Ru基硼化物超硬材料的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年,研究者采用电弧熔炼方法在常压下成功制备出ReB2,发现这种硼化物的维氏硬度高达48GPa。此后,过渡族金属硼化物由于具有高体弹性模量、高剪切模量、高硬度、优良的抗压缩性、在高温下拥有良好的热稳定性以及一定程度的金属行为,从而引起人们极大的兴趣和广泛关注。然而,绝大多数过渡族金属硼化物并不是超硬材料,因此,寻找具有超硬性质的过渡族金属硼化物并研究其硬度机制成为近年来超硬材料领域的研究热点。基于此研究背景,本文采用第一性原理密度泛函理论方法研究了Ru基硼化物的结构稳定性、弹性性能、硬度以及电子结构等性质,试图寻找具有超硬性质的Ru基硼化物。首先,以RuB2的晶体结构为基体,讨论了在不同B浓度下RuB2-x的结构稳定性和力学性质。研究结果表明,富硼化物比贫硼化物更有可能具备超硬性质,并发现Ru2B3的本征硬度达到了49.2GPa,是一种潜在的超硬材料。最近有报道称在实验上成功合成出正交晶系的CrB4,研究发现,这种四硼化物很有可能是一种潜在的超硬材料,本文以正交晶系的CrB4结构为基体,研究了TMB4的结构稳定性和力学性质,期望获得具有超硬性质的四硼化物。最后,采用电弧熔炼方法制备了RuB1.1,通过X-粉末衍射、结构精修和第一性原理等方法研究了RuB1.1的晶体结构,采用显微维氏硬度计测量了它的维氏硬度,并通过第一性原理方法计算了它的结构稳定性、弹性模量、硬度和电子结构,从理论上分析了影响RuB1.1硬度的本质原因。研究了它的断口形貌,从晶体结构、键合特征以及断裂机制等几个方面探讨了RuB1.1低硬度的本质原因。
Superhard material is widely used in machining, wear-resistant coating, abrasive, nationalindustry such as space vehicle, fission reactor, high technology, high storage material,high-temperature semiconductor, oil production and high precision machining et al. due to itshigh hardness, high strength, high heat conductivity and excellent resistance to wear et al. Overthe past decades, the first generation superhard material only concentrated on diamond inindustry application. However, the diamond is not effective for cutting ferrous metals or steelbecause a chemical reaction occurs that produces iron carbide decreasing, the hardness ofdiamond rapidly. Although the second generation superhard material (c-BN, C3N4and BC4) cancompensate the shortage, its preparation is very expensive. Therefore, it is very necessary tostudy and develop novel superhard material.
     In recent years, the transition metal borides (TMBs) have attracted attention as the potentialsuperhard material owe to their high bulk modulus, high shear modulus, high hardness, excellentultra-incompressibility, good thermal stability and a degree of metallic behavior et al. However,numerous papers reported that these TMBs are not superhard materials. Therefore, it is of greatinterest and significance to search for novel TM superhard material and to study the superhardmechanism.
     As mentioned above, in this dissertation, we will present first-principle approach andarc-melting prepared method to investigate the structural stability, elastic properties, hardness,electronic structure and fracture mechanism of Ru-based borides. We will try to search for thenew Ru-based superhard materials and study the relationship between hardness and bondcharacteristic and fracture mechanism et al. The main contents and results of this thesis aresummarized as follows:
     In Chapter1, we firstly give a brief introduction to the research history of superhardmaterial. We analyze and discuss the merit and shortage of the first generation superhard material and second generation superhard material. Following, experimental and theoreticalcalculation studies on the third generation superhard material are reviewed. Also, the progress inthe investigation on the Ru-based borides is summarized. Finally, the purpose main contents andsignificance of this work is given.
     In Chapter2, we firstly introduce the basis theory of the first-principle approach based onthe density functional theory. Then, we introduce the Boron rule, bulk modulus, shear modulus,Young′s modulus and Poisson ratio of cubic structure, orthorhombic structure and hexagonalstructure. In this thesis, we use the Voigt-Reuss-Hill approach for calculating elastic properties.Finally, we introduce the hard theoretical model of superhard materials in recent years.
     In Chapter3, for the orthorhombic RuB2structure as the basis structure, we investigate thestructural stability, elastic modulus, hardness and electronic structure of RuB2-x(0≤x≤2) usingthe first-principle approach. The calculated results show that the poor-boron region is morestable than that of rich-boron region. The Debye temperature is calculated to be in a sequence ofRuB2>Ru2B3>RuB, which is consistent with the structural stable of RuB2-x.
     The calculated bulk modulus, shear modulus and Young′s modulus of Ru2B3are349GPa,202GPa and508GPa, respectively, which are bigger than that of RuB2and RuB. The intrinsichardness of Ru2B3is about of49.2GPa. Therefore, we predict that Ru2B3is a potentialsuperhard material. Its high hardness originates from the bond characteristic and electronicstructure. Its atomic arrangement can be viewed as the alternatively stacked Ru and B layersalong the b-direction. Moreover, the B layer is composed of two sub-boundary B layers.Therefore, the load plane is composed of B-B and Ru-B covalent bonds. This is a main reasonwhy this Ru2B3has high elastic modulus and hardness. Finally, we find that this Ru-basedborides exhibit a degree of metallic behavior.
     In Chapter4, the structural stability, elastic modulus, hardness and electronic structure ofCrB4-type borides are investigated by first-principle approach. The calculated results show thatthe tetraborides have high bulk modulus, high shear modulus and hardness. In addition, thecalculated elastic constant C22is bigger than that of C11and C33, indicating that it has highresistance to deformation along the b-axis. Moreover, the calculated B/G ratio of CrB4, ReB4,RuB4and OsB4is smaller than1.75, and the intrinsic hardness of CrB4and ReB4is about69.6GPa and41.6GPa, which means that they are potential superhard materials. The high hardness is derived from that the B-B bond cage states are composed of12B atoms. This B-B bond cagecan improve the resistance to the deformation and enhance its hardness.
     In Chapter5, the single RuB1.1is prepared by using arc-melting method and its structure isstudied by X-ray diffraction and Rietveld refinement. The Vickers hardness is measured byVickers micro-hardness and the fracture feature is characterized by scanning electronmicroscopy (SEM). Its elastic modulus including bulk modulus, shear modulus and B/G ratio isinvestigated by first-principles. The refined lattice parameters are: a=b=2.860and c=2.846
     . The first-principles calculations show that the bulk modulus, shear modulus and Young′smodulus of RuB1.1is346GPa,203GPa and509GPa, respectively. The calculated B/G ratio ofRuB1.1is smaller than1.75, implying that it exhibits a brittle behavior.
     The calculated intrinsic hardness of RuB1.1is33.2GPa, which is three times bigger thanthe experimental result (10.6GPa). We suggest that the origin of low hardness is derived fromthe specific bonding state, bonding orientation and fracture mechanism. The first-principlescalculations show that there is an isosceles triangle bonding state including B-B covalent bondsand Ru-B covalent bonds, in which the Ru-B bonds are on two sides, while the B-B covalentbond is on the base. Note that the Ru-B covalent bond is along the a-c plane. Moreover, theorientation of Ru-B covalent bonds is just on the load plane. Under load stress, therefore, theRu-B covalent bond breakages along this direction. This result is also demonstrated by thefracture surface. The SEM images show that twinning fracture follows the typical fracturemechanism with a lamellar structure.
     In conclusion, the structural stability and mechanical properties of Ru-based borides aresystematically investigated by first-principles. The calculated results show that the Ru2B3, CrB4and ReB4are potential superhard materials. Furthermore, the relationship between hardness andbond characteristic and fracture mechanism for RuB1.1is studied in this dissertation. Theseinvestigations will be helpful for preparing Ru-based superhard materials.
引文
[1] S. Veprek, G.J. Maritza, V. Heijiman, P. Karvankova, J. Prochazka,“Different approaches to superhardcoatings and nanocomposites”, Thin Solid Films,2005,476:1-29.
    [2] Y. Zhang, H. Sun, C.F. Chen,“Strain dependent bonding in solid C3N4: high elastic moduli but low strength”,Physical Review B,2006,73:064109.
    [3] V. Brazhkin, N. Dubrovinskaia, M. Nicol, N. Novikov, R. Riedel, V. Solozhenko, Y. Zhao,“From our readersWhat does harder than diamond mean?”, Nature Materials,2004,3:576-7.
    [4] Y. Wang, J. Zhang, L.L. Daemen, Z. Lin, Y. Zhao, L. Wang,“Thermal equation of state of rhenium diboride byhigh pressure-temperature synchrotron x-ray studies”, Physical Review B,2008,78:224106.
    [5] J.S. Tse, D.D. Klug, F. Gao,“Hardness of nanocrystalline diamonds”, Physical Review B,2006,73:140102.
    [6] S. Matsumoto, Y. Sato, M. Tsutsumi, N. Setaka,“Growth of diamond particles from methane-hydrogen gas”,Journal Of Materials Science,1982,17:3106-12.
    [7] J. Haines, J. Leger, G. Bocquillon,“Synthsis and design of superhard materials”, Annual Review Of MaterialsResearch,2001,31:1-23.
    [8] Q. Hu, Q. Wu, YanmingMa, L. Zhang, Z. Liu, J. He, H. Sun, H.T. Wang, Y. Tian,“First-principles studies ofstructuraland electronci properties of hexagonal BC5”, Physical Review B,2006,214116.
    [9] V.L. Solozhenko, O.O. Kurakevych, D. Andrault, Y. Le Godec, M. Mezouar,“Ultimate Metastable Solubility ofBoron in Diamond: Synthesis of Superhard Diamondlike BC_{5}”, Physical Review Letters,2009,102:015506.
    [10]Q. Li, Y. Ma, A.R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.K. Mao, G. Zou,“Superhard Monoclinicpolymorph of carbon”, Physical Review Letters,2009,102:175506.
    [11] J. He, E. Wu, H. Wang, R. Liu, Y. Tian,“Ionicities of Boron-Bonds in B12Icosahedra”, Physical ReviewLetters,2005,94:015504.
    [12]Z. Liu, J. He, J. Yang, X. Gao, H. Sun, H.-T. Wang, E. Wu, Y. Tian,“Prediction of a sandwichlike conductingsuperhard boron carbide First-principles calculations”, Physical Review B,2006,73:172101.
    [13]J. Sun, X.F. Zhou, G.R. Qian, J. Chen,“Chalcopyrite polymorph for superhard BC2N”, Applied Physics Letters,2006,89:151911.
    [14]I. Jiménez, D.G.J. Sutherland, T.V. Buuren, J.A. Carlisle, L.J. Terminello,“Photoemission and X-ray-absorptionstudy of boron carbide and its surface thermal stability”, Physical Review B,1998,57:13167-74.
    [15]R. Gago, I. Jiménez, J.M. Albella,“Identification of ternary boron-carbon-nitrogen hexagonal phases by x-rayabsorption spectroscopy”, Applied Physics Letters,2001,78:3430-2.
    [16]S. Nakano, M. Akaishi, T. Sasaki, S. Yamaoka,“Segregative crystallization of Several diamond-like phase fromthe Graphitic BC2N whitout an additive at7.7GPa”, Chemistry Of Materials,1994,6:2246-51.
    [17]H. Sun, S.H. Jhi, D. Roundy, M.L. Cohen, S.G. Louie,“Structural forms of cubic BC2N”, Physical Review B,2001,64:094108.
    [18]M. Sokolowski,“Deposition of wurtzite type boron nitride layers by reactive pulse plasma crytallization”,Journal Of Crystal Growth,1979,46:136-8.
    [19]F.P. Bundy, J.S. Kasper,“Hexaognal Diamond-A new form of carbon”, Journal Of Chemical Physics,1967,46:3437.
    [20]M.B. Kanoun, A.E. Merad, G. Merad, J. Cibert, H. Aourag,“Prediction study of elastic properties underpressure effect for zincblende BN, AlN, GaN and InN”, Solid State Electronics,2004,48:1601-6.
    [21]X.L. Zhu, D.H. Li, X.L. Cheng,“Elastic properties of low-compressible material ReB2”, Solid StateCommunications,2008,147:301-4.
    [22]D.G. Clerc, H.M. Ledbetter,“Mechanical hardness A semiempirical theory based on screened electronstaticsand electic shear”, Journal Of Physics and Chemistry Of Solids,1998,59:1071-95.
    [23]A.Y. Liu, M.L. Cohen,“Prediction of new low compressibility solids”, Science,1989,245:841-2.
    [24]Y. Peng, T. Ishigaki, S. Horiuchi,“Cubic C3N4particles prepared in an induction thermal plasma”, AppliedPhysics Letters,1998,73:3671-4.
    [25]C. Niu, Y.Z. Lu, C.M. Lieber,“Experimental realization of the covalent solid carbon nitride”, Science,1993,261:334-7.
    [26]J.L. He, L.C. Guo, X.J. Guo, R.P. Liu, Y.J. Tian,“Predicting hardness of dense C3N4polymorphs”, AppliedPhysics Letters,2006,88:10196.
    [27]H. Sj str m, S. Stafstr m, M. Boman, J.E. Sundgren,“Superhard and elastic carbon nitride thin films havingfullerenelike microstructure”, Physical Review Letters,1995,75:1336-9.
    [28]H.Y. Niu, J.Q. Wang, X.Q. Chen, D.Z. Li, Y.Y. Li, P. Lazar,“Structure, bonding and possible superhardness ofCrB4”, Physical Review B,2012,85:144116.
    [29]F. Thevenot,“Boron carbide-A comprehensive review”, Journal Of The European Ceramic Society,1990,6:205-25.
    [30]C.E. Lowell,“Solid solution of boron in graphite”, Journal Of The American Ceramic Society,1967,50:142-4.
    [31]F. Mauri, N. Vast, C.J. Pichard,“Atomic structure of icosahedral B4C boron carbide from a first principlesanalysis of NMP Spectra”, Physical Review Letters,2001,87:085506.
    [32]V.L. Solozhenko, O.O. Kurakevych, D. Andrault,“Ultimate metastable solubility of boron in diamondsynthesis of superhard diamondlike BC5”, Physical Review Letters,2009,102:015506.
    [33]Y. Yao, J.S. Tse, D.D. Klug,“Crystal and electronic structure of superhard BC5: First-principles structuraloptimizations”, Physical Review B,2009,80:094106.
    [34]H. Cynn, J.E. Klepeis, C.S. Yoo, D.A. Young,“Osmum has the lowwst experimentally determinedcompressibility”, Physical Review Letters,2002,88:135701.
    [35]T. Kenichi,“Bulk modulud of osmium high-pressure powder x-ray diffraction experiments underquasihydrostatic conditions”, Physical Review B,2004,70:012101.
    [36]M.B. Weinberger, J.B. Levine, H.Y. Chung, R.W. Cumberland, H.I. Rasool, J.M. Yang, R.B. Kaner,“Incompressibility and Hardness of Solid Solution Transition Metal Diborides: OsRuB”, Chemistry OfMaterials,2009,21:1915-21.
    [37]R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, R.B. Kaner,“Osmium diboride, anultra-incompressible, hard material”, Journal Of The American Chemical Society,2005,127:7264-5.
    [38]Z.Y. Chen, H.J. Xiang, J. Yang, J.G. Hou, Q. Zhu,“Structural and electronic properties of OsB2: A hardmetallic material”, Physical Review B,2006,74:012102.
    [39]H.Y. Gou, L. Hou, J.W. Zhang, H. Li, G.F. Sun, F.M. Gao,“First-principles study of low compressibilityosmium borides”, Applied Physics Letters,2006,88:221904.
    [40]F.Z. Ren, Y.X. Wang, V.C. Lo,“Pressure induced structural phase transition of OsB2: First-principlescalculations”, Journal Of Solid State Chemistry,2010,183:915-9.
    [41]A. im nek,“How to estimate hardness of crystals on a pocket calculator”, Physical Review B,2007,75:172108.
    [42]M. Hebbache, L. Stuparevi, D. ivkovi,“A new superhard material: Osmium diboride OsB2”, Solid StateCommunications,2006,139:227-31.
    [43]Y.L. Li, Z. Zeng, H.Q. Lin,“Structural, elastic, electronic and dynamical proerpteis of OsB2and ReB2Densityfunctional calculations”, Chemical Physics Letters,2010,492:246-50.
    [44]R.B. Kaner, J.J. Gilman, S.H. Tolbert,“Designing superhard Materials”, Science,2005,308:1268-9.
    [45]H.Y. Chung, M.B. Weinberger, J.B. Levine, A. Kavner, J.M. Yang, S.H. Tolbert, R.B. Kaner,“Synthesis ofUltra-Incompressible Supherhard Rhenium Diboride at Ambient Pressure”, Science,2007,316:436-9.
    [46]A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, H.k. Mao,“Synthesis of Novel TransitionMetal Nitrides IrN2and OsN2”, Physical Review Letters,2006,96:155501.
    [47]J.B. Levine, S.L. Nguyen, H.I. Rasool, J.A. Wright, S.E. Brown, R.B. Kaner,“Preparation and properties ofmetallic, superhard rhenium diboride crystals”, Journal Of The American Chemical Society,2008,130:16953-8.
    [48]J.B. Levine, J.B. Betts, J.D. Garrett, S.Q. Guo, J.T. Eng, A. Migliori, R.B. Kaner,“Full elestic tensor of acrystyal of the superhard compound ReB2”, Acta Materialia,2010,58:1530-5.
    [49]Q.F. Gu, G. Krauss, W. Steurer,“Transition Metal Borides: Sperhard versus Ultra-incompressible”, AdvancedMaterials,2008,20:3620-6.
    [50]J.A. Rau, A. Latini,“New Hard and Superhard Materials: RhB1.1and IrB1.35”, Chemistry Of Materials,2009,21:1407-9.
    [51]A. Latini, J.V. Rau, R. Teghil, A. Generosi, V.R. Alberini,“Superhard Properties of Rhodium and IridiumBoride Films”, Appl Mater Inter,2010,2:581-7.
    [52]N. Dubrovinskaia, L. Dubrovinsky, V.L. Solozhenko,“Comment on "Synthesis of ultra-incompressiblesuperhard rhenium diboride at ambient pressure”, Science,2007,318:1550.
    [53]X. Hao, Y. Xu, Z. Wu, D. Zhou, X. Liu, X. Cao, J. Meng,“Low-compressibility and hard materials ReB2andWB2: Prediction from first-principles study”, Physical Review B,2006,74:224112.
    [54]X.Q. Chen, C.L. Fu, M. Krcmar, G.S. Painter,“Electronic and Structural Origin of Ultraincompressibility of5dTransition-Metal Diborides MB2(M=W, Re, Os)”, Physical Review Letters,2008,100:196403.
    [55]H.J. McSkimin, P. Andreatch,“The Elastic Stiffness Moduli of Diamond”, Journal Of Applied Physics,1972,43:985-7.
    [56]Y. Singh, A. Niazi, M.D. Vannette, R. Prozorov, D.C. Johnston,“Superconducting and normal-state propertiesof the layered boride OsB2”, Physical Review B,2007,76:214510.
    [57]J. Yang, H. Sun, C.F. Chen,“Is Osmium Diboride An Ultra-Hard Material”, Journal Of The AmericanChemical Society,2008,130:7200-1.
    [58]A. im nek,“Anisotropy of hardness from first principles: The cases of ReB2and OsB2”, Physical Review B,2009,80:060103.
    [59]E. Zhao, J.P. Wang, J. Meng, Z.J. Wu,“Ab initio study on the electronic and mechanical properties of ReB andReC”, Journal Of Solid State Chemistry,2009,182:960-5.
    [60]Y.X. Wang,“Elastic and electronic properties of TcB2and superhard ReB2First principles calculations”,Applied Physics Letters,2007,91:101904.
    [61]Y. Liang, B. Zhang,“Mechanical and electronic properties of superhard ReB2”, Physical Review B,2007,76:132101.
    [62]W. Zhou, H. Wu, T. Yildirim,“Electronic, dynamical, and thermal properties of ultra-incompressible superhardrhenium diboride: A combined first-principles and neutron scattering study”, Physical Review B,2007,76:184113.
    [63]J.W. Yang, X.R. Chen, F. Luo, G.F. Ji,“Firsy-principles calculations for elastic properties of OsB2underpressure”, Physica B,2009,404:3608-13.
    [64]S. Aydin, M. Simsek,“First-principles calculations of MnB2, TcB2, and ReB2within the ReB2-type structure”,Physical Review B,2009,80:134107.
    [65]Y. Pan, W.T. Zheng, W.M. Guan, K.H. Zhang, S.S. Yu, X.Y. Hu,“Effect of boron vacancies on mechanicalproperties of ReB2from first-principles calculation”, Computation Materials Science,2014,82:12-6.
    [66]Y. Pan, W.T. Zheng, W.M. Guan, K.H. Zhang, X.F. Fan,“First-principles study on the structure, elasticproperties, hardness and electronic structure of TMB4(M=Cr, Re, Ru and Os) compounds”, Journal Of SolidState Chemistry,2013,207:29-34.
    [67]M. Wang, Y.W. Li, T. Cui, Y.M. Ma, G.T. Zou,“Origin of hardness in WB4and its implications for ReB4, TaB4,MoB4, TcB4and OsB4”, Applied Physics Letters,2008,93:101905.
    [68]M. Zhang, M. Wang, T. Cui, Y.M. Ma, Y.L. Niu, G.T. Zou,“Electronic structure, phase stability, and hardnessof the osmium borides, carbides, nitrides, and oxides: First-principles calculations”, Journal Of Physics andChemistry Of Solids,2008,69:2096-102.
    [69]Y.C. Liang, J.Z. Zhao, B. Zhang,“Electronic structure and mechanical properties of osmium borides, carbidesand nitrides from first principles”, Solid State Communications,2008,146:450-3.
    [70]S. Chiodo, H.J. Gotsis, N. Russo, E. Sicilia,“OsB2and RuB2, ultra-incompressibe, hard materialsFirst-principles electronic structure calculation”, Chemical Physics Letters,2006,425:311-4.
    [71]X.F. Hao, Y.H. XU, Z.J. Wu, D.F. ZHou, X.J. Liu, J. Meng,“Elastic anisotropy of OsB2and RuB2fromfirst-principles study”, Journal of Alloys and Compounds,2008,453:413-7.
    [72]X.F. Hao, Z.J. Wu, Y.H. Xu, D.F. Zhou, X.J. Liu, J. Meng,“Trends in elasticity and electronic structure of5dtransition metal diborides: first-principles calculations”, Journal of Physics: Condensed Matter,2007,19:196212.
    [73]I.R. Shein, A.L. Lvanovskii,“Elastic properties of mono-and polycrystalline hexagonal AlB2-like diborides ofs, p and d metals from first-principles calculations”, Journal of Physics: Condensed Matter,2008,20:415218.
    [74]N.H. Miao, B.S. Sa, J. Zhou, Z.M. Sun,“Theoretical investigation on the transition-metal borides withTa3B4-type structure: A class of hard and refractory materials”, Computation Materials Science,2011,50:
    [75]W.J. Zhao, Y.X. Wang,“Structural, mechanical, and electronic properties of TaB2, TaB, IrB2and IrB:First-principle calculations”, Journal Of Solid State Chemistry,2009,182:2880-6.
    [76]P. Ravindran, P. Vajeeston, R. Vidya, A. Kjekshus,“Detailed electronic structure studies on superconductingMgB2and related compounds”, Physical Review B,2001,64:224509.
    [77]V. Milman, M.C. Warren,“Elastic properties of TiB2and MgB2”, Journal of Physics: Condensed Matter,2001,13:5585-95.
    [78]K.B. Panda, K.S.R. Chandran,“Determination of elastic constants of titanium diboride (TiB2) from firstprinciples using FLAPW implementation of the density functional theory”, Computation Materials Science,2006,35:134-50.
    [79]K. Liu, X.L. Zhou, X.R. Chen, W.J. Zhu,“Structural and elastic properties of AlB2compound viafirst-principles calculations”, Physica B,2007,388:213-8.
    [80]A.M. Locci, R. Licheri, R. Orru, G. Cao,“Reactive Spark Plasma Sintering of rhenium diboride”, CeramicsInternational,2009,35:397-400.
    [81]J.K. Burdett, E. Canadell, G.J. Miller,“Electronic structure of transition metal borides with the AlB2structure”,Journal Of The American Chemical Society,1986,108:6561-8.
    [82]A.S. Sikder, A.K.M.A. Lslam, M. Nuruzzaman, F.N. Lslam,“Superconducting NbB2: An ab initio study ofelastic constants”, Solid State Communications,2006,137:253-6.
    [83]V.V. Brazhkin, A.G. Lyapin, R.J. Hemley,“Harder than diamond: Dreams and reality”, Philosophical MagazineA,2002,82:231-53.
    [84]F. Parvin, A.L.M.A. Islam, F.N. Islam,“AuB2in comparison to superconducting MgB2-an ab initio study”,Solid State Communications,2004,130:567-9.
    [85]X.H. Zhang, X.G. Luo, J.P. Li, P. Hu, J.C. Han,“The ideal strength of transition metal diborides TMB2(TM=Ti, Zr, Hf): Plastic anisotropy and the role of prismatic slip”, Scripta Materialia,2010,62:625-8.
    [86]H.Z. Fu, M. Teng, X.H. Hong, Y. LU, T. Gao,“Elastic and thermodynamic properties of ZrB2: First principlestudy”, Physica B,2010,405:846-51.
    [87]S.T. Mahmud, A.K.M.A. Lslam, F. Islam,“VB2and ZrB2: A density functional study”, Journal of Physics:Condensed Matter,2004,16:2335-44.
    [88]N.L. Okamoto, M. Kusakari, K. Tanaka, H. Inui,“Anisotropic elastic constants and thermal expansivities inmonocrystal CrB2, TiB2, and ZrB2”, Acta Materialia,2010,58:76-84.
    [89]S. Andersson, T. Lundstrom,“The crystal Structure of CrB4”, Acta Chemica Scandinavica,1968,22:3103-10.
    [90]E. Regalado, R. Escamilla,“Elastic properties of superconducting NbB2+x obtained from first-principlescalculations”, Journal of Physics: Condensed Matter,2007,19:376209.
    [91]X.P. Du, Y.X. Wang,“Ab initio study of Os0.5W0.5B2, Re0.5W0.5B2and Os0.5Re0.5B2with high shearmodulus”, Physica Status Solidi-Rapid Research Letters,2009,3:106-8.
    [92]Y. Pan, W.M. Guan, K.H. Zhang,“First-principles calculation of the phase stability and elastic properties ofZrPt compounds at ground state”, Physica B,2013,427:17-21.
    [93]E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H.K. Mao, R.j. Hemley,“Synthesis andcharacterization of a binary noble metal nitride”, Nat Mater,2004,3:294-7.
    [94]S.K. R.Patil, S. V. Khare, B. R. Tuttle, J. K. Bording, and S. Kodambaka." Mechanical stability of possiblestructures of PtN investigated using first-principles calculations" Phys. Rev. B,2006,73:104118.
    [95]W. Chen, J.S. Tse, J.Z. Jiang,“An ab initio study of5d noble metal nitrides: OsN2, IrN2, PtN2and AuN2”,Solid State Communications,2010,150:181-6.
    [96]M.B. Kanoun, I.R. Shein, S.G. Said,“Origin of incompressibility and hardness from electronic and mechanicalpropreties of hard material ruthenium diboride”, Solid State Communications,2010,150:1095-8.
    [97]B. Aronsson,“The crystal structur of RuB2, OsB2and IrB1.35and some general comments on the crystalchemistry of borides in the composition range MeB-MeB3”, Acta Chemica Scandinavica,1963,17:2036-23050.
    [98]P. Yong, Z. Kunhua, G. Weiming, C. Song,“First-principles study on structure and hardness of the RuB2”, RareMetal Materials and Engineering,2012,41:2086-90.
    [99]B.J. Suh, X. Zong, Y. Singh, A. Niazi, D.C. Johnston,“11B NMR in the layered diborides OsB2and RuB2”,Physical Review B,2007,76:144511.
    [100] H.Y. Chung, M.B. Weinberger, J.M. Yang, S.H. Tolbert, R.B. Kaner,“Correlation between hardnes andelastic moduli of the untraincompressible transition metal diborides RuB2, OsB2, and ReB2”, AppliedPhysics Letters,2008,92:261904.
    [101] Y. Pan, W.M. Guan, W.T. Zheng,“Structural, mechanical properties and fracture mechanism of RuB1.1”,Dalton Transaction,2014,43:5168-74.
    [102] J.V. Rau, A. Latini, A. Generosi, V.R. Albertini, D. Ferro, R. Teghil, S.M. Barinov,“Deposition andcharacterization of superhard biphasic ruthenium boride films”, Acta Materialia,2009,57:673-81.
    [103] M. Schmidt, R. Kusche, W. Kronmuller, B.v. Issendorff, H. Haberland,“Experimental determination of themelting point and heat capacity for a free cluster of139sodium atoms”, Physical Review Letters,1997,79:99-102.
    [104] P. Hohenberg, W. Kohn,“Inhomogeneous electron gas”, Physical Review,1964,136: B864-B71.
    [105] W. Kohn, L.J. Sham,“Self-Consistent equations including exchange and correlation effects”, PhysicalReview,1965,140: A1133-A8.
    [106] M. Levy,“Electron densities in search of hamiltonians”, Physical Review A,1982,26:1200-8.
    [107] E. Krotscheck, W. Kohn, G.X. Qian,“Theory of inhomogeneous quantum systems. IV. Variationalcalculations of metal surfaces”, Physical Review B,1985,32:5693-712.
    [108] D.M. Ceperley, B.J. Alder,“Ground State of the Electron Gas by a Stochastic Method”, Physical ReviewLetters,1980,45:566-9.
    [109] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais,“Atoms,molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange andcorrelation”, Physical Review B,1992,46:6671-87.
    [110] A.D. Becke,“Density-functional exchange-energy approximation with correct asymptotic behavior”,Physical Review A,1988,38:3098-100.
    [111] J.P. Perdew, K. Burke, M. Ernzerhof,“Generalized Gradient Approximation Made Simple”, Physical ReviewLetters,1996,77:3865-8.
    [112] J.P. Perdew, Y. Wang,“Accurate and simple analytic representation of the electron-gas correlation energy”,Physical Review B,1992,45:13244-9.
    [113] C. Lee, W. Yang, R.G. Parr,“Development of the Colle-Salvetti correlation-energy formula into a functionalof the electron density”, Physical Review B,1988,37:785-9.
    [114] H.M. Ledbetter, R.L. Moment,“Elastic properties of face-centered cubic plutonium”, Acta Metallurgica,1976,24:891-9.
    [115] D. Legut, M. Friak,“Phase stability, elasticity and theoretical strength of polonium from first principles”,Physical Review B,2010,81:214118.
    [116] L. Fast, J.M. Wills, B. Johansson, O. Eriksson,“Elastic constants of hexagonal transition metals: Theory”,Physical Review B,1995,51:17431-8.
    [117] O. Beckstein, J.E. Klepeis, G.L.W. Hart, O. Pankratov,“First-principles elastic constants and electronicstructure of α-Pt2Si and PtSi”, Physical Review B,2001,63:134112.
    [118] M. Mattesini, S.F. Matar,“Density-functional theory investigation of hardness, stability, andelectron-energy-loss spectra of carbon nitrides with C_{11}N_{4} stoichiometry”, Physical Review B,2002,65:075110.
    [119] C. Jiang, Z.J. Lin, Y.S. Zhao,“First-principles prediction of vanadium and niobium nirides with M2N3stoichiometry”, Scripta Materialia,2010,63:532-5.
    [120] C.M. Li, Q.M. Hu, R. Yang, B. Johansson, L. Vitos,“First-principles study of the elastic properties of In-Tirndom alloys”, Physical Review B,2010,82:094201.
    [121] Y. Pan, W.M. Guan, M. Wen, J.M. Zhang, C.J. Wang, Z.L. Tan,“Hydrogen embrittlement of Pt3Zrcompound from first-principles”, Journal of Alloys and Compounds,2014,585:549-54.
    [122] R. Hill,“The Elastic behavir of a crystalline aggregate”, Proceedings of the Physical Society Section A,1952,65:349.
    [123] M. Mattesini,“Elastic properties and electrostructural correlations in ternary scandium-based cubic inverseperovskites: A first-principles study”, Physical Review B,2009,79:125122.
    [124] C. Asker, L. Vitos,“Elastic constants and anisotropy in FeNi alloys at high pressures from first-principlescalculations”, Physical Review B,2009,79:214112.
    [125] Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao,“Crystal structures and elastic properties of superhard IrN2andIrN3from first principles”, Physical Review B,2007,76:054115.
    [126] M.M. Wu, L. Wen, B.Y. Tang, L.M. Peng, W.J. Ding,“First-principles study of elastic and electronicpropereties of MgZn2and ScZn2phases in Mg-Sc-Zn alloy”, Journal of Alloys and Compounds,2010,506:412-7.
    [127] J.N. Plendl, P.J. Gielisse,“Hardness of Nonmetallic Solids on an Atomic Basis”, Physical Review,1962,125:828-32.
    [128] C.M. Sung, M. Sung,“Carbon nitride and other speculative superhard materials”, Materials Chemistry andPhysics,1996,43:1-18.
    [129] R. Riedel,“Novel Ultrahard materials”, Advanced Materials,1994,6:549-60.
    [130] D.M. Teter, R.J. Hemley,“Low-compressibility carbon nitrides”, Science,1996,271:53-5.
    [131] J.M. Leger, J. Haines, M. Schmidt, J.P. Petltet, A.S. Pereira,“Discovery of hardest known oxide”, Nature,1996,383:401-.
    [132] J.M. Leger, P. Djemia, F. Ganot, J. Haines, A.S. Pereira,“Hardness and elasticity in cubic rutheniumdioxide”, Applied Physics Letters,2001,79:2169-71.
    [133] J.J. Gilman,“Escape of dislocations from bound states by tunneling”, Journal Of Applied Physics,1968,6068-90.
    [134] A.P. Gerk,“The effect of work hardening upon the hardness of solids: minimum hardness”, Journal OfMaterials Science,1977,12:735-8.
    [135] M. Weiler, S. Sattlel, T. Giessen, K. Jung, H. Ehrhardt,“Preparation and properties of highly tetrahedralhydrogenated amorphous carbon”, Physical Review B,1996,53:1594-608.
    [136] V.I. Razumovskiy, E. ILsaev, A.V. Ruban, P.A. Korzhavyi,“Ab initio calculations of elastic properties ofPt-Sc alloys”, Intermetallics,2008,16:982-6.
    [137] X.Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li,“Modeling hardness of polycrystalline materials and bulk metallicglasses”, Intermetallics,2011,19:1275-81.
    [138] S.F. Pugh,“Relations between the elastic moduli and the plastic properties of polycrystalline pure metals”,Philosophical Magazine A,1954,45:823-43.
    [139] F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, Y. Tian,“Hardness of Covalent Crystals”, PhysicalReview Letters,2003,91:015502.
    [140] J.C. Phillips,“Ionicity of the Chemical Bond in Crystals”, Reviews Of Modern Physics,1970,42:317-56.
    [141] F. Gao,“Theoretical model of intrinsic hardness”, Physical Review B,2006,73:132104.
    [142] A. im nek, J. Vacká,“Hardness of Covalent and Ionic Crystals: First-Principle Calculations”, PhysicalReview Letters,2006,96:085501.
    [143] G. Luo, S. Yan, M.H. Qiao, K.N. Fan,“Effect of promoters on the structures and properties of theRuB2/Al2O3catalyst”, Journal Of Molecular Catalysis A-chemical,2005,230:69-77.
    [144] X.F. Hao, Y.H. Xu, F.M. Gao,“Electronic and elastic properties of new semiconducting oP12-type RuB2and OsB2”, Journal of Physics: Condensed Matter,2011,23:125501.
    [145] G. Luo, S. Yan, M.H. Qiao, K.N. Fan,“RuB/Sn-SBA-15catalysts Preparation characterization and catalyticperformance in ethyl lactate hydrogenation”, Applied Catalysis A-general,2007,332:79-88.
    [146] S.X. Xu, F.Y. Li, R. Wei,“Preparation of novel RuB amorphous alloy catalyst supported on carbonnanotubes”, Carbon,2005,43:855-94.
    [147] W. Chen, J.Z. Jiang,“Elastic and electronic properties of low compressible4d transition metal diborides:First-principles calculations”, Solid State Communications,2010,150:2093-6.
    [148] F. Peng, W.M. Peng, H.Z. Fu, X.D. Yang,“Elastic and thermodynamics properties of RuB2under pressure”,Physica B,2009,404:3363-7.
    [149] W. Yue-Qin, Y. Lan-Feng, Y. Jin-Long,“Lattice dynamics and superconductivity of RuB2: A first-principlesstudy”, Chinese Physics Letters,2008,25:3036-9.
    [150] M. Frotscher, M. H lzel, B. Albert,“Crystal structures of the Metal diborides ReB2, RuB2and OsB2fromNeutron Powder Diffraction”, Zeitschrift Fur Anorganische Und Allgemeine Chemie,2010,636:1783-6.
    [151] MATERIALS STUDIO, Version41, Accelrys In,2006,
    [152] M. Marlo, V. Milman,“ensity-functional study of bulk and surface properties of titanium nitride usingdifferent exchange-correlation functionals”, Physical Review B,2000,62:2899-907.
    [153] H.J. Monkhorst, J.D. Pack,“Special points for Brillouin-zone integrations”, Physical Review B,1976,13:5188-92.
    [154] C. Jiang, D.J. Sordelet, B. Gleeson,“First-principles study of phase stability in pseudobinary (Ni1-xPtx)3Alalloys”, Physical Review B,2005,72:184203.
    [155] G. Fadda, L. Colombo, G. Zanzotto,“First-principles study of the structural and elastic properties ofzirconia”, Physical Review B,2009,79:214102.
    [156] I.R. Shein, A.L. Ivanovskii,“Electronic band structure, Fermi surface, and elastic properties of polymorphsof the5.2K iron-free superconductor SrPt2As2from first-principles calculations”, Physical Review B,2011,83:104501.
    [157] P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson,“Density functional theory for calculation of elasticproperties of orthorhombic cystal Application to TiSi2”, Journal Of Applied Physics,1998,84:4891-904.
    [158] S.C. Abrahams, F.S.L. Hsu,“Debye temperatures and cohesive properties”, Journal Of Chemical Physics,1975,63:1162-5.
    [159] G.W. Zhang, Y.P. Feng, C.K. Ong,“Local binding trend and local electronic structures of4d transitionmetals”, Physical Review B,1996,54:17208-14.
    [160] S.R. Nishitani, S. Fujii, M. Mizuno, I. Tanaka, H. Adachi,“Chemical bonding of3d transition-metaldisilicides”, Physical Review B,1998,58:9741-5.
    [161] M. Zhang, H. Yan, G. ZHang, H. Wang,“Ultra-incompressible orhtorhombic phase of Osmium tetraboride(OsB4) predicted from first-principles”, Journal of Physical Chemistry C,2012,116:4293-7.
    [162] B. Wang, D.Y. Wang, Y.X. Wang,“A new hard phase of ReB4predicted from first principles”, Journal ofAlloys and Compounds,2013,573:20-8.
    [163] H.B. Xu, Y.X. Wang, V.C. Lo,“First-principles of CrB4as a hihg shear modulus compound”, Phys StatusSolidi RRl,2011,5:13-5.
    [164] B. Wang, D.Y. Wang, Z.X. Cheng, X.L. Wang, Y.X. Wang,“Phase Stability and Elastic Properties ofChromium Borides with Various Stoichiometries”, Chemphyschem,2013,14:1245-55.
    [165] A. Knappschneider, C. Litterscheid, D. Dzivenko, J.A. Kurzman, R. Sechadri,“Possible superhardness ofCrB4”, Inorganic Chemistry,2013,52:540-2.
    [166] S.K. Desai, T. Neeraj, P.A. Gordon,“Atomistic mechanism of hydrogen trapping in bcc Fe-Y solid solution:A first-princioles study”, Acta Materialia,2010,58:5363-9.
    [167] O. Moutanabbir, R. Scholz, U. G sele, A. Guittoum, M. Jungmann, M. Butterling, R. Krause-Rehberg, W.Anwand, W. Egger, P. Sperr,“Experimental elucidation of vacancy complexes associated with hydrogenion-induced splitting of bulk GaN”, Physical Review B,2010,81:115205.
    [168] S. Okada, T. Atoda, I. Higashi,“Structural investigation of Cr2B3, Cr3B4, and CrB by single-crystaldiffractometry”, Journal Of Solid State Chemistry,1987,68:61-7.
    [169] B.P.T. Fokwa, J.V. Appen, R. Dronskowski,“Synthesis of a missing structural link: the first trigonal planarB4units in the novel complex boride TiOsRuB2”, Chemical Communications,2006,4419-21.
    [170] D. Machon, P. Toulemonde, P.F. Mcmillan, M. Amboage,“High-pressure phase transformations,pressure-induced amorphization, and polyamporphic transition of the clathrate Rb6.15Si46”, PhysicalReview B,2009,79:184101.
    [171] B. Aronsson, E. Stenberg, J. Adelius,“Borides of Ruthenium, Osmium and Iridium”, Nature,1962,195:377-8.
    [172] B.P.T. Fokwa, G.D. Samolyuk, G.J. Miller, R. Dronskowski,“Ladders of Magnetically Active Element in thestructureof the novel complex boride Ti9Fe2Ru18B8: Synthesis, structure,bonding and magnetism”,Inorganic Chemistry,2008,47:2113-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700