不完全量测下光电跟踪系统估计性能研究及其滤波器实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电跟踪系统是火控系统研制过程中的关键探测设备之一,其对目标的快速捕获与精密跟踪取决于对目标运动参数的精确估计。在实际跟踪过程中,由于可能存在的浮云等障碍物遮挡、雾气等外部气象条件干扰、激光等探测设备探测能力受限、探测设备故障以及高噪声工作环境等因素,使得光电跟踪系统的探测概率总是小于1,即存在不完全量测现象。通常,对光电跟踪系统的估计性能分析是在对漏测点的外推补点基础上,应用完全量测的思路进行的。近年来,不完全量测下的估计理论在国际上获得重视,取得了一些有价值的成果,并初步形成了基本的理论体系。本文基于工程设计及设备实现的需求,借鉴不完全量测的思路,从理论分析和实际应用两个方面,深入研究了光电跟踪系统在不完全量测条件下的估计性能,并针对跟踪系统估计性能随着探测概率下降而显著降低的现象,从充分挖掘高采样率下的冗余测角信息、引入附加角速率量测信息以及分布式光电探测设备组网融合等几个方面进行了系统建模与滤波器设计,有效地提高了光电跟踪系统的估计性能。本文的主要研究成果包括:
     (1)研究了不完全量测下光电跟踪系统估计误差的统计特性。首先,提出了一种基于后验置信度的残差检测算法。其主要思想是在传统残差检测方法的基础上首先增加一个检测门限,对处于两个门限之间的残差,利用模糊隶属度函数方法进行模糊化,得到残差的似然概率,进而结合跟踪系统的先验探测信息,计算出探测数据的后验置信概率,并根据计算结果,对跟踪系统的探测情况进行判定,从而提高了滤波器残差检测的正确率。然后,基于后验置信度残差检测算法,设计了不完全量测下的去偏转换量测Kalman目标跟踪滤波器(UCMKF)与基于线性最小无偏估计(BLUE)准则的目标跟踪滤波器。最后,在统计意义下给出了跟踪系统的Cramer-Rao下界(CRLB),并且在给定探测概率下,给出了一组期望的估计误差协方差上下界的计算方法。
     (2)研究了光电跟踪系统的临界探测概率。证明了跟踪系统临界探测概率的存在性,并且给出了临界探测概率的一组上下界,其上界被描述成一个非线性矩阵不等式(NMI)的最优解,其下界仅与跟踪系统状态转移矩阵的特征值有关。进一步利用摄动线性化方法给出了求解临界探测概率上界的一种迭代线性矩阵不等式(ILMI)算法,为光电跟踪系统探测概率的设计提供了理论依据。
     (3)针对由激光测距机与精密测角设备组成的光电跟踪系统,在不完全量测下,设计了基于后验置信度残差检测的联邦目标跟踪滤波器。首先,依据物理结构将传统光电跟踪系统的位置探测通道分解为测距与测角两个独立的探测通道,给出了独立双通道的CRLB数学模型,并且对两个探测通道的量测数据分别进行基于后验置信度残差检测的目标状态估计。然后,将估计结果送至融合中心进行信息融合。最后,利用融合结果,并根据探测通道数据可信的后验概率,对探测通道的子滤波器进行信息分配。Monte-Carlo仿真以及试验场实测数据表明,在不完全量测下,所提滤波器在不增加系统硬件成本的前提下,通过攫取高采样率下的测角信息,跟踪性能较之传统光电跟踪系统的跟踪性能有了显著改善,并且滤波器估计误差均方差(RMSE)可逼近跟踪系统统计意义下的CRLB。
     (4)提出了一种将俯仰和偏航两个方向的角速度量测引入传统光电跟踪系统的设计思想,并且针对这类新型的光电跟踪系统,设计了基于后验置信度融合的目标跟踪滤波器。首先建立了跟踪系统的量测模型,利用嵌套条件方法,推导了转换量测误差前两阶矩的一致性估计;然后针对位置探测通道与角速度探测通道的四种数据探测情形设计了四个子滤波器,并根据探测通道的探测情况计算出各子滤波器的后验置信度,进而对各子滤波器的输出按后验置信度进行加权融合,得到了跟踪滤波器的全局输出;最后给出了这类新型光电跟踪系统统计意义下的CRLB。Monte-Carlo仿真表明:在不完全量测下,相比传统光电跟踪系统,附加角速度量测的光电跟踪系统的跟踪性能有了显著提高,并且滤波器RMSE可逼近跟踪系统统计意义下的CRLB。
     (5)针对具有有色观测噪声的分布式光电跟踪系统,设计了一种分布式融合滤波器。其原理是依据等效观测噪声与状态噪声的相关性,将目标运动状态分解为不相关的两部分,进行非扩维Kalman滤波以及分布式状态融合,融合算法等价于集中式Kalman融合。同时,进一步针对带反馈结构的具有有色观测噪声的分布式光电跟踪系统,分析了反馈结构对跟踪系统的影响,设计了修正的分布式融合滤波器。理论分析和Monte-Carlo仿真表明:所提分布式融合滤波器的估计性能较之任何局部跟踪系统的估计性能有了显著提升,并且计算量满足实时处理的要求。
Optic-electric tracking systems are indispensable detection equipments in development of fire control systems. Fast acquiring targets and accuracy tracking targets depend on accuracy estimation of target motion parameters. However, during practical tracking processes, detection probability of optic-electric systems is always less than one, due to shading of obstacles (drifting clouds, etc), interference of weather conditions (fog, etc), limited detectability of detection equipments (laser, etc), faults of detection equipments and noises working environment, etc. Generally, estimation performance of optic-electric tracking systems with intermittent observations is analyzed using extrapolating technology with thoughts of complete observations. Recently, international scholars pay more attention to estimation theory with intermittent observations and obtain some valuable results, and basic theoretical system is established. Considering that estimation performance of optic-electric tracking systems degenerates significantly when there is a drop of detection probability with intermittent observations, based on requirements of engineering design and equipment development, using estimation theory of intermittent observations, thorough research on estimation performance and performance enhancement technology of optical-electric tracking systems with intermittent observations is conducted from fully exploiting angle redundant information, introducing angle velocity information and distributed networking of optic-electric tracking systems. Theoretical analysis and simulation research show that these technologies can effectively improve estimation performance of optical-electric tracking systems. The major research results are summed up as follows:
     (1) A residual test algorithm based on posterior confidence is presented. The new algorithm firstly adds a test threshold based on traditional residual test algorithm, and then the residuals between the two thresholds can be fuzzed by means of fuzzy membership function and the likelihood probability of residuals can be obtained, and combined with the prior detection information, the posterior confidence of detection data can be calculated. Therefore the detection situation of tracking system can be determined based on the calculated posterior confidence. Then, with intermittent observations, an unbiased converted measurement Kalman filtering (UCMKF) and a target tracking filtering of linear least unbiased estimation (BLUE) are designed based on the proposed residual test algorithm. The Cramer-Rao low bounds (CRLB) of tracking system is also presented under the statistic significance, and an upper and lower bound of average of estimation error covariance can be conveniently calculated with given detection probability.
     (2) The existence of critical detection probability of optic-electric tracking system is proved, and an upper and lower bound of critical detection probability is presented. The upper bound is described as the optimal solution of a nonlinear matrix inequality (NMI), and the lower bound is only related to eigenvalues of system state transition matrices. An iterative linear matrix inequality (ILMI) algorithm for solving the upper bound of critical detection probability is proposed by means of perturbation linearization. That provides theoretical basis for design of detection probability of optic-electric tracking system.
     (3) For optic-electric tracking system composed of laser range finder and precision angle measurement equipment with intermittent observations, a federated filter is designed based on the posterior confidence residual test algorithm. Firstly, the position detection channel of traditional optic-electric tracking systems is decomposed into two independent detection channels according to physical structure, and the CRLB model of the independent detection channels is presented. Then, target motion states are respectively estimated by use of the detection data of the two channels, and a global state estimate can be obtained by fusing the two state estimates. Finally, the information sharing of the federated filter is done according to the global state estimate and the posterior confidence of detection channels. Monte-Carlo simulation and measured data show that the proposed tracking filter can obviously improve estimation performance of tradition optic-electric tracking systems by mining redundant angle measurements without increasing any hardware cost, and the root mean square of estimate error (RMSE) of the proposed tracking filter is closed to the average CRLB of tracking systems.
     (4) A design idea, which is introducing angle velocity measurements of elevation and azimuth into traditional optic-electric tracking systems, is proposed, and a target tracking filter based on posterior confidence weighted fusion is designed with intermittent observations. Firstly, a measurement model for the new type of optic-electric tracking systems is built, and then using the nested conditioning method, the consistent estimate of the first two moments of converted measurement errors is derived. Secondly, for the four different detection cases of position and velocity detection channels, four sub-filters are designed respectively whose posterior confidences are calculated based on the detection cases of the channels, and then the output of the tracking filter is obtained by means of weighting the outputs of sub-filters with the corresponding posterior confidences. Finally, the statistic average of CRLB for tracking systems is presented. Monte-Carlo simulation results show that, with intermittent observations, the performance of optic-electric tracking systems with angle velocity measurements can be significantly improved as compared with that of traditional systems. Moreover, the RMSE of the designed tracking filter is closed to the average CRLB of tracking systems.
     (5) A distributed Kalman fusion algorithm is proposed for distributed optic-electric tracking systems with colored measurement noises. The principle of the algorithm is that system states are divided into two uncorrelated parts and then the two parts are sequentially treated by non-augmented state Kalman filtering and distributed state fusion. It is proved that the distributed state fusion is equivalent to centralized Kalman fusion. Furthermore, the influence on distributed tracking systems of feedback structure is analyzed, and a modified distributed Kalman fusion algorithm is given for distributed tracking systems with colored measurement noises and feedback. Theory analysis and Monte-Carlo simulation show that the estimation performance of the proposed distributed fusion filter can be obviously improved as compared with that of local tracking filters, and it can be conveniently applied in the situation of real-time processing.
引文
[1]Li X R, Jilkov V P. Survey of Maneuvering Target Tracking Part Ⅰ:Dynamic Models[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(4): 1333-1363.
    [2]Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation[M]. New York:Wiley,2001.
    [3]Singer R A. Estimation optimal tracking filter performance for manned maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970,6(4):473-483.
    [4]Moose R L, Wang P P. An adaptive estimator with learning for a plant containing semi-Markovian switching parameters[C]. IEEE conference on decision and control,1975:357-361.
    [5]Moose R L, Vanlandingham H F, Mccabe D H. Modeling and estimation for tracking manuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems,1979,15(3):448-456.
    [6]周宏仁.机动目标跟踪[M].北京:国防工业出版社,1991.
    [7]Waston G A, Blair W D. IMM algorithm for tracking targts that maneuvering through coordinated turns[C]. Proceedings of SPIE Signal and Data Processing of Small Targets,1992:236-247.
    [8]Mehrotra K, Mahapatra P R. A jerk model to tracking highly maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems,1997,33(4):1094-1105.
    [9]Rao S K. A comments on "a jerk model for tracking highly maneuvering targets"[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(3):982-983.
    [10]Best R A, Norton J P. A new model and efficient tracker for a target with curvilinear motion[J]. IEEE Transactions on Aerospace and Electronic Systems,1997,33(3): 1030-1037.
    [11]Gadzhiev C M. Testing the covariance matrix of a renovation sequence under operating control of the Kalman filter[J]. Automation and Remote Control,1996, 57(7):1046-1052.
    [12]秦永元,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2004.
    [13]王正明,易东云.测量数据建模与参数估计[M].长沙:国防科技大学出版社, 1996.
    [14]沈一鹰,冉启文,刘永坦.改进的格拉布斯准则在信号检测门限估值中的应用[J].哈尔滨工业大学学报,1999,31(3):111-113.
    [15]Whalen AD. Detection of signal in noise[M]. New York:Academic Press,1971.
    [16]张志鑫,张峰.基于状态递推器的改进型残差x2检测法[J].中国惯性技术学报,2009,17(1):107-110.
    [17]卢迪,姚郁,贺风华.一种抗野值的Kalman滤波器[J].系统仿真学报,2004,16(5):1027-1029.
    [18]胡峰,孙国基.航天靶场外测数据野值点的准实时诊断方法研究[J].飞行器测控技术,1998,17(4):25-32.
    [19]胡绍林,孙国基.靶场外测数据野值点的统计诊断技术[J].宇航学报,1999,20(2):68-74.
    [20]刘利生.外测数据事后处理[M].北京:国防工业出版社,2000.
    [21]Ranta R, Louis-Dorr V, Heinrich C, Wolf D. Iterative wavelet-based denoising methods and robust outlier detection[J]. IEEE Transactions on Signal Processing Letters,2005,12(8):557-560.
    [22]魏国华,吴嗣亮.用小波变换去除多普勒频率估计野值点的方法[J].北京理工大学学报,2003,23(5):629-632。
    [23]薛聿桢.GP-RBF网络应用于飞行器外测数据野值实时剔除[J].系统仿真学报,2005,17(2):286-289.
    [24]Angiulli F, Basta S, Pizzuti C. Distance-Based detection and prediction of outliers[J]. IEEE Transactions on Knowledge and Data,2006,18(2):145-160.
    [25]Wiener N. The extrapolation, interpolation, and smoothing of stationary time serise[M]. New York,1949.
    [26]Kalman R E. A new approach to linear filtering and prediction problems[J]. Trans.ASME, Journal of Basic Engineering,1960,82(1):35-45.
    [27]韩崇昭,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社,2006.
    [28]Lerro D, Bar-Shalom Y. Tracking with debiased consistent converted measurements vs EKF[J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(3): 1015-1022.
    [29]Sunchomski P. Explicit expressions for debiased statistics of 3D converted measurements[J]. IEEE Transactions on Aerospace and Electronic Systems,1999, 35(1):368-370.
    [30]杨春玲,倪晋麟,刘国岁,郑全战.转换坐标Kalman滤波器的雷达目标跟踪 [J].电子学报,1999,27(3):121-123.
    [31]Mo L B, Song X Q, Zhou Y Y, Sun Z K. Unbiased converted measurements for tracking[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(3): 1023-1027.
    [32]Fletcher F K, Kershaw D J. Performance analysis of unbiased and classical conversion techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002,38(4):1441-1444.
    [33]Duan Z S, Han C Z, Li X R Comments on "unbiased converted measurements for tracking"[J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(4): 1374-1377.
    [34]王国宏,毛士艺,何友.均方意义下的最优无偏转换测量Kalman滤波[J].系统仿真学报,2002,14(1):119-124.
    [35]Park S E, Lee J G Improved Kalman filter design for three-dimensional radar tracking[J]. IEEE Transactions on Aerospace and Electronic Systems,2001,37(2): 727-739.
    [36]Zhao Z L, Li X R, Jilkov V P. Best linear unbiased filtering with nonlinear measurements for target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(4):1324-1336.
    [37]Anderson B D O, Moore J B. Optimal filtering[M]. Englewood Cliffs, NJ: Prentice-Hall,1979.
    [38]Scala B F L, Bitmead R R, James M R. Conditions for stability of the extended Kalman filter and their application to the frequency tracking problem[J]. Mathematics of Control, Signals, and Systems,1995,8(1):1-26.
    [39]Reif K, Gunther S, Yaz E, Unbehauen R. Stochastic stability of the continuous-time extended Kalman filter[J]. IEEE Transactions on Automatic Control,1999,44(4): 714-728.
    [40]Bell B M, Cathey F W. The iterated Kalman filter update as a Gauss-Newton method[J]. IEEE Transactions on Automatic Control,1993,38(2):294-297.
    [41]Julier S J, Uhlmann J K. A new method for the nonlinear transformation fo means and covariance in filters and estimators[J]. IEEE Transactions on Automatic Control,2000,45(3):477-482.
    [42]Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401-422.
    [43]潘泉,杨峰,叶亮,梁彦,程永梅.一类非线性滤波器——UKF综述[J].控制与 决策,2005,20(5):481-494.
    [44]Julier S J. A skewed approach to filtering[C]. SPIE Conference on Signal and Data Processing of Small Targets, Orlando, Florida,1998:271-282.
    [45]Julier S J. The scaled unscented transformation[C]. Proceedings of the American Control Conference,2002:4555-4559.
    [46]Morelande M R, Ristic B. Reduced sigma point filtering for partially linear models[C]. IEEE International Conference on Acoustics, Speed and Signal Processing,2006:37-40.
    [47]Rudolph V M, Wan E. The Square-root unscented Kalman filter for state and parameter estimation[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing,2001:3461-3464.
    [48]Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinear filtering[J]. automatica,2006,42(2):261-270.
    [49]Wu Y X, Hu D W, Hu X P. Comments on "Performance evaluation of UKF-based nonlinear filtering"[J]. Automatica,2007,43(3):567-568.
    [50]Xiong K, Zhang H Y, Chan C W. Author's reply to "Comments on 'Performance evaluation of UKF-based nonlinear filtering'"[J]. Automatica,2007,43(3): 569-570.
    [51]Merwe R V D, Wan E A, Julier S. Sigma-point Kalman filters for nonlinear estimation and sensor-fusion:Applications to integrated navigation[C]. AIAA Guidance, Navigation and Control Conference:Providence,2004.
    [52]Lei M, Han C Z. Sequential nonlinear tracking using UKF and raw range-rate measurements[J]. IEEE Transactions on Aerospace and Electronic Systems,2007, 43(1):239-250.
    [53]Wan E A, Vander M R, The unscented kalman filter[A]. Kalman filtering and neural networks. Kalman filtering and neural networks. New York:Wiley,2001.
    [54]Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing,2002,50(2):174-188.
    [55]Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE PROCEEDINGS-F,1993, 140(2):107-113.
    [56]Ristic B, Arulampalam S, Gordon N. Beyond the Kalman filter:particle filters for tracking applications[M]. London:Artech House,2004.
    [57]杨小军,潘泉,王睿,张洪才.粒子滤波进展[J].控制理论与应用,2006,23(2):261-267。
    [58]胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-371.
    [59]Doucet A, Freitas N, Gordon N J. Sequential Monte Carlo in practice[M]. New York:Springer,2001.
    [60]Liu J S. Monte Carlo strategies in scientific computing[M]. New York:Springer, 2001.
    [61]Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing,2000,10(3):197-208.
    [62]Berzuini C, Best N, Gilks W, Larizza C. Dynamic conditional independence models and markov chain Monte Carlo methods[J]. Journal of the American Statistical Association,1997,92:1403-1412.
    [63]Liu J S, Chen R. "Sequential Monte Carlo methods for dynamic systems"[J]. Journal of the American Statistical Association,1998,93:1032-1044.
    [64]Ripley B D. Stochastic Simulation[M]. New York:Wiley,1987.
    [65]Pitt M K, Shephard N. Filtering via simulation:Auxiliary particle filters[J]. Journal of the American Statistical Association,1999,94:590-599.
    [66]Kitagawa G, Gersch G. Smoothness Priors Analysis of Time Series[J]. Lecture Notes in Statistics,1996,116.
    [67]Higuchi T. Monte-Carlo filtering using the genetic algorithm operators[J]. Journal of Statistical Computation and Simulation,1997,59:1-23.
    [68]Doucet A, Gordon N, Krishnamurthy Stochastic sampling algorithms for state estimation of Jump Markov linear systems[J]. IEEE Transactions on Automatic Control,2000,45(2):188-202.
    [69]Kotecha J H, Djuric P A. Gaussian particle filtering[J]. IEEE Transactions on Signal Processing,2003,51(10):2592-2601.
    [70]Bobrovsky B Z, Zakai M. A lower bound on the estimation error for Markov processes[J]. IEEE Transactions on Automatic Control,1975,20(6):785-788.
    [71]Galdos J I. A Cramer-Rao bound for multidimensional discrete-time dynamical systems[J]. IEEE Transactions on Automatic Control,1980,25(1):117-119.
    [72]Shan L, Doerschuk P C. Performance bounds for nonlinear filters[J]. IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):316-318.
    [73]Doerschuk P C. Cramer-Rao bounds for discrete-time nonlinear filtering problems[J]. IEEE Transactions on Automatic Control,1995,40(8):1465-1469.
    [74]Kerr T H. Status of CR-like lower bound for nonlinear filtering[J]. IEEE Transactions on Aerospace and Electronic Systems,1989,25(5):590-601.
    [75]Tichavsky P, Muravchik C H, Nehorai A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing,1998, 46(5):1374-1377.
    [76]Ristic B, farina A, Hernandez M. Cramer-Rao lower bound for tracking multiple targets[J]. IEE Proc on Radar, Sonar and Navigation,2004,151(3):129-134.
    [77]Hue C, Cadre J L, Perez P. Posterior Cramer-Rao bounds for multi-target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1): 37-49.
    [78]王国宏,许建峰,毛士艺,何友.2D雷达组网中目标高度估计误差的Cramer-Rao限[J].航空学报,2004,25(1):66-68.
    [79]占荣辉,郁春来,辛勤,万建伟.机动目标跟踪误差CRLB计算与分析[J].国防科技大学学报,2007,29(5):89-94.
    [80]Nahi N E. Optimal recursive estimation with uncertain observation[J]. IEEE Transactions on Information Theory,1969,15(4):457-462.
    [81]Hadidi M T, Schwartz S C. Linear recursive state estimators under uncertain observations[J]. IEEE Transactions on Automatic Control,1979,24(6):944-948.
    [82]Hermoso A, Linares J. Linear estimation for discrete-time systems in the presence of time-correlated disturbances and uncertain observations[J]. IEEE Transactions on Automatic Control,1994,39(8):1636-1638.
    [83]Hermoso A, Linares J. Linear smoothing for discrete-time systems in the presence of correlated disturbances and uncertain observations[J]. IEEE Transactions on Automatic Control,1995,40(8):1486-1488.
    [84]Mariton M. Jump linear systems in automatic control [M]. New York:Marcel Dekker,1990.
    [85]Nilsson J, Bernhardsson B, Wittenmark B. Stochastic analysis and control of real-time systems with random time delays[J]. Automatica,1998,34(1):57-64.
    [86]Costa O, Guerra S. Stationary filter for linear minimum mean square error estimator of discrete-time markovian jump systems[J]. IEEE Transactions on Automatic Control,2002,47(8):1351-1356.
    [87]Fortmann T, Bar-Shalom Y, Scheffe M, Gelfand S. Detection thresholds for tracking in clutter-a connection between estimation and signal processing[J]. IEEE Transactions on Automatic Control,1985,30(3):221-228.
    [88]Sinopoli B, Schenato L, Fransceschetti L M, Poolla K, Jordan M I, Sastry S. Kalman filtering with intermittentobservations[J]. IEEE Transactionson on Automatic Control,2004,49(9):1453-1464.
    [89]Liu X H, Goldsmith A J. Kalman filtering with partial observation losses[C]. Proceedings of the 43 th IEEE Conference on Decision and Control, Paradise Island, Bahamas,2004:4180-4186.
    [90]Huang M, Dey S. Stability of Kalman filtering with Markov packet losses[J]. Automatica,2007,43(4):598-607.
    [91]Plarre K, Bullo F. On Kalman Filtering for Detectable Systems With Intermittent Observations[J]. IEEE Transactions on Automatic Control,2009,54(2):386-390.
    [92]Sinopoli B, Mo Y. A Characterization of the Critical Value for Kalman Filtering with Intermittent Observations[C]. Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico,2008:2692-2697.
    [93]Farina A, Ristic B, Timmoneri L. Cramer-Rao bound for nonlinear filtering with Pd<1 and its application to target tracking[J]. IEEE Transactions Signal Processing, 2002,50(8):1916-1924.
    [94]Hernandez M, Ristic B, Farina A, Timmoneri L. A comparison of two cramer-rao bounds for nonlinear filtering with Pd<1 [J]. IEEE Transactions on Signal Processing,2004,52(9):2361-2369.
    [95]Boers Y, Driessen H. Results on the modified Riccati equation:target tracking applications[J]. IEEE Transactions on Aerospace and Electronic Systems,2006, 42(1):379-384.
    [96]Wang Z D, Ho D W C, Liu X H. Variance-constrained filtering for uncertain stochastic systems with missing measurements[J]. IEEE Transactions on Automatic Control,2003,8(7):1254-1258.
    [97]Wang Z D, Ho D W C, Liu X H. Variance-Constrained control for uncertain stochastic systems with missing measurements[J]. IEEE Transactions on Systems Man and Cybernetics-Part A:Systems and Humans,2005,35(5):746-753.
    [98]Nakamori S, Caballero A, Carazo A H, Perez J L. Linear estimation from uncertain observations with white plus coloured noises using covariance information[J]. Digital Signal Processing,2003,13(3):552-568.
    [99]Nakamori S, Carazo A H, Perez J L, Rodriguez M L S. Fixed-interval smoothing problem from uncertain observations with correlated signal and noise[J]. Applied Mathematics and Computation,2004,154(1):239-255.
    [100]Nakamori S, Caballero A, Carazo A H, Perez J L. Linear recursive discrete-time estimators using covariance information under uncertain observations[J]. Signal Processing,2003,83(7):1553-1559.
    [101]Nakamori S, Caballero A, Carazo A H, Perez J L. New design of estimators using covariance inforamance with uncertain observation in linear discrete-time systems[J]. Applied Mathematics and Computation,2003,135(2):429-441.
    [102]Nakamori S, Caballero A, Carazo A H, Perez J L. Quadratic estimation from uncertain observations with white plus coloured noises using covariance information[J]. Applied Mathematics and Computation,2004,155(1):65-79.
    [103]Nakamori S, Caballero A, Carazo A H, Perez J L. Second-order polynomial estimators from uncertain observations using covariance information[J]. Applied Mathematics and Computation,2003,143:319-338.
    [104]Nakamori S, Caballero A, Carazo A H, Perez J L. Suboptimal estimation of signals from uncertain observations using approximations of mixtures[J]. Digital Signal Processing,2007,17(1):4-16.
    [105]Nakamori S, Caballero A, Carazo A H, Perez J L. Second-order polynomial estimators from uncertain observations using covariance information[J]. Applied Mathematics and Computation,2003,143(2):319-338.
    [106]Gao Q, Harris C J. Comparison of two measurements fusion methods for Kalman-filter-based multisensor data fusion[J]. IEEE Transactions on Aerospace and Electronic Systems,2001,37(1):273-279.
    [107]Roy S, Iltis R A. Decentralized linear estimation in correlated measurement noise[J]. IEEE Transactions on Aerospace and Electronic Systems,1991,27(6): 939-941.
    [108]欧连军,邱红专,张洪钺.多个相关测量的融合算法及其最优性[J].信息与控制,2005,34(6):690-695.
    [109]冉陈建,惠玉松,顾磊,邓自立.相关观测融合稳态Kalman滤波器及其最优性[J].自动化学报,2008,34(3):233-239.
    [110]Gao Y, Jia W J, Sun X J, Deng Z L. Self-Tuning multisensor weighted measurement fusion Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems,2009,45(1):179-191.
    [111]Sun S L. Multi-sensor optimal information fusion kalman filters with applications[J]. Aerospace Science and Technology,2004,8:57-62.
    [112]Bar-Shalom Y, Li X R. Multitarget-multisensor tracking:Principles and techniques[M]. Storrs, CT:YBS Publishing,1995.
    [113]Sun S L, Deng Z L. Multi-sensor optimal information fusion Kalman filter[J]. Automatica,2004,40(6):1017-1023.
    [114]Sun S L. Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor[J]. Automatica,2004,40(8):1447-1453.
    [115]Chang K C, Saha R, Bar-shalom Y. On optimal track-to-track fusion[J]. IEEE Transactions on Aerospace and Electronic Systems,1997,33(4):1271-1276.
    [116]Zhu Y M, You Z S, Zhao J, Zhang K S, Li X R. The optimality for the distributed Kalman filtering with feedback[J]. Automatica,2001,37(9):1489-1493.
    [117]Li X R, Zhu Y M, Wang J, Han C Z. Optimal linear estimation fusion-part I: Unified fusion rules[J]. IEEE Transactions on Information Theory,2003,49(9): 2192-2208.
    [118]Song E B, Zhu Y M, Zhou J, You Z S. Optimal Kalman filtering fusion with cross-correlated sensor noises[J]. Automatica,2007,43(8):1450-1456.
    [119]陈嘉鸿,韩九强,席震东,张新曼.一般相关噪声下多传感器平滑融合算法[J].自动化学报,2009,35(5):491-497.
    [120]Chang K C, Zhi T, Saha R K. Performance evaluation of track fusion with information matrix filter[J]. IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):455-466.
    [121]Bar-Shalom Y. On hierarchical tracking for the real world[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):846-850.
    [122]Carlson N A. Federated square filter for decentralized parallet process[J]. IEEE Transactions on Aerospace and Electronic Systems,1990,26(3):517-524.
    [123]Van Tree H L. Detection, estimation and modulation theroy[M]. ed. Wiley. New York,1968.
    [124]郭治.现代火控理论[M].北京:国防工业出版社,1996.
    [125]Schenato L, Sinopoli B, Franceschetti, M, Poolla K, Sastry S S. Foundations of control and estimation over lossy networks[J]. Proceedings of the IEEE,2007, 95(1):163-187.
    [126]Hassibi A, How J, Boyd S. A path-following method for solving BMI problems in control[C]. Proceedings of IEEE International Conference, San Diego, USA,1999: 1385-1389.
    [127]戚国庆,盛安冬,刘艳,郭治.一种利用测角信息提高航路估计精度的方法[J].兵工学报,2005,26(2):260-262.
    [128]Wu W R, Chang D C. Maneuvering target tracking with colored noise[J]. IEEE Transactions on Aerospace and Electronic Systems,1996,32(4):1311-1320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700