盐粘土矿物对形成过渡带气的催化作用研究[J].中国科学(D辑),1997,27(1):39-44
    [34]姜兰兰,潘长春,刘金钟,等.矿物对原油裂解影响的实验研究[J].地球化学,2009,38(2):165-173
    [35] Dalla Torre M, Mahlmann R F, Ernst W G. Experimental study on the pressure dependence of vitrinite maturation. Geochem Cosmo Acta, 1997, 61(14): 2921-2928
    [36]冯子辉,迟元林,杜洪文,等.原油在储层介质中的加水裂解生气模拟实验[J].沉积学报,2002,20(3):505-509
    [37] Lewan M D. Experiments on the role of water in petroleum formation [J]. Geochimica et Cosmochimica Acta, 1997, 61(17):3691-3723
    [38] Lewan M D. Water as a source of hydrogen and oxygen in petroleum formation by hydrous pyrolysis[J]. Am Chem Soc Div Fuel Chem(preprints),1992,37(2):1643-1649
    [39] Schlepp L, Elie M, Landais P, et al. Pyrolysis of asphalt in the presence and absence of water [J]. Fuel Processing Technology,2001, 74: 107–123
    [40]秦建中,刘井旺,刘宝泉,等.加温时间、加水量对模拟实验油气产率及地化参数的影响[J].石油实验地质,2002,24(2):152-157
    [41] McNeil R I, BeMent W O. Thermal stability of hydrocarbons: laboratory criteria and field examples. Energy& Fuels,1996, 10: 60-67
    [42]王晓峰,刘文汇,徐永昌,等.水在有机质形成气态烃演化中作用的热模拟试验研究[J].自然科学进展,2006,10(16):1275-1281
    [43]郭春萍.油裂解成气实验产率特征及成烃动力学研究[D].大庆石油学院,大庆:2006
    [44]夏新宇,张文正.热压模拟实验的动力学研究及意义[J].石油勘探与开发,2000,27(5):22-29
    [45]曲佳燕,王振平,付晓泰,等.油藏热破坏的化学动力学定量研究[J].河北工业大学学报,2003,32(4):36-41
    [46]田辉,肖贤明,杨立国,等.原油高温裂解生气潜力与气体特征[J].科学通报,2009,54(6):781-786
    [47] Schenk H J, D I primio, Rhorsfield B. The conversion of oil into gas in petroleum reservoirs. Part 1: Comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis[J]. Organic Geochemistry, 1997, 26 (7/ 8):467-481
    [48]王铜山,耿安松,熊永强,等.塔里木盆地海相原油及其沥青质裂解生气动力学研究[J].石油学报,2008,29(2):167-171
    [49]何芳,蔡均猛,徐梁,等.几种生物质热解过程的TG-DSC分析[J].农机化研究,2005,3(2):163-166
    [50] Karacan O, Kok M V. Pyrolysis Analysis of Crude Oils and Their Fractions [J]. Energy &Fuels, 1997, 11(2): 385-391

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700