东方粘虫微卫星富集文库的构建与遗传标记筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东方粘虫Pseudaletia separata(Walker)是我国和其它亚洲国家粮食作物的主要害虫之一,广泛分布于我国各地。东方粘虫具有迁飞性、暴食性等特点,容易暴发成灾。我国科学家曾对其宏观迁飞规律、迁飞行为机制、飞行与生殖的关系等进行了深入研究,但对其种群分子遗传学却很少涉及。本研究着力于东方粘虫微卫星标记的分离和鉴定,为以后种群遗传学研究准备工具;同时,本研究对该物种基因组微卫星特征和变异进行了较深入地分析,并优化了鳞翅目成虫DNA提取的技术方法。
     将传统的蛋白酶K+SDS+苯酚抽提方法和CTAB方法结合起来,筛选出从东方粘虫成虫自然种群的乙醇保存标本中提取高质量、高产量基因组DNA的方法,用于制备分离微卫星标记所需的DNA样品。对比研究结果表明,用CTAB+传统方法提取DNA时,取腹部中段10-20 mg组织样品进行实验,不同种群DNA产品合格率68.42%-95.28%,提取合格DNA量5.59-10.04 mg/g,显著高于传统蛋白酶K+SDS裂解及苯酚抽提方法的7.69%-40%和2.83-5.78 mg/g。另外,用热NaOH法快速制备用于大规模基因分型的DNA样品的研究结果表明,对于胸部和腹部组织样品,用热NaOH溶液处理20 min,就能够提取出微卫星PCR扩增反应所需的DNA样品;对于头部组织样品,用热NaOH溶液处理40-60 min是比较合适的。对比研究结果显示,来自热NaOH方法的DNA样品在构建微卫星富集文库过程中失败,但两种样品作为模板进行微卫星PCR扩增的产物在遗传分析仪上检测结果相同。
     利用生物素5’标记的(CA)15、(GA)15、(ATG)12、(GAT)12、(TAGA)8和(GTGA)8作为探针,采用磁珠富集法构建东方粘虫微卫星富集文库。经过基因组DNA酶切、300-700bp片段回收、连接接头、纯化、连接产物变性、已结合探针的磁珠捕捉目标片段、目标片段洗脱、PCR扩增、连接pGEM-T载体并转化DH5α高效感受态细胞、蓝白筛选等过程,最后构建成功包含8531个克隆的粘虫微卫星富集文库。从文库随机抽取866个克隆进行测序,并分析序列中是否含有微卫星,统计结果表明,所建文库中平均微卫星阳性克隆率35.8%,高于以往对棉铃虫、马尾松毛虫等鳞翅目昆虫进行同类研究的结果。
     用REPEATMASKER软件和人工分析相结合,对本研究已筛选出的一批东方粘虫微卫星的类型、各类丰度、变异情况等进行深入分析,并与InSatDb数据库中5种全基因组测序昆虫(黑腹果蝇、冈比亚按蚊、赤拟谷盗、意大利蜜蜂、家蚕)基因组中微卫星的特征和变异情况进行比较。本研究已发现369个东方粘虫微卫星序列、46个低复杂度区域、6个转座元件和1个tRNA.所得微卫星分属于21个不同重复基序,以TTG/CAA基序的微卫星最多,占全部微卫星总数的37.13%,其次是CA/TG类和CAT/ATG类,分别占30.89%和15.72%。这三类微卫星合起来占全部微卫星的83.74%。所得微卫星序列还具有短型偏多、不完全型(存在突变)偏多、AT富集的偏多、复合型较少等特点。这些特点与5种全基因组测序昆虫微卫星的统计结果基本一致。对不完全型微卫星的重复序列变异情况进行统计,替换碱基比例一般0.6%-11.7%,个别达到15.6%-26.1%;缺失碱基比例0.5%-10.6%,插入碱基比例0.3%-11.3%,平均每处插入/缺失碱基1-1.8,个别达到3-6个碱基。进一步的分析发现,东方粘虫微卫星重复序列的变异还存在如下特点:碱基替换在突变中占据优势,在全部微卫星基因座中发生比例达到92.38%,而缺失和插入微卫星比例分别只有27.62%和25.24%;替换+插入、替换+缺失的发生比例接近,均为20%稍多,而缺失+插入、替换+缺失+插入的比例较低,均为12%稍多;两类数量最多的微卫星TTG/CAA(137个)、TG/CA (114个)的重复序列变异中,转换和颠换发生的频率并不相同,转换要多于颠换;重复序列长度101-150bp和151-200bp的微卫星发生变异的概率较大,变异碱基数较多,而小于50bp和大于200bp的微卫星变异比例和碱基变异比例均明显减小;TTG/CAA类的变异微卫星比例高于TG/CA类,而变异碱基比例则明显低于后者;变异微卫星重复序列近5’端(将一个重复序列分为五段,即5’端、近5’端、中段、近3’端、3’端)变异碱基数最多,其次是中段,而两极则相对较少发生变异,而且变异最多区域出现在近5’端的微卫星数量也最多。另外,在各类微卫星基因座侧翼序列比较中,仅发现11类侧翼序列相同的多拷贝微卫星基因座,涉及微卫星基因座24个,占所发现全部微卫星基因座的6.50%。但并没有发现侧翼序列高度相似的微卫星家族。
     在含有微卫星的克隆序列中,经过序列选择、引物设计和合成、Touchdown PCR初选(24个基因组DNA样品)、优化PCR优选(24个基因组DNA样品)、遗传分析仪再选(48个基因组DNA样品)等三轮筛选,共筛出8个多态性微卫星标记(GenBank登录号FJ896055-FJ896062).对8个微卫星基因座在48个样品中的等位基因分布情况进行统计,并用GenePop软件进行检测,经Bonferroni校正,均符合哈迪-温伯格平衡(Hardy-Weinberg proportions),微卫星基因座之间也没有检测出显著的配子相不平衡(gametic phase disequilibrium)。用Cervus软件统计计算,各基因座有11-31个等位基因,期望杂合度0.747-0.931,显示出各基因座都具较好多态性,可用做东方粘虫种群研究的遗传标记。
     本研究的创新之处主要表现在以下几个方面:一、改进了鳞翅目成虫基因组DNA提取方法,使之适合微卫星富集文库构建、微卫星标记筛选和分型的需要;二、国内首次成功构建东方粘虫微卫星富集文库,抽样检测微卫星阳性克隆率较高;三、首次对东方粘虫基因组微卫星序列进行特征和变异分析,丰富了鳞翅目昆虫基因组微卫星序列的信息;四、首次筛选出8个东方粘虫微卫星标记,填补了东方粘虫微卫星遗传标记的空白。
The oriental armyworm Pseudaletia separata(Walker) is one of the most important agricultural pests in China and other Asian countries, and occurs throughout China except for Xinjiang and Tibet provinces. It has the habits of migration and gluttony, frequently leading to a large-area outbreak. Great efforts have been made by Chinese scientists in the study of its migration regularity, migratory behavior mechanism and the relationship between flight and reproduction, however molecular genetics of oriental armyworm was seldom involved. In this work some polymorphic microsatellite loci of this Lepidopteran insect were characterized which can be used as markers for genetic study. we have firstly construct six microsatellite-enriched libraries, then screen microsatellite markers. Furthermore, the extraction methods of genomic DNA from Lepidoptera adults were optimized, and the features and variations of microsatellite sequences were analyzed.
     CTAB-based method was combined with routine phenol extraction (called "CTAB-combined method" below) to obtain high-quality and high-yield DNA from various populations of ethanol-preserved adult oriental armyworms collected in the field. 10-20 mg tissue is appropriate to extract DNA in a 2 ml microcentrifuge tube, with a qualified DNA products proportion of 68.42%-95.28% and a DNA yield of 5.59-10.04 mg/g, significantly greater than 7.69%-40% and 2.83-5.78 mg/g of DNA products prepared with a route method (tissue digestion with SDS and proteinase K, DNA purification with phenol:chloroform:isoamyl alcohol (25:24:1) and DNA precipitation with alcohol). Simultaneously, hot NaOH solutions were successfully used to isolate genomic DNA which is suitable for temples in PCRs when abdominal or thoracic tissue was heated for 20 min, or cephalic tissue was heated for 40 min. It was demonstrated that two kinds of DNA samples were both good enough for microsatellite genotyping, but DNA preparations extracted with NaOH-based approach failed in microsatellite isolation.
     Six microsatellite-enriched libraries were constructed with a magnetic-bead enrichment method, in which 5'biotin-labelled (CA)15, (GA)15, (ATG)12, (GAT)12, (TAGA)8 and (GTGA)8 were used as probes. This involved a series of successive steps, i.e.enzyme restriction of genomic DNA, the recovery of 300-700bp fragments, adapter ligation, purification and denaturation of ligation products, capture of target fragments with magnetic beads combined with probes, elution of target fragments, PCR amplification, vector ligation and transformation into DH5a competent cells, blue-white screening. Finally six microsatellite-enriched libraries were achieved containing 8531 clones. In 866 clones randomly sampled from libraries and sequenced, microsatellite-positive clones account for 35.8%, greater than results of similar research in cotton bollworm Heliothis armigera and masson pine moth Dendrolimus punctatus.
     369 microsatellites were found from 866 sequenced clones by Repeatmasker software and manual analysis. In addition,46 low complexity regions,6 mobile elements and 1 tRNA were recognized from them. These microsatellites were divided into 21 types of repeat motif, of which TTG/CAA motif is the most common with a proportion of 37.13%, secondly CA/TG (30.89%), thirdly CAT/ATG (15.72%), only 16.26% from other types. Among all microsatellites, short (repeat sequence length<50bp) type or imperfect (existence of mutations among repeat sequences) type or AT-rich type is in the majority, and the compound type is small in number. Statistical results of imperfect microsatellites show that the rate of base substitution, base deletion and base insertion are 0.6%-26.1%, 0.5%-10.6% and 0.3%-11.3%, respectively.
     Further analysis showed that mutations in repeat sequences of oriental armyworm genome have other characteristics as follow:base substitution holds overwhelming superiority in imperfect microsatellites with a proportion of 92.38%, microsatellites containing deletion or insertion only account for 27.62% and 25.24%, respectively; the proportions of microsatellites containing substitution+insertion and substitution+deletion are both a little more 20%, deletion+insertion and substitution+deletion+insertion types have similar ratios, a little more 12%; the occurance rate of transition is greater than transversion in two most abundant types in this study; microsatellites with 101-150 bp and 151-200bp repeat sequences possess greater mutation rate and more mutational bases than those with<50 bp and> 200 bp repeats; compared with TG/CA type, TTG/CAA type has more imperfect members, but a less percentage of mutational bases; in a mutation-containing microsatellite repeat sequence, mutations mainly occur in 5'proximal sequences, secondly in middle segment, least in two extremes. But no microsatellite family was found in comparison of all microsatellites, only 11 types of multicopy microsatellites were discovered involving 24 (0.6%) microsatellite loci. These features above are mostly consistent with that of 5 species which have been whole-genome sequenced.
     Among DNA fragments containing microsatellites,8 polymorphic microsatellite loci (GenBank Acc. no. FJ896055-FJ896062) were finally identified after three rounds of screening:primary screening of 24 DNA samples with touchdown PCRs, optimization PCRs of 24 DNA samples and the third-round selection on ABI Prism 3100 genetic analyzer. Genotypic data of 48 adult samples were analysed with GenePop 4.0. No significant deviation from Hardy-Weinberg proportions was detected after Bonferroni correction, and exact tests for gametic disequilibrium between loci were all nonsignificant. The number of alleles per locus ranged from 11 to 31, and the expected heterozygosity ranged from 0.747 to 0.931 (Cervus version 3.0.3). The availability of these 8 informative loci for P. separata will provide useful markers for studies of population genetics.
     The major innovations of this study were as follows:
     the extraction methods of genomic DNA were improved from Lepidoptera adults for microsatellite marker isolation, characterization and large-scale genotyping.
     For the first time 6 microsatellite-enriched libraries of oriental armyworm were constructed which were of a higher average rate of microsatellite-positive clones.
     The situations of motif, abundance and mutation of microsatellite loci of oriental armyworm were first analyzed enriching the information of Lepidoptera microsatellites.
     8 polymorphic microsatellite markers were identified, filling a gap in microsatellite genetic markers of oriental armyworm.
引文
1. 白金凤,张建华,刘升学.新疆棉铃虫地理种群差异的酯酶同工酶分析[J],石河子大学学报,2002,6:198-20
    2. 蔡彬,江幸福,罗礼智,曹雅忠.温湿度对粘虫蛾飞行能源物质及其利用的影响[J].生态学报,2001,22:1068-1074
    3.曹雅忠,李广博,胡毅.光周期对粘虫生殖与飞翔影响的初步研究[J].生态学报,1997,4:402-406
    4.曹雅忠,罗礼智,郭军.粘虫生殖和飞翔与幼虫期营养的关系.昆虫学报,1996,39:105-108
    5.曹雅忠,罗礼智,李广博,等.粘虫飞翔能源物质及其消耗.昆虫学报,1995,38:290-295
    6.陈瑞鹿.粘虫迁飞的模式//林昌善.粘虫生理生态学.北京:北京大学出版社,1990:322-335
    7.龚鹏,杨效文,张孝羲,等.棉蚜虫Aphis gossypii种群寄主分化和季节分化的微卫星引物PCR研究[J].生态学报,2001,21:765-771
    8.龚鹏,张孝羲,杨效文,等.用微卫星引物PCR分析棉蚜不同蚜型的DNA多态性[J].昆虫学报,2001,44:416-421
    9.郝纪华,李绍文,林昌善.不同地区粘虫群体的同工酶变异[J].昆虫学报,1992,35(1):33-39
    10.黄留玉.PCR最新技术原理、方法及应用[M].北京:化学工业出版社,2005
    11.吉亚杰.我国棉铃虫主要地理种群的遗传结构、种群动态和相互关系的初步研究:[博士学位论文].北京:中国科学院动物研究所,2003
    12.雷仲仁,李莉,郭予元,等.棉铃虫数量的近缘种的RAPD分析[J],植物保护,1995,21(5):10-12
    13.雷仲仁,郭予元,李莉,等.两个不同地区棉铃虫种群的RAPD分析[J],植物保护学报,1996,23(2):189-190
    14.李广博.粘虫的综合防治//中国科学院动物研究所.中国主要害虫综合防治.北京:科学出版社,1979,301-319
    15.李广博,王恒祥,胡文秀.粘虫季节性为害假说及标记回收试验[J].植物保护学报,1964,3(2):101-110
    16.李莉,周广和,杜志强,等.不同地区麦长管蚜种群的RAPD分析[J]//中国植物保护学会青年工作委员会.植物保护21世纪展望与第三届全国青年植物保护科技工作者学术研讨会文集,北京:中国科技出版社,1998,457-460
    17.李建科.蜜蜂微卫星的研究进展[J].郑州牧业工程高等专科学校学报,2001,22(2):85-89
    18.李克斌,罗礼智.粘虫飞行肌中与能量代谢有关的酶活性研究[J].昆虫学报,1999,42:37-43
    19.李新华.昔阳县三代黏虫发生影响因子分析[J].植保技术与推广,2003,23(3):19-20
    20.林昌善.粘虫生理生态学[M].北京:北京大学出版社,1999
    21.林昌善,张宗炳.粘虫发生规律的研究,粘虫季节性远距离迁飞的一个模式[J].植物保护学报,1964,3(2):93-100
    22.刘俊娥,乔传令,候鑫.一个实用的群体遗传学分析软件包-GENEPOP3.1版[J].生物多样性,2000,8(2):238-240
    23.卢圣栋.现代分子生物学实验技术.北京:中国协和医科大学出版社,1999
    24.江幸福,蔡彬,罗礼智,等.温湿度综合作用对粘虫蛾飞行能力的影响[J].生态学报,2003,23:738-743
    25.江幸福,罗礼智.利用近等基因系构建粘虫黑化型AFLP-SCAR标记[J].植物保护,2007,33(5):94-95
    26.江幸福,罗礼智,胡毅.饲养温度对粘虫蛾飞行与生殖能力的影响.生态学报,2000,20:288-299
    27.吉亚杰,张德兴.鳞翅目昆虫基因组中微卫星DNA的特征以及对其分离的影响[J].动物学报,2004,50(4):608-614
    28.罗礼智.粘虫蛾飞行肌的发育:超微结构特征分析[J].昆虫学报,1996b,39:366-374
    29.罗礼智.昆虫迁飞行为的发生与调控[J].科学,1998,50:32-35
    30.罗礼智,江幸福,李克斌,等.粘虫飞行对生殖及寿命的影响[J].昆虫学报,1999,42:150-158
    31.罗礼智,李广博.粘虫蛾飞行肌超微结构的研究[J].昆虫学报,1996a,39:141-148
    32.罗礼智,李广博,曹雅忠,等.粘虫幼虫密度对成虫飞行与生殖的影响[J].昆虫学报,1995a,38:38-45
    33.罗礼智,李广博,胡毅.粘虫飞行与产卵的关系[J].昆虫学报,1995b,38:284-289
    34.宋锋林,赵彤言.微卫星DNA标记技术及其在蚊虫生物学研究中的应用[J].寄生虫与医学昆虫学报,2004,11:115-120
    35.王宗舜,欧阳迎春.东方粘虫飞行初期糖类的作用和消耗[J].昆虫学报,1995,38:146-151
    36.徐小娃.沁阳市2002年三代黏虫暴发[J].植保技术与推广,2002,22(12):42
    37.杨效文,张广学,陈晓峰.棉蚜微卫星DNA的克隆及其多态性检测[J].昆虫学报,2001,44(4):586-589
    38.闫路娜.中国飞蝗地理种群的遗传结构、种群动态及历史演化过程的微卫星分析:[博士学位论文].北京:中国科学院动物研究所,2003
    39.闫一林等.棉铃虫与烟青虫的酯酶同工酶比较[J],昆虫学报,1987,30(3):341-344
    40.张民照,康乐.飞蝗总DNA的抽提及其RAPD分析条件的摸索[J].动物学研究,2001,22(1):20-26
    41.邹运鼎,王士槐,王弘法.粘虫迁飞能源物质的研究[J].生态学报,1984,4:372-376
    42.庄启南,张静,熊晓燕等,应用毛细管电泳技术进行高效准确的微卫星基因座自动基因组扫描[J].中华医学遗传学杂志,2002,19:253-256
    43. Agusti N, Shayler S P, Harwood J D, et al. Collembola as alternative prey sustaining spiders in arable ecosystems:prey detection within predators using molecular markers [J]. Mol Ecol, 2003,10:3467-3475
    44. Ali S, Muller C R, Epplen J T. DNA fingerprinting by oligonucleotide probes. specific for simple repeats [J]. Hum Genet,1986,74:239-243
    45. Ansell J, Hu J T, Gilbert S C, et al. Improved method for distinguishing the human source of mosquito blood meals between close family members [J]. Trans R Soc Trop Med Hyg,2000,94: 572-574
    46. Anthony T G.,Trueman T, Harbach R E, et al. Polymorphic microsatellite markers identified in individual Plasmodium falciparum oocysts from wild caught Anopheles mosquitoes [J]. Parasitology,2000,121:121-126
    47. Apostol B L, Black W C, Reiter P, et al. Population genetics with RAPD-PCR markers:the breeding structure of Aedes aegypti in Puerto Rico [J]. Heredity,1996,76:325-334
    48. Ayres C F, Melo-Santos M A, Sole-Cava A M, et al. Genetic differentiation of Aedes aegypti (Diptera:Culicidae), the major dengue vector in Brazil [J]. J Med Entomol,2003,40:430-435
    49. Banuls A L, Jonquieres R, Guerrini F, et al. Genetic analysis of leishmania parasites in Ecuador:are Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis distinct taxa [J].Am J Trop Med Hyg,1999,61:838-845
    50. Bartholomay L C, Cho W L, Rocheleau T A et al. Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus [J]. Infec Immu,2004,72:4114-4126
    51. Bartlett A C. Isozyme polymorphism in populations of the pink bollworm[J]. Ann Entomol Soc Am, 1981,74:9-13
    52. Beckman J S, Soller M. Toward a unified approach to genetic mapping of eukaryotes base on sequence tagged microsatellite sites [J]. Biotechnology.1990,8:930-932
    53. Behura S K, Nair S, Mohan M. Polymorphisms flanking the mariner integration sites in the rice gall midge (Orseolia oryzae Wood-Mason) genome are biotype-specific [J]. Genome,2001a,44: 947-954
    54. Behura S K, Nair S, Sahu S C, et al. An AFLP marker that differentiates biotypes of the Asian rice gall midge (Orseolia oryzae, Wood-Mason) is sex-linked and also linked to avirulence [J]. Mol Gen Genet,2000,263:328-334
    55. Behura S K, Sahu S C, Mohan M, et al. Wolbachia in the Asian rice gall midge, Orseolia oryzae (Wood-Mason):correlation between host mitotypes and infection status[J]. Insect Mol Biol,2001b, 10:163-171
    56. Behura S K, Sahu S C, Rajamni S, et al. Differentiation of Asian rice gall midge, Orseolia oryzae (Wood-Mason), biotypes by sequence characterized amplified regions (SCARs) [J]. Insect Mol Biol,1999,8:391-397
    57. Behura S K, Valicente F H, Rider S D Jr, et al. A physically anchored genetic map and linkage to avirulence reveals recom-bination suppression over the proximal region of Hessian fly chromosome A2 [J]. Genetics,2004,167:343-355
    58. Berger J, Suzuki T, Senti K A, et al. Genetic mapping with SNP markers in Drosophila [J]. Nat Genet,2001,29:475-481
    59. Berloco M, Fanti L, Sheen F, et al. Heterochromatic distribu-tion of HeT-A-and TART-like sequences in several Drosophila species [J]. Cytogenet Genome Res,2005,110:124-133
    60. Black W C. PCR with arbitrary primers:approach with care [J]. Insect Mol Biol,1993,2:1-6
    61. Blears M, Grandis S D, Lee H, et al. Amplified fragment length polymorphism(AFLP):A review of the procedure and its applications [J]. J Ind Microbiol Biotech,1998,21:99-114
    62. Bond H A, Craig G B Jr, Fay R W. Field mating and movement of Aedes aegypti [J]. Mosquito news, 1970,30:394-402
    63. Bonizzoni M, Katsoyannos B I, Marguerie R et al. Microsatellite analysis reveals remating by wild Mediterranean fruit fly females, Ceratitis capitata [J]. Mol Ecol,2002,11:1915-1921
    64. Bosio C F, Fulton R E, Salasek M L, et al. Quantitative trait loci that control vector competence for dengue2 virus in the mosquito Aedes aegypti [J]. Genetics,2000,156:687-698
    65. Bosio C F, Harrington L C, Jones J W et al. Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA [J]. Am J Trop Med Hyg,2005,72:434-442
    66. Breed M D, Guzman-Novoa E, Hunt G J. Defensive behavior of honeybees:organization, genetics, and comparisons with other bees [J]. Annu Rev Entomol,2004,49:271-298
    67. Bretman A, Wedell N, Tregenza T. Molecular evidence of post-copulatory inbreeding avoidance in the field cricket Gryllus bimaculatus [J]. Proc Roy Soc B-Bio Sci,2004,271:159-164
    68. Brown M J, Schmid Hempel R, Schmid Hempel P. Queen controlled sex ratio's and worker reproduction in the bumble bee Bombus hypnorum, as revealed by microsatellites [J]. Mol Ecol, 2003,12:1599-1605
    69. Cabrero J, Bugrov A, Warchalowska-Sliwa E et al. Comparative FISH analysis in five species of Eyprepocnemidine grasshoppers [J]. Heredity,2003,90:377-381
    70. Callen D F, Thompson A D, Shen Y, et al. Incidence and origin of "null" allele in the (AC) n microsatellite markers [J]. Am J Hum Genet,1993,52:922-927
    71. Carleton K L, Streelman J T, Lee B Y, et al. Rapid isolation of CA microsatellites from the tilapia genome [J]. Anim Genet,2002,33:140-144
    72. Cassel A. Characterization of microsatellite loci in Coenonympha hero (Lepidoptera:Nymphalidae) [J]. Mol Ecol Notes,2002,2:566-568
    73. Chavarriaga A P, Maya M M, Bonierbale M W, et al. Microsatellites in Cassava (Manihot esculenta Crantz):Discovery, inheritance and variability [J]. Theoret Appl Genet,1998,97:493-501
    74. Chen R L, Sun Y J, Wang S Y, et al. Migration of the oriental armyworm Mythimna separate in East Asia in relation to weather and climate. I. Northeastern China. In:Drake V A and Gatehouse a G ed. Insect migration:tracking resources through space and time. New York:Cambridge University Press.1995.93-104.
    75. Cheng T C, Xia Q Y, Qian J F, et al. Mining single nucleotide polymorphisms from EST data of silkworm, Bombyx mori, inbred strain Dazao [J]. Insect Biochem Molec,2004,34:523-530
    76. Christian S, Bill A, Diethard T. Conservation of polymorphic simple sequence loci in cetacean species [J]. Nature,1991,354:63-65
    77. Christian S, Diethard T. Slippage synthesis of simple sequence DNA [J]. Nucleic Acids Res,1992, 20 (2):211-21
    78. Cifarelli R A, Gallitelli M, Cellini F. Random amplified hybridization microsatellites (RAHM): Isolation of a new class of microsatellite containing DNA clones [J]. Nucleic Acids Res,1995,23: 3802-380
    79. Ciofi C, Funk S M, Coote T, et al. Genotyping with microsatellite mar kers//Karp A, Isaac P G, Ingram S. Molecular Tools for Screening Biodiversity. London:Chapman and Hall,1998:195-201
    80. Dallas J F, Estimation of microsatellite mutation rates in recombinant inbred strains of mouse [J]. Mamm Genome,1992,5:32-38
    81. Delmote F, Leterme N, Gauthier J P, et al. Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers [J]. Mol Ecol,2002a, 11:711-723
    82. Di Rienzo A, Peterson A C, Garza J C, et al. Mutational processes of simple sequence repeat loci in human populations [J]. Proc Nat Acad Sci USA,1994,91:3166-3170
    83. Dopman E B, Bogdanowicz S M, Harrison R G. Genetic mapping of sexual isolation between E and Z pheromone strains of the European corn borer (Ostrinia nubilalis) [J]. Genetics,2004,167: 301-309
    84. Durret R, Kruglyak S. A new stochastic model of microsatellite evolution [J]. J Appl Probe,1999,36: 621-631
    85. Edwards A, Civitello A, Hammond H A. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats [J]. Am J Hum Genet,1991,49:746-756
    86. Edwards A, Hammond H A, Jin L, et al. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups [J]. Genomics,1992,12:241-253
    87. Edwards K J, Barker J H, Daly A, et al. Microsatellite libraries enriched for several microsatellite sequences in plants [J]. Biotechniques,1996,20:758-760
    88. ElMousadik A, Petit R J. High level of genetic differentiation for allelic richness among populations of the argan tree Arga niaspinosa (L.) Skeels endemic to Morocco [J]. Theor Appl Genet,1996,92: 832-839
    89. Estoup A, Angers B. Microsatellites and minisatellites for molecular ecology:Theoretical and empirical considerations//Carvalho G R. Advances in Molecular Ecology. Amsterdam:IOS Press, 1998:55-86
    90. Evett I W, Buckleton J S. Statistical analysis of STR data [C]//Carracedo A, Brinkmann B, Bar W. Advances in forensic haemogenetics. New York, Springer-Verlag,1996:79-86
    91. Fay R W, Craig G B. Genetically marked Aedes aegypti in studies of field populations [J]. Mosquito News,1969,29:121-127
    92. Fleischer. Microsatellite primers for Culex pipiens quinquef asciatus, the vector of avian malaria in Hawail [J]. Mol Ecol,1998,7:1617-1619
    93. Fournier D, Aron S, Milinkovitch M C. Investigation of the population genetic structure and mating system in the ant Pheidole pallidula [J]. Mol Ecol,2002,11:1805-1814
    94. Franck P, Garnery L,Solignac M, et al. Molecular confirmation of a fourth lineage in honeybees from the Near East [J]. J Apidologie,2000,31(2):167-180
    95. Freimoser F M, Screen S, Bagga S et al. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts [J]. Microbiology,2003,49:239-247
    96. Freimer N B & Slatkin M. Microsatellites:evolution and mutational processes [J]. Ciba Found Symp,1996,197:51-72
    97. Frydenberg J, Pertoldi C, Dahlgaard J, et al. Genetic variation in original and colonizing Drosop hilabuzzatii populations analysed by microsatellite loci isolated with a new PCR screening Method [J]. Mol Ecol,2002,11:181-190
    98. Fulton R E, Salasek M L, DuTeau N M, et al. SSCP analysis of cDNA markers provides a dense linkage map of the Aedes aegypti genome[J]. Genetics,2001,158:715-726
    99. Gagneux P, Boesch C, Woodruff D S. Microsatellite scoring errors associated with no ninvasive genotyping based on nuclear DNA amplified from shedhair [J]. Mol Ecol,1997,6:861-868
    100. Gerloff U, Hartung B, Rassmann K, et al. Amplification of hypervariable simple sequence repeats (microsatellite) from excremental DNA of wild living bonobos (Panpaniscus) [J]. Mol Ecol,1995, 4:515-518
    101. Gill P, Koumi P, Allen H. Sizing short tandem repeat alleles in capillary array gel electrophoresis instruments [J]. Electrophoresis,2001,22:2670-2678
    102. Gill P, Sparkes R, Kimpton C. Development of guidelines to designate alleles using an STR multiplex system [J]. Forensic Sci Intl,1997,89:185-197
    103. Gorman K, Slinker Z, Johnson S, et al. Profiles in DNA. Madison, Wisconsin:Promega Corporation,7(1):9-11
    104. Goudet J. FSTAT:a program to estimate and test gene diversities and fixation indices(v.2.9.3). http://www.unil.ch/izea/softwares/fstat.html.
    105. Graham D H, Holmes J L, Black W C. Identification of quantitative trait loci affecting sex determination in the Eastern treehole mosquito (Ochlerotatus triseriatus) [J]. J Hered,2004,95: 35-45
    106. Guillemaud T, Mieuzet L, Simon J C. Spatial and temporal genetic variability in French populations of the peach potato aphid, Myzus persicae [J]. Heredity,2003,91:143-152
    107. Haberl M, Tautz D. Comparative allele sizing can produce inaccurate allele size differences for microsatellites [J]. Mol Ecol,1999,8:1347-1350
    108. Hakki E E, Akkaya M S. Microsatellite isolation using amplified fragment length polymorphism markers:No cloning, no screening [J]. Mol Ecol,2000,9:2149-2154
    109. Hamada H, Petrino M G, Kakunaga T. A novel repeated element with Z-DNA forming potential is widely found in evolutionarily disease eukaryotic genomes [J]. Proc Natl Acid Sci,1982,79: 6465-6469
    110. Harper G L, King R A, Dodd C S et al. Rapid screening of invertebrate predators for multiple prey DNA targets [J]. Mol Ecol,2005,14:819-827
    111. Hawthorne D J. AFLP-based genetic linkage map of the Colorado potato beetle Leptinotarsa decemlineata:sex chromosomes and a pyrethroid-resistance candidate gene [J]. Genetics,2001,158: 695-700
    112. Hedrick P W. Genetics of Populations [M]. Boston:Jones and Bartlett,1985:1-629
    113. Hirai K. Migration of the oriental armyworm Mythimna separata in East Asia in relation to weather and climate. Ⅲ. Japan. In:Drake V A and Gatehouse A G ed. Insect migration:tracking resources through space and time. New York:Cambridge University Press.1995.117-130.
    114. Hoskins R A, Phan A C, Naeemuddin M, et al. SNP markers for genetic mapping in Drosophila melanogaster [J]. Genome Res,2001,11:1100-1113
    115. Huber K, Loan L L, Hoang T H et al. Genetic differentiation of the dengue vector, Aedes aegypti using microsatellite markers [J]. Mol Ecol,2002,11:1629-1635
    116. Hunter W B, Dang P M, Bausher M G et al. Aphid biology:expressed genes from alate Toxoptera citricida, the brown citrus aphid [J]. J Insect Sci,2003,3:23
    117. Hurlbert S H. The nonconcept of species diversity:a critique and alternative parameters [J]. Ecology,1971,52:577-586
    118. Huttel B, Peter W, Kurt W, et al. Sequence tagged Microsatellite site markers for chickpea (cicer arietinum L) [J]. Genome,1999,42:210-217
    119. Irvin S D, Wetterstrand K A, Huter C M. Genetic variation and differentiation of microsatellite loci in Drosophilas imulans:evidence for a founder effect in New World populations [J].Genetics,1998, 150:777-790.
    120. James P C, Pammi S, Muhammad J I, et al. A high throughput procedure for capturing microsatellites from complex plant genomes [J]. Plant Mol Biol Rep,1998,16:341-349
    121. Jeffreys A J. Spontaneous mutation rate to new length alleles at tandem repetitive hypervariable loci in human DNA [J]. Nature,1988,332:278-287
    122. Jernej J, Branka J. High throughput isolation of microsatellites in Hop (Humulus lupulus L.) [J]. Plant Mol Biol Rep,2001,19:217-226
    123. Ji Y J, Hua Y P, Liu Y D, et al. Ten polymorphic microsatellite markers developed in the masson pine moth Dendrolimus punctatus Walker (Lepidoptera:Lasiocampidae) [J]. Mol Ecol Notes,2005, 5:911-913
    124. Ji Y J, Zhang D X, Hewitt M, et al. Polymorphic microsatellite loci for the cotton bollworm Helicovrpa armigera (Lepidoptera:Noctuidae) and some remarks on their isolation [J]. Mol Ecol Notes,2003,3:102-104
    125. Johnson R E, Henderson S T, Petes T D, et al. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and Zinc-binding sequencemotifs and affects the stability of simple repetitive sequences in the genome [J]. Mol Cell Biol,1992,12:3807
    126. Jones D B, Giles K L, Chen Y et al. Estimation of Hymenopteran parasitism in cereal aphids by using molecular markers[J]. J Econ Entomol,2005,98:217-221
    127. Kamau L, Lehmann T, Hawley W A, et al. Microgeographic genetic differentiation of Anopheles gambiae mosquitoes from Asembo Bay, western Kenya:a comparison with Kilifi in coastal Kenya [J]. Am J Trop Med Hyg,1998,58:64-69
    128. Kandpal R P, Kandpal G, Weissman S M. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region specific markers [J]. Proc Natl Acad Sci USA,1994,91:88-92
    129. Karagyzov L, Kalcheva I D, Chapman V M. Construction of random small insert genomic libraries highly enriched for simple sequence repeats [J]. Nucleic Acids Res,1993,21:3911-3912
    130. Kengne P, Trung H D, Baimai V et al. A multiplex PCR-based method derived from random amplified polymorphic DNA (RAPD) markers for the identification of species of the Anopheles minimus group in Southeast Asia [J]. Insect Mol Biol,2001,10:427-435
    131. Kethidi D R, Roden D B, Ladd T R et al. Development of SCAR markers for the DNA-based detection of the Asian long-horned beetle, Anoplophora glabripennis (Motschulsky) [J]. Arch Insect Biochem,2003,52:193-204
    132. Keyghobadi N, Roland J, Stroback C. Influence of landscape on the pupulation genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae) [J]. Mol Ecol,1999,8:1481-1495
    133.Kimura M & Crow J E. The number of alleles that can be maintained in a finite population [J].Genetics,1964,49:725-738
    134. Knight M E, Martin A P, Bishop S et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species [J]. Mol Ecol,2005,14:1811-1820
    135. Kruglyak S, Durret R T, Schug M D et al. Distribution and abundance of microsatellites in the Yeast Genonre Can Be Explained by a balance between slippage events and point mutations [J]. Mol Biol Evol,2000,17(8):1210-1219
    136. Kruglyak S, Durret R T, Schug M D, et al. Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations [J]. Proc Natl Acad Sci USA, 1998,95:10774-10778
    137. Kwok P Y. Methods for genotyping single nucleotide poly-morphisms. Annu Rev Genom Hum G, 2001,2:235-258
    138. Lanave C, Licciulli F, De Robertis M, et al. Update of AMmtDB:a database of multi-aligned Metazoa mitochondrial DNA sequences [J]. Nucleic Acids Res,2002,30:174-175
    139. Leberg P L. Estimating allelic richness:effects of sample size and bottlenecks [J]. Mol Ecol,2002, 11:2445-2449
    140. Lee J H and Uhm K B. Migration of the oriental armyworm Mythimna separata in East Asia in relation to weather and climate. Ⅱ. Korea. In:Drake V A and Gatehouse A G ed. Insect migration: tracking resources through space and time. New York:Cambridge University Press.1995.105-116.
    141.Lehmann T, Hawley W A, Kamau L, et al. Genetic differentiation of Anopheles gambiae populations from East and West Africa:comparison of microsatellite and allozyme loci [J]. J Hered, 1996,77:192-208
    142. Levinson G, Gutman G A.Slipped-strand mispairing:a major mechanism for DNA sequence evolution [J]. Mol Biol Evol,1987,4:203
    143. Lewin B. Genes [M]. Oxford:Oxford University Press,1996:713-820
    144. Li Y C, Korol A B, Fahima T, et al. Microsatellites:genomic distribution,putative function andmutational mechanisms:a review [J]. Mol Ecol,2002,11:2453-2465
    145. Litt M, Lutty J A. An hypervariable microsatellite revealed by in vitro amplification of a dijucleotide repeat within the cardiac muscle actin gene [J]. Am J Hum Genet,1989,44:397-401
    146. Llewellyn K S, Loxdale H D, Harrington R, et al. Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using Microsatellites [J]. Mol Ecol,2003,12:21-34
    147. Loukas M, Krimbas C B, Mavragani-Tsipidou P et al. Genetics of Drosophila subobscura populations. Ⅷ. Allozyme loci and their chromosome maps [J]. J. Hered,1979,70:17-26
    148. Loxdale H D, Tarr I J, Weber C P, et al. Electrophoretic study of enzymes from cereal aphid population Ⅲ. Spatial and temporal genetic variation of population of Sitobion avenae (Hemiptera: Aphididae) [J]. Bull Entomol Res,1985,75:121-141
    149. Lunt D H, Hutchinson W F, Carvalho G R. An efficient method for PCR based identification of microsatellite arrays (PIMA) [J]. Mol Ecol,1999,8:893-894
    150. Luo L Z, Li K B, Jiang X F, et al. Regulation of flight capacity and contens of energy substances by methoprene in the moths of oriental armyworm, Mythimna separate (Walker) [J]. Entomol Sin, 2001,8:63-72
    151. Lushai G, Markovitch O, Loxdale H D. Host-based genotype variation in insects revisited [J]. Bull Entomol Res,2002,92:159-164
    152. Lushai G, Loxdale H D, Brookes C P, et al. Genotypic variation among different phenotypes within aphid clones [J]. Proc Roy Soc B-Biol Sci,1997,264:725-730
    153. Maa W C J, Terriere L C. Age-dependent variation in enzymatic and electrophoretic properties of house fly carboxylesterases [J]. Comp Biochem Physiol C,1983,74:461-467
    154. Manguin S, Kengne P, Sonnier L, et al. SCAR markers and multiplex PCR-based identification of isomorphic species in the Anopheles dirus complex in Southeast Asia [J]. Med Vet Entomol,2002, 16:46-54
    155. Mansfield E S, Vainer M, Enad S, et al. Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis [J]. Genome Res,1996,6:893-903
    156. Margonari C S, Fortes-Dias C L, Dias E S. Genetic variability in geographical populations of Lutzomyia whitmani elucidated by RAPD-PCR [J]. J Med Entomol,2004,41:187-192
    157. Meglecz E, Pecsenye K, Varga Z, et al. Comparison of differentiation pattern at allozyme and microsatellite loci in Parnassius mnemosyne (Lepidoptera) populations [J]. Hereditas,1998,128: 95-103
    158. Meglecz E, Solignac M. Microsatellite loci for Parnassius mnemosyne (Lepidoptera) [J]. Hereditas, 1998,128:179-180
    159. Miao X X, Xu S J, Li M H, et al. Simple sequence repeat-based consensus linkage map of Bombyx mori [J]. P Natl Acad Sci,2005,102:16303-16308
    160. Morlais I, Poncon N, Simard F, et al. Intraspecific nucleotide variation in Anopheles gambiae:new insights into the biology of malaria vectors [J]. Am J Trop Med Hygi,2004,71:795-802
    161. Nagaraju J, Sharma A, Sethuraman B N,et al. DNA finger-printing in silkworm Bombyx mori using banded krait minor satellite DNA-derived probe [J]. Electrophoresis,1995,16:1639-1642
    162. Nairz K, Stocker H, Schindelholz B, et al. High-resolution SNP mapping by denaturing HPLC [J]. Proc Natl Acad Sci USA,2002,99:10575-10580.
    163. Nei M. Molecular Evolutionary Genetics [M]. New York:Columbia U niversity Press,1987
    164. Neilan B A, Leigh D A, Reply E, et al. Microsatellite genome screening:Rapid nonisotopic dinucleatide repeat analysis [J]. Biotechniques,1994,17:708-712
    165. Nibouche S, Bues R., Toubon J F, et al. Allozyme polymorphism in the cotton bollworm Helicoverpa armigera (Lepidoptera:Noctuidae):comparisono of Africana and European populations [J]. Heredity,1998,80:438-445
    166. Ohta T & Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population [J]. Genet Res,1973,22:201-204
    167. Onyabe D Y, Conn J E. Population genetic structure of the malaria mosquito Anopheles arabiensis across Nigeria suggests range expansion. Mol Ecol,2001,10:2577-2591
    168. Paetkau D, Strobeck C. The molecular basis and evolutionary history of a microsatellite null allele in bear. Mol Ecol,1995,4:519-520
    169. Palo J, Varvio S-L, Hanski I, Vainola R. Developing microsatellite markers for insect population structure:complex variation in a checker spot butterfly [J]. Hereditas,1995,123:295-300
    170. Park S D E. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection. PhD Thesis, University of Dublin,2001
    171. Parsons Y M, Shaw K L. Mapping unexplored genomes:a genetic linkage map of the Hawaiian cricket Laupala [J]. Genetics,2002,162:1275-1282
    172. Prior A, Torr S J. Host selection by Anopheles arabiensis and An. quadriannulatus feeding on cattle in Zimbabwe [J]. Med Vet Entomo,2002,16:207-213
    173. Pupko T, Graur D. Evolution of microsatellites in the yeast Saccharomyces cerevisiae:role of length and number of repeated units [J]. J Mol Evol,1999,48:313
    174. Ranson H, Jensen B, Wang X, et al. Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae [J]. Insect Mol Biol,2000,9:499-507
    175. Rassmann K, Schltterer C, Tautz D. Isolation of simple sequence loci for use in polymerase chain reaction based DNA fingerprinting [J]. Electrophoresis,1991,12:113-118
    176. Rauch N, Nauen R. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera:Aleyrodidae) [J]. Arch Insect Biochem,2003,54:165-176
    177. Ravel S, Herve J P, Diarrassouba S, et al. Microsatellite markers for population genetic studies in Aedes aegypti (Diptera:Culicidae) from Coted'Ivoire:evidence for a microgeographic genetic differentiation of mosquitoes from Bouake [J]. Acta Trop,2002,82:39-49
    178. Reddy K D, Abraham E G, Nagaraju J. Microsatelite in the silkworm Bombyx mori:abundance, polymorphism and strain characterization [J]. Genome,1999,42:1057-1065
    179. Reed K M, Beattie C W. Isolation of 105 microsatellite loci from an ovine genomic library enriched for microsatellites [J]. Anim Biotechnol,2001,12:77-86
    180. Reineke A, Schmidt O, Zebitz C P, Differential gene expression in two strains of the endoparasitic wasp Venturia canescens identified by cDNA-amplified fragment length polymorphism analysis [J]. Mol Ecol,2003,12:3485-3492
    181. Richards C, Leberg P L. Temporal changes in allele frequencies and a populations history of severe bottlenecks [J]. Conserv Biol,1996,10:832-839
    182. Rider S D, Sun W, Ratcliffe R H et al. Chromosome landing near avirulence gene vH13 in the Hessian fly [J]. Genome,2002,45:812-822
    183. Robertson H M. The mariner transposable element is wide-spread in insects [J]. Nature,1993,362: 241-245.
    184. Rodrigo B Z, Luciano M V. Microsatellite DNA library for Caiman latirostris [J]. J Exp Zoo,2002, 294:346-351
    185. Rongnoparut P S, Yaicharoen N. Sirichotpakorn, et al. Microsatellite polymorphism in Anopheles maculatus, a malaria vector in Thailand [J]. Am J Trop Med Hyg,1996,55(6):589-594
    186. Ruppell O, Pankiw T, Page R E. Pleiotropy, epistasis and new QTL:the genetic architecture of honeybee foraging behavior [J]. J Hered,2004,95:481-491
    187. Saccheri I J, Bruford M W. DNA fingerprinting in a butterfly Bicyclus anaynana (Satyridae) [J]. J Hered,1993,84 (3):195-200
    188. Salvato P, Battisti A, Concato S et al. Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa-wilkinsoni complex), inferred by AFLP and mitochondrial DNA markers [J]. Mol Ecol,2002,11:2435-2444
    189. Schlipalius D I, Cheng Q, Reilly P E et al. Genetic linkage analysis of the lesser grain borer Rhyzopertha dominica identifies two loci that confer high-level resistance to the fumigant phosphine [J]. Genetics,2002,161:773-782
    190. Schlotterer C. Evolutionary dynamics of microsatellite DNA [J].Chromosome,2000,109:365-371
    191. Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA [J]. Nucleic Acids Res,1992, 20:211
    192. Schneider S, Roessli D, Excoffier L. ARLEQUIN ver 2000:A Software for Population Genetic Data Analysis. Geneva:Genetics and Biometry Laboratory, University of Geneva,2000
    193. Schulte S J, Rider S D, Hatchett J H et al. Molecular genetic mapping of three X-linked avirulence genes, vH6, vH9 and vH13, in the Hessian fly [J]. Genome,1999,42:821-828
    194. Severson D W, Brown S E, Knudson D L. Genetic and physical mapping in mosquitoes:molecular approaches [J]. Annu Rev Entomol,2001,46:183-219
    195. Severson D W, Meece J K, Lovin D D, et al. Linkage map organization of expressed sequence tags and sequence tagged sites in the mosquito, Aedes aegypti [J]. Insect Mol Biol,2002,11:371-378
    196. Sgueglia J B, Geiger S, Davis J. Precision studies using the ABI Prism 3100 Genetic Analyzer for forensic DNA analysis [J]. Anal Bioanal Chem,2003,376:1247-1254
    197. Simard F T, Lehmann J J, Lemasson, et al. Persistence of Anopheles arabiensis during the severe dry season conditions in Senegal:an indirect approach using microsatellite loci [J]. Insect Mol Biol, 2000,9 (5):467-479
    198. Simon J C, Baumann S, Sunnucks P, et al. Reproductive mode and population genetic structure of the cereal aphid Sitobion avenae studied using phenotypic and microsatellite markers [J]. Mol Ecol, 1999,8:531-545
    199. Skinner D M, Beattie W G, Blattner F R, et al. The sequence of a herm it crab satellite DNA in (-TAGG-)n-(-TAGG-)n [J]. Biochemistry,1974,13:3930-3937
    200. Solignac M, Cornuet J M, Vautrin D et al. The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the western honeybee (Apis mellifera), are two partly isolated clones [J]. Proc Roy Soc B-Bio Sci,2005,272:411-419
    201. Solomon M G, Fitzerald J D, Murray R A. Electrophoretic approaches to predator-prey interactions [C]//Symondson W O C, Liddell J E. The ecology of agricultural pests:biochemical approaches. London, Chapman & Hall,1996:457-468
    202. Staten R, Schully S D, Noor M A. A microsatellite linkage map of Drosophila mojavensis [J]. BMC Genet,2004,5:12
    203. Strand M, Prolla T A, Liskay R M, et al. Destabilisation of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair [J]. Nature,1993,365:274
    204. Stuart J J, Schulte S J, Hall P S et al. Genetic mapping of Hessian fly avirulence gene vH6 using bulked segregant analysis [J]. Genome,1998,41:702-708
    205. Sunnucks P, England P R, Taylor A C, et al. Microsatellite and chromosome evolution of parthenogenic Sitobion aphids in Australia [J]. J Genetics,1996,144:747-756
    206. Taberlet P, Camarra J J, Griffin S, et al. No ninvasive genetic tracking of the endangered pyrenean brown bear population [J]. Mol Ecol,1997,6:869-876
    207. Taberlet P, Griffins S, Goosens B, et al. Reliable genotyping of samples with very low DNA quantities using PCR [J]. Nucleic Acids Res,1996,24:3189-3194
    208. Tautz D M, Renz. Simple sequence are ubiquitious repetive components of eukaryote genome [J]. Nucleic Acids Res,1984,17:6463-6471
    209. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Res 1989,17:6463-6471
    210. Teeter K, Naeemuddin M, Gasperini R, et al. Haplotype dimorphism in a SNP collection from Drosophila melanogaster [J]. J Exp Zool,2000,288:63-75
    211. Tripet F, Toure Y T, Dolo G, et al. Frequency of multiple inseminations in field collected Anopheles gambiae females revealed by DNA analysis of transferred sperm [J]. Am J Trop Med Hyg,2003,68: 1-5
    212. Turner T L, Hahn M W, Nuzhdin S V. Genomic islands of speciation in Anopheles gambiae [J]. PLoS Biol,2005,3:e285
    213. Ullmann A J, Piesman J, Dolan M C et al. A preliminary linkage map of the hard tick, Ixodes scapularis [J]. Insect Mol Biol,2003,12:201-210
    214. Valdes A M, Slatkin M, Freimer N. Allele frequencies at microsatellite loci:the stepwise mutation model revisited [J]. Genetics,1993,13:737-749
    215. Vitkova M, Kral J, Traut W et al. The evolutionary origin of insect telomeric repeats, (TTAGG)n[J]. Chromosome Res,2005,13:145-156
    216. Wang Y, Ju J, Carpenter B, Atherton J M, Sensabaugh G F, Mathies R A. High-Speed, High-Throughput THO1 Allelic Sizing Using Energy Transfer Fluorescent Primers and Capillary Array Electrophoresis [J], Anal Chem,1995,67:1197-1203
    217. Wang Z S, Ouyang Y C. Flight activity and fatty acid utilization in the oriental armyworm, Mythimna separate (Walker) [J]. Entomol Sin,1995,2:370-376
    218. Weber J L, May P E. Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction [J]. Am. J. Genet,1989,44:388-396
    219. Wei G, Shen Z R, Li Z H, et al. Migration and population genetics of the grain aphid Macrosiphum miscanthi in relation to the geographic distance and gene flow [J]. Prog Nat Sci,2005,15: 1000-1004
    220. Whitefield C W, Cziko A M, Robinson G E. Gene expression profiles in the brain predict behavior in individual honeybees [J]. Science,2003,302:296-299
    221. Wilding N, Mardell S K, Brookes C P et al. The use of polyacrylamide gel electrophoresis of enzymes to identify entomophthoralean fungi in aphid hosts [J]. J Invertebr Pathol,1993,62: 268-272
    222. Williams B L, Brawn J D, Paige K N. Highly polymorphic microsatellite loci for Speyeria idalia (Lepidoptera:Nymphalidae) [J]. Mol Ecol Notes,2002,2:87-88
    223. Williams B L, Brawn J D, Paige K N. Landscape scale genetic effects of habitat fragmentationon a high gene flow species:Speyeriaidalia (Nymp halidae) [J]. Mol Ecol,2003,12:11-20
    224. Wu K, Jones R, Danneberger L, et al. Detection of microsatellite polymorphisms without cloning [J]. Nucleic Acids Res,1994,22:3257-3258
    225. Yoon C K, Aquadro C F. Mitochondrial DNA variation among the Drosophila Athabasca semispecies and Drosophila affinis [J]. J Hered,1994,85:421-426
    226. Zane L, Bargelloniand L, Patarnello T. Strategies for microsatellite isolation:A review [J]. Mol Ecol, 2002,11:1-16
    227. Zhang D X. Lepidopteran microsatellite DNA:redundant but promising [J]. Trends Ecol Evol,2004, 19(10):507-509
    228. Zhang D X, Hewitt G M. Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects [J]. Insect Mol Biol,1997,6:143-150
    229. Zheng L, Benedict M Q, Cornel A J et al. An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae [J]. Genetics,1996,143:941-952
    230. Zheng L, Collins F K, Kumar V. A detailed genetic map for the X chromosome of the malaria vector, Anopheles gambiae [J]. Science,1993,261:605-608
    231. Zheng L, Cornel A J, Wang R, et al. Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi [J]. Science,1997,276:425-428
    232. Zhivotovsky L A, Feldman M W. Microsatellite variability and genetic distances [J]. Proc Natl Acad Sci USA,1995,92:11549-11552
    233. Zhong D, Pai A, Yan G. AFLP-based genetic linkage map for the red flour beetle(Tribolium castaneum) [J]. J Hered,2004,95:53-61
    234. Zhou X F, Factor O, Applebaum S W, et al. Population structure of the pestiferous moth Helicoverpa armigera in the Eastern Mediterranean using RAPD analysis [J]. Heredity,2000,85 (3):251-256
    1. 代金霞,于有志,郑哲民.拟步甲昆虫基因组DNA提取的比较研究[J].宁夏大学学报(自然科学版),2004,25(1):66-68
    2. 解萌,侯清柏,梁醒财.卷象科昆虫无损形态的DNA提取方法[J].昆虫知识,2008,45(3):491-493
    3. 杨子祥,陈晓鸣,冯颖,等.蚜虫基因组DNA提取方法的改进[J].昆虫知识,2006,43(6):880-884
    4. 查玉平,徐芬,骆启桂.蝴蝶干标本DNA的提取及RAPD分析[J].华中师范大学学报(自然科学版),2006,40(3):416-418
    5. 张大治,戴沛捷.蜻蜒目昆虫DNA的提取方法研究[J].宁夏农学院学报,2004,25(3):10-12
    6. 张迎春,刘波,郑哲民,等.不同保藏处理的昆虫标本DNA提取及其随机扩增多态DNA反应[J].昆虫学报,2002,45(5):693-695
    7. 张于光,李迪强,王慧敏,等.用于分子生态学研究的土壤微生物DNA提取方法[J].应用生态学报,2005,16(5):956-960
    8. Blanchetot A. A Musca domestica satellite sequence detects individual polymorphic regions in insect genome. Nucleic Acids Res,1991,19(4):929-932
    9. Billah M K, Kimani-Njogu S W, Wharton R A, et al. Comparison of five allopatric fruit fly parasitoid populations (Psyttalia species) (Hymenoptera:Braconidae) from coffee fields using morphometric and molecular methods. B Entomol Res,2008,98(1):63-75
    10. Blin N, Stafford D W. A general method for isolation of high molecular weight DNA from eukaryotes [J]. Nucleic Acids Res,1976,3(9):2303-2308
    11. Boyce T M, Zwick M.E, Aquado C F. Mitochondrial DNA in the pine weevil:size structure and heterophasmy [J]. Genetics,1989,123:825-836
    12. Butler J M. Forensic DNA typing:biology, technology and genetics of STR markers [M].2nd edn. Amsterdam:Elsevier Acadamic Press,2005
    13. Chen R L, Sun Y J, Wang S Y, et al. Migration of the oriental armyworm Mythimna separata in East Asia in relation to weather and climate. I. Northeastern China [C]//Drake V A, Gatehouse, AG Insect migration:tracking resources through space and time. New York:Cambridge University Press,1995:93-104
    14. Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue [J]. Focus,1990,12(1):552-555
    15. Gilbert M T P, Moore W, Melchior L, et al. DNA extraction from dry museum beetles without
    conferring external morphological damage [J]. PLoS ONE,2007,2(3):e272
    16. Gujar GT, Khawale R N, Kalia V. Genetic variability of Helicoverpa armigera (Hiibner) attributable to cadherin gene-specific molecular markers [J]. Curr Sci India,2007,92(6):800-804
    17. Han H Y, McPheron B A. Molecular phylogenetic study of tephritidae (Insecta:Diptera) using partial sequences of the mitochondrial 16S ribosomal DNA [J]. Mol Phylogenet Evol,1997,7(1): 17-32
    18. Hirai K. Migration of the oriental armyworm Mythimna separata in East Asia in relation to weather and climate. III. Japan [C]//Drake V A, Gatehouse A G Insect migration:tracking resources through space and time. New York:Cambridge University Press,1995:117-130
    19. Ibrahim K M, Yassin Y, Elguzouli A. Polymerase chain reaction primers for polymorphic microsatellite loci in the African armyworm, Spodoptera exempta (Lepidoptera:Noctuidae) [J]. Mol Ecol Notes,2004,4:653-655
    20. Jones A S, Walker R T. Isolation and analysis of the deoxyribonucleic acid of Mycoplasma mycoides var. capri [J]. Nature,1963,198:588-589
    21. Kupiec J J, Giron M L, Vilette D. Isolation of high molecular weight DNA from eukaryotic cells by formamide treatment and dialysis [J]. Anal Biochem,1987,164:53-59
    22. Lee J H, Uhm K B. Migration of the oriental armyworm Mythimna separata in East Asia in relation to weather and climate. II. Korea [C]//Drake V A, Gatehouse A G. Insect migration:tracking resources through space and time. New York:Cambridge University Press,1995:105-116
    23. Leonardia A A P, Kumar P P, Tan B C. Development of microsatellite markers for the tropical moss, Acanthorrhynchium papillatum [J]. Mol Ecol Notes,2006,6:396-398
    24. Meeker N D, Hutchinson S A., Ho L, et al. Method for isolation of PCR-ready genomic DNA from zebrafish tissues [J]. BioTechniques,2007,43:610-614
    25. Meglecz E, Petinian F, Danchin E, et al. High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera:Parnassius Apollo and Euphydryas aurinia [J]. Mol Ecol,2004,13:1693-1700
    26. Miao X X, Xu S J, Li M H, et al. Simple sequence repeat-based consensus linkage map of Bombyx mori [J]. Proc Natl Acad Sci USA,2005,102(45):16303-16308
    27. Moeller E M, Bahnweg G, Sandermann H, et al. A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues [J]. Nucleic Acids Res,1992,20(22):6115-6116
    28. Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Res,1980,8(19):4321-4325
    29. Nagaraju J, Kathirvel M, Subbaiah E V, et al. FISSR-PCR:a simple and sensitive assay for highthroughput genotyping and genetic mapping [J]. Mol Cell Probes,2002,16:67-72
    30. Reddy K D, Abraham E G, Nagaraju J. Microsatellites in the silkworm, Bombyx mori:abundance, polymorphism, and strain characterization [J]. Genome,1999,42(6):1057-1065
    31. Reineke A., Kariovsky P, Zebitz C P W. Preparation and purification of DNA from insects for AFLP analysis [J]. Insect Mol Biol,1998,7(1):95-99
    32. Sambrook J, Russell D W. Molecular cloning:a laboratory manual [M].3rd edn. New York:Cold Spring Harbor Laboratory Press,2001.
    33. Sheppard W S, Steck G J, McPheron B A. Geographic populations of the medfly may be differentiated by mitochondrial DNA variation [J]. Experientia,1992,48:1010-1013
    34. Truett G E, Heeger P, Mynatt R L, et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT) [J]. BioTechniques,2000,29:52-54
    35. Yasukochi Y. A dense genetic map of the Silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers [J]. Genetics,1998,150:1513-1525
    36. Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:a review [J]. Mol Ecol, 2002,11:1-16
    1. Brown J, Hardwick L J, Wright A F. A simple method for rapid isolation of microsatellites from yeast artificial chromosomes [J]. Mol Cell Probe,1995,9 (1):53-58
    2. Edwards K J, Barker J H A, Daly A, et al. Microsatellite libraries enriched for several microsatellite sequences in plants [J]. BioTechniques,1996,20(5):758-760
    3. Fischer D, Bachmann K. Microsatellite enrichment in organisms with large genomes (Allium cepa L.) [J]. BioTechniques,1998,24(5):796-802
    4. Ibrahim K M, Yassin Y, Elguzouli A. Polymerase chain reaction primers for polymorphic microsatellite loci in the African armyworm, Spodoptera exempta (Lepidoptera:Noctuidae) [J]. Mol Ecol Notes,2004,4:653-655
    5. Ji Y J, Zhang D X, Hewitt M, et al. Polymorphic microsatellite loci for the cotton bollworm Helicovrpa armigera (Lepidoptera:Noctuidae) and some remarks on their isolation [J]. Mol Ecol Notes,2003,3:102-104
    6. Kandpal R P, Kandpal G, Weissman S M. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region-specific markers [J]. Proc Natl Acad Sci USA.,1994,91(1):88-92
    7. Karagyozow L, Kalcheva I D,Chapman V M. Construction of random small-insert genomeic libraries highly enriched for simple sequence repeats [J]. Nucleic Acids Res,1993,21(16): 3911-3912
    8. Kijas J M, Fowler J C, Garbett C A, et al. Enrichment of Microsatellites from the Citrus Genome Using Biotinylated Oligonucleotide Sequences Bound to Streptavidin-Coated Magnetic Particles [J]. BioTechniques,1994,16 (4):656-662
    9. Leonardia A A P, Kumar P P, Tan B C. Development of microsatellite markers for the tropical moss, Acanthorrhynchium papillatum [J]. Mol Ecol Notes,2006,6:396-398
    10. Rassmann K, Schlotterer C, Tautz D. Isolation of simple-sequence loci for use in polymerase chain reaction-based DNA fingerprinting [J]. Electrophoresis.1991,12(2-3):113-118
    11. Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:a review [J]. Mol Ecol, 2002,11(1):1-16
    12. Zhang D X. Lepidopteran microsatellite DNA:redundant but promising [J]. Trends Ecol Evol,2004, 19(10):507-509
    13. Zhang D X, Yan L N, Ji Y J, et al. Isolation, characterization and cross-species amplification of eight microsatellite DNA loci in the migratory locust (Locusta migratoria) [J]. Mol Ecol Notes, 2003,3:483-486
    14. Truett G E, Heeger P, Mynatt R L, et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT) [J]. BioTechniques,29:52-54
    1.吉亚杰,张德兴.鳞翅目昆虫基因组中微卫星DNA的特征以及对其分离的影响[J].动物学报,2004,50(4):608-614
    2. Archak S, Meduri E, Kumar P S, et al. InSatDb:a microsatellite database of fully sequenced insect genomes. Nucleic Acids Res,2007,35(1):D36-D39
    3. Anthony N, Gelembiuk G, Raterman D, et al. Isolation and characterization of microsatellite markers from the endangered Karner blue butterfly Lycaeides melissa samuelis (Lepidoptera) [J].Hereditas,2001,134:271-273
    4. Bogdanowicz S M, Mastro V C, Prasher D C, et al. Microsatellite DNA variation among Asian and North American gypsy moths (Lepidoptera:Lymantriidae) [J]. Ann Ent Soc Am,1997,90:768-775
    5. Ji Y J, Hua Y P, Liu Y D, et al. Ten polymorphic microsatellite markers developed in the masson pine moth Dendrolimus punctatus Walker (Lepidoptera:Lasiocampidae) [J]. Mol Ecol Notes,2005, 5:911-913
    6. Ji Y J, Zhang D X, Hewitt M, et al. Polymorphic microsatellite loci for the cotton bollworm Helicovrpa armigera (Lepidoptera:Noctuidae) and some remarks on their isolation [J]. Mol Ecol Notes,2003,3:102-104
    7. Meglecz E, Petenian F, Danchin E, et al. High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera:Parnassius apollo and Euphydryas aurinia [J]. Mol Ecol,2004,13:1693-1700
    8. Palo J, Varvio S-L, Hanski I, Vainola R. Developing microsatellite markers for insect population structure:complex variation in a checker spot butterfly [J]. Hereditas,1995,123:295-300
    9. Van't Hof A E, Brakefield P M, Saccheri I J et al. Evolutionary dynamics of multilocus microsatellite arrangements in the genome of the butterfly Bicyclus anynana, with implications for other Lepidoptera [J]. Heredity,2007,98:320-328
    10. Williams B L, Brawn J D, Paige K N. Highly polymorphic microsatellite loci for Speyeria idalia (Lepidoptera:Nymphalidae) [J]. Mol Ecol Notes,2002,2:87-88
    11. Zhang D X. Lepidopteran microsatellite DNA:redundant but promising [J]. Trends Ecol Evol,2004, 19(10):507-509
    12. Zhang D X, Yan L N, Ji Y J, et al. Isolation, characterization and cross-species amplification of eight microsatellite DNA loci in the migratory locust (Locusta migratoria) [J]. Mol Ecol Notes,2003,3: 483-486
    13. Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:a review [J]. Mol Ecol, 2002,11(1):1-16
    1.吉亚杰,张德兴.鳞翅目昆虫基因组中微卫星DNA的特征以及对其分离的影响[J].动物学报,2004,50(4):608-614
    2. Archak S, Meduri E, Kumar P S, et al. InSatDb:a microsatellite database of fully sequenced insect genomes. Nucleic Acids Res,2007,35(1):D36-D39
    3. Butler J M. Forensic DNA typing:biology, technology and genetics of STR markers [M].2nd edn. Amsterdam:Elsevier Acadamic Press,2005
    4. Cassel A. Characterization of microsatellite loci in Coenonympha hero (Lepidoptera:Nymphalidae) [J]. Mol Ecol Notes,2002,2:566-568
    5. Ibrahim K M, Yassin Y, Elguzouli A. Polymerase chain reaction primers for polymorphic microsatellite loci in the African armyworm, Spodoptera exempta (Lepidoptera:Noctuidae) [J]. Mol Ecol Notes,2004,4:653-655
    6. Ji Y J, Hua Y P, Liu Y D, et al. Ten polymorphic microsatellite markers developed in the masson pine moth Dendrolimus punctatus Walker (Lepidoptera:Lasiocampidae) [J]. Mol Ecol Notes,2005,5: 911-913
    7. Ji Y J, Zhang D X, Hewitt M, et al. Polymorphic microsatellite loci for the cotton bollworm Helicovrpa armigera (Lepidoptera:Noctuidae) and some remarks on their isolation [J]. Mol Ecol Notes,2003,3:102-104
    8. Jiggins C D, Mavarez J, Beltrdn M, et al. A genetic linkage map of the mimetic butterfly, Heliconius melpomone [J]. Genetics,2005,171:557-570
    9. Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment [J]. Mol Ecol,2007,16: 1099-1006.
    10. Keyghobadi N, Roland J, Stroback C. Influence of landscape on the pupulation genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae) [J]. Mol Ecol,1999,8:1481-1495
    11. Meglecz E, Pecsenye K, Varga Z, Solignac M. Comparison of differentiation pattern at allozyme and microsatellite loci in Parnassius mnemosyne (Lepidoptera) populations [J]. Hereditas,1998,128: 95-103
    12. Meglecz E, Solignac M. Microsatellite loci for Parnassius mnemosyne (Lepidoptera) [J]. Hereditas, 1998,128:179-180
    13. Palo J, Varvio S-L, Hanski I, Vainola R. Developing microsatellite markers for insect population
    structure:complex variation in a checker spot butterfly [J]. Hereditas,1995,123:295-300
    14. Reddy K D, Abraham E G, Nagaraju J. Microsatelite in the silkworm Bombyx mori:abundance, polymorphism and strain characterization [J]. Genome,1999,42:1057-1065
    15. Rousset F. GENEPOP'007:a complete re-implementation of the GENEPOP software for Windows and Linux [J]. Mol Ecol Resour,2008,8:103-106
    16. Rychlik W. OLIGO primer analysis software version 6.01 [EB/OL]. Cascade, Colorado,USA: Molecular Biology Insights, Inc,2000. http://www.oligo.net/downloads.html
    17. Van't Hof A E, Zwaan B J, Saccheri I J, et al. Characterization of 28 microsatellite loci for the butterfly Bicyclus anynana [J]. Mol Ecol Notes,2005,5:169-172
    18. Van't Hof A E, Brakefield P M, Saccheri I J et al. Evolutionary dynamics of multilocus microsatellite arrangements in the genome of the butterfly Bicyclus anynana, with implications for other Lepidoptera [J]. Heredity,2007,98:320-328
    19. Williams B L, Brawn J D, Paige K N. Highly polymorphic microsatellite loci for Speyeria idalia (Lepidoptera:Nymphalidae) [J]. Mol Ecol Notes,2002,2:87-88
    20. Zhang D X. Lepidopteran microsatellite DNA:redundant but promising [J]. Trends Ecol Evol,2004, 19(10):507-509
    21. Zhang D X, Yan L N, Ji Y J, et al. Isolation, characterization and cross-species amplification of eight microsatellite DNA loci in the migratory locust (Locusta migratoria) [J]. Mol Ecol Notes, 2003,3:483-486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700