基于半固着磨具的蓝宝石延性域加工基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝宝石(α-alumina,Al_2O_3)是典型的硬脆先进陶瓷材料,作为优良的衬底材料,具有良好的物理和化学性质,普遍用于高速IC芯片、薄膜衬底和各种电子和机械元件。随着电子技术、固体照明技术的发展,对超精密加工技术提出了更高的要求。追求高效和少、无损伤超精密加工,促成了延性域加工技术的出现,也就是说加工脆性材料时,切屑通过剪切的形式被磨粒切除下来,加工后的表面和亚表面没有裂纹产生,也没有脆性剥落时的凹凸不平现象出现,因此延性域加工是一种损伤极小的加工方式,在陶瓷、玻璃、光学元件和半导体领域有广阔的应用前景。为了更好的控制磨粒的延性域加工,本课题组提出了一种“半固着磨具”加工技术,其“半固着磨具”以有机结合剂、磨料为主,在一定的压力和较低温度下成型的新型磨具,该磨具表面磨粒的排列方式具有等高性和均匀性,磨粒之间的结合强度比固结砂轮弱,不会在工件表面造成强制性划伤,磨粒的均匀分布不会产生游离磨粒的加工随机性。具有加工表面损伤层小,加工表面质量的可控性好、批一致性高以及加工效率高等特点。
     本文基于“半固着磨具加工技术”,对蓝宝石衬底系统地开展了延性域加工的试验研究。利用微纳米力学系统的纳米压入、划痕试验方法,分析了蓝宝石衬底延性到脆性的转变过程和特征,并通过分形理论和试验研究半固着磨具与工件的接触特性,对研磨过程的延性域研磨参数进行了分析;综合纳米压痕、划痕等试验方法和SEM、EDS、AFM、XRD等测试手段,对研磨加工的表面损伤和完整性进行了分析;并对延性域研磨加工进行了评价。论文的主要工作如下:
     (1)采用纳米压入和纳米划痕等微纳米力学测试手段分析了蓝宝石延性-脆性转化的过程和特征,获得了不发生脆性破坏的临界切削深度约为300nm左右。
     (2)运用分形理论分析了半固着磨具与工件的微接触行为,对半固着磨具的表面形貌进行了模拟,使用超景深三维显微镜获得半固着磨具表面的粗糙度特征值,由这些特征,生成半固着磨具的三维表面形貌。通过计算和试验获得工件与半固着磨具的接触面积与载荷的关系,为试验参数的设计提供支持。
     (3)根据临界条件和接触参数情况,根据延性域加工的数学模型,得出了延性域加工的控制参数,并经过游离磨粒与半固着磨具的加工试验对比研究得出:使用粒度为W14的碳化硼磨粒的半固着磨具加工,工件的表面质量优于粒度为W3.5的B_4C磨粒的游离磨粒加工水平。因此半固着磨具加工可以减少游离磨粒加工的工序,提高加工效率。并对半固着磨具加工的工件表面进行了高分辨率的AFM和SEM分析测试,未发现微小裂纹存在,但有类似金属切削的塑性流动产生。采用EDS分析表面塑性流动部分的组成成份为41.1wt%的O,58.9wt%的Al,证明是蓝宝石自身材料,并不是半固着磨具脱落物。因为半固着磨具的磨粒有结合剂粘着,其加工类似于大量的微刃切削,所以能够达到延性加工的目的。
     (4)延性域加工评价为工件加工后表面和亚表面不存在裂纹,而且其变质层为数百个纳米以下。本文提出了使用X射线小角度掠入技术和纳米压入的方法来测试表面变质层的厚度。几种方法所测得的变质层厚度都在数百纳米左右。
Sapphire (α-alumina, Al_2O_3) is one of the best substrate materials, which take on the brilliant physical and chemical property, and it is the typical crisp and hard advanced ceramics material at the same time. Sapphire is extensive used for high speed IC chipset, thin films substrate and electronic component and mechanical element. Along with the development of the technology of electronics and solid state lighting, the higher requirements for ultra-precision processing are suggested, the pursuit for effective and reducing or eliminating the surface defects inducing the ductile regime lapping processing technology, namely, the chip are cut thorough shear style by the abrasive when processing the crisp materials, there are not crack on the processed surface and subsurface and not irregularity caused by crisp peeling. So the ductile regime processing is a next to nothing defects processing style. It is the promising processing style for ceramics, glasses, and optics & semiconductor materials. In order to control effectively the ductile regime lapping, an original technology 'semi-fixed abrasive machining technology' is proposed by the project group, the 'semi-fixed abrasive plate' (SFAP) is a new abrasive tool that was molded with the organic bond and abrasive under the lower temperature, whose abrasive is arranged uniform and contour on the surface, the combine intensity of abrasive is weaker than the concretion abrasion wheel, so it could reduce or eliminate the compellent scratch and the processing randomicity of the abrasive distribution could be avoided too. The local acting force on the processed surface is uniform distribution, so the SFAP have the characteristic that the processed surface affected layer is thin, the surface quality controllability is good and have the higher processing efficiency.
     The ductile regime lapping experimental research is employed based on the SFAP. The critical condition of ductile to brittle transformation of sapphire is studied by the experiment method of nanoindentation and nano-scratch. In order to design the ductile lapping parameter the contact characteristic between the SFAP with workpiece is studied by fractal theory and contact experiment. The testing instrument and method such as nanoindentation, nano-scratch, microcosmic roughness, SEM, EDS, AFM and XRD are used to analyze the surface defect and integrality of the SFAP lapping process. At last the ductile processing appraisal is performed. The main works and research results in the paper are summaried as following:
     1. The critical condition of ductile to brittle transformation of sapphire was obtained by the nano test method such as the nanoindentation and nano-scratch. The critical cut is about 300nm.
     2. The contact action between SFAP and workpiece was analyzed by the fractal theory. At first, the surface topography of SFAP was simulated by the fractal theory according to the roughness eigenvalue that was obtained by Digital Microscope Resources Center (DMRC) (VHX-600 Series, the Keyence Corporation). The roughness eigenvalue of simulation surface was matching with the measured value, so the simulation results could be used to carry out the contact analysis. The relations of contact area with load were obtained by calculating and experiment; it was the basis of the experiment parameter.
     3. The mathematic model of ductile regime processing was set up according to the critical condition and contact parameter, and then the ductile control parameter was obtained. The contrast experiment of SFAP and loose abrasive processing were made to get the following results: the surface topography of workpiece that was processed by the W14 B4C SFAP was superior to that were processed by the W3.5 B4C loose abrasive. So the better surface topography could be obtained processing used the SFAP than the loose abrasive under the same time and condition. The SFAP processing could reduce the working procedure and increase production efficiency. The high resolution AFM and SEM were used to test the workpiece surfaces that were processed by SFAP, the microcracks were not found and the plastic flow similar metal-cutting were found. The plastic flow matters were measured by the EDS, the results showed that the compositions of it were 41.15% 0 and 58.85% Al, so the chips were the sapphire and not the cast of the SFAP. The abrasive of the SFAP were bonded by the bonding agent, so the abrasive processing was similar the micro-blade cutting and could achieve the ductile regime processing. On the basis of the above, the SFAP processing was more efficient and precision than the same granularity loose abrasive.
     4. The estimate of the ductile regime processing was that there were not flaw on the processed surface and the affected layer was less than hundreds nanometer. The nanoindentation and low-angle X-ray diffraction technology were employed to test the thickness of the affected layer based on the analysis of the existing test method. The measured value of the several test method were about 400nm. It could explain that the SFAP processing in this dissertation were in the ductile regime.
引文
[1]SINGLE CRYSTAL SAPPHIRE.http://www.kyocera.com.
    [2]SAPPHIRE SUBST'RATES,Marke Tech International.http://www.mkt-intl.com/sapphires.
    [3]Polished Sapphire Wafers and Substrates.http://www.sapphirewafers.com.
    [4]P.Roussel.GaN 2007-New perspectives for nitride materials and devices.Yole D(?)veloppement,France,13~(rd),2007.7
    [5]J.M.Phillips.Basic research needs for solid-state lighting,http://www.sc.doe.gov/,2006.5
    [6]V.N.Bliznyuk~* and S.A.Carter.Electrical and Photoinduced Degradation of Polyfluorene Based Films and Light-Emitting Devices.Macromolecules,1999,32:P361-369
    [7]柏德藏.全球LED产业发展动态[J].电子测试,2007,8:P4-7
    [8]晨明.LED的发展走势[J].光源与照明,2007,2:P40
    [9]刘一兵,刘慧荧.高亮度发光二极管HB-LED及应用概况[J].湖南理工学院学报(自然科学版),2007,20:P42-45
    [10]F.A.Ponce,D.P.Bour.Nitride-based semiconductors for blue and green light-emitting devices.Nature,1997,386:P351-354
    [11]彭万华.我国超高亮度及白光LED产业的现状与发展[J].激光与红外,2005,35(4):P223-227
    [12]宋贤杰,屠其非,周伟等.高亮度发光二极管及其在照明领域中的应用[J].半导体光电,2002,23(5):P356-360
    [13]薛莉.未来的照明工具-发光二极管[J].百科知识,2005,(12):P19
    [14]李宏,李蔚燕.绿色照明光源—高亮度白光LED[J].灯与照明,2007,31(1):P32-33
    [15]周太明,宋贤杰,周伟等.LED—21世纪照明新光源[J].照明工程学报,2001,12(4):p37-40
    [16]陈明君,张飞虎,董申,李旦.光学玻璃塑性模式超精密磨削加工的研究[J].中国机械工程,2001,12(4):P460-462
    [17]卢泽生,王明海.硬脆光学晶体材料超精密切削理论研究综述[J].机械工程学报,2003,(8):P 15-21
    [18]陈明君,董申,李旦,张飞虎.脆性材料超精密磨削时脆转变临界条件的研究[J].高技术通讯,2000(2):P64-67
    [19]徐可伟,朱训生,赵波等.硬脆材料延性域切削的断裂力学有限元分析[J].上海交通大学学报,2001,35(12):P1838-1841
    [20]Y.Namba,H.Tsuwa.Ultra-fine finishing of sapphire single crystal.Annals of the CIRP[J],1979,25(1):P325-329
    [21]Honglin Zhu,Luiz A.Tessaroto,Robert Sabia.Chemical mechanical polishing(CMP)anisotropy in sapphire[J].Applied Surface Science,2004,236:P120-130
    [22]Honglin Zhu,Dale E.Niesz,Victor A.Greenhut.The effect of abrasive hardness on the chemical-assisted polishing of(0001)plane sapphire[J].J.Mater.Res.,2005,20(2):504-520
    [23]霍凤伟.硅片延性域磨削机理研究[D].大连理工大学博士学位论文,2006.5
    [24]张勤俭,刘媛,叶书强.工件精密研磨过程的计算机仿真技术[J].计算机仿真,2007,24(5):p 249-252
    [25]张伟,周建伟,刘玉岭,刘承霖.硅片研磨表面状态的改善和研磨液的改进[J].半导体技术,2006,31(10):P758-765
    [26]刘玉岭,韩清涛,徐晓辉,李湘都.硅单晶研磨片表面状态的分析研究[J].半导体技术,1994(5):P35-36
    [27]林滨,林彬,于思远.陶瓷材料延性域去除临界条件新研究[J].金刚石与磨料磨具工程,2002(1):P44-45
    [28]纳米尔,林滨,关强,于思远.几种工程陶瓷的延性域磨削[J].天津大学学报,1999,32(4):P486-491
    [29]Frank Marx.LED照明势在必行[J].电子技术,2006(4):P80
    [30]彭万华.国内超亮度及白光LED产业发展现状[J].厦门科技,2005(3):P39-41
    [31]崔元日,潘苏予.第四代照明光源—白光LED[J].灯与照明,2004,28(2):P31-34
    [32]刘行仁,薛胜薜,黄德森等.白光LED现状和问题[J].光源与照明,2003,(3):P4-8
    [33]王尔镇.高效率白光LED的技术开发[J].照明工程学报,2003,14(4):P23-31
    [34]铃木弘茂[日]著,陈世兴译.工程陶瓷[M].科学出版社,1989.12
    [35]A.J.Moulson,J.M.Herbert.李世普等译.电子陶瓷——材料,性能,应用[M].武汉工业大学出版社,1993.10
    [36]Punam Pant.Characterization of the Nucleation Layer in GaN Sapphire Heterostructures[D].North Carolina State University,2005.7
    [37]郎佳红,顾彪,徐茵,秦福文.GaN基半导体材料研究进展[J]_激光与光电子学进展,2003,40(3):45-49
    [38]杨利,魏芹芹,孙振翠,薛成山.氮化镓薄膜研究进展[J].山东师范大学学报(自然科学版),2003,18(4):P27-30
    [39]韩培德,段晓峰,孙家龙,张泽,王占国.在蓝宝石衬底两个相反c面同时生长氮化镓薄膜的差异[J].半导体学报,2001,22(8):P1030-1034
    [40]王彦松.单晶α相氧化铝衬底基板平坦化加工研究[D].台湾科技大学机械工程研究所硕士论文,2003.7
    [41]GeorgJ.Pietsch,Michael Kerstan.Understanding simultaneous double-disk grinding:operation principle and material removal kinematics in silicon wafer planarization[J].Precision Engineering,2005,29:P189-196
    [42]Y.P.Chang,M.Hashimura,D.A.Dornfeld.An investigation of material removal mechanisms in lapping with grain size transition[J].Trans.of the ASME,Journal of Manufacturing Science and Engineering,2000,122(2):P413-419
    [43]Williams,J.A.,Hyncica,A.M.Mechanisms of abrasive wear in lubricated contacts[J].Wear,1992,152:P57-74
    [44]Buijs,M.,Korpel-van Houton,K.A model for lapping of glass.J.Mater.Sci.,1993,28:P 3014-3020
    [45]R Komanduri,D A Lucca,Y Tani.Technological advances in fine abrasive processes[J].Annals of the CIRP,1998,47(2):P566-592
    [46]https://dj.cathayrichone.com.tw/z/glossary/glexp_2200.asp.htm
    [47]http://www.thomasnet.com/products/ceramic-lapping-13010327-1.html
    [48]左培伦.精密磨料加工.台湾清华大学动力机械工程系讲义,2004.1
    [49]许光城.精密磨料加工.国立高雄应用科技大学机械工程系讲义,2006.3
    [50]赵崇礼.精密加工原理.台湾淡江大学机械系讲义,2005.4
    [51]Y.Namba,H.Tsuwa.Ultra-fine finishing of sapphire single crystal.Annals of the CIRP[J],1979,25(1):P325-329
    [52]Honglin Zhu,Luiz A.Tessaroto,Robert Sabia.Chemical mechanical polishing(CMP)anisotropy in sapphire[J].Applied Surface Science,2004,236:P120-130
    [53]Honglin Zhu,Dale E.Niesz,Victor A.Greenhut.The effect of abrasive hardness on the chemical-assisted polishing of(0001)plane sapphire[J].J.Mater.Res.,2005,20(2):P 504-520
    [54]于爱兵,田欣利,韩建华等,应用压痕断裂力学分析陶瓷材料的磨削加工[J].硅酸盐通报,2002,21(1):P58-61。
    [55]张勤俭,刘媛,叶书强.工件精密研磨过程的计算机仿真技术[J].计算机仿真,2007,24(5):P 249-252
    [56]张伟,周建伟,刘玉岭,刘承霖.硅片研磨表面状态的改善和研磨液的改进[J].半导体技术,2006,31(10):P758-765
    [57]Toenshoff H.K.Schmieden W.V.Inasaki I.Konig W.And Spur G.Abrasive Machining of Silicon.Annals of theCIRP,1990,39(2):P621-635
    [58]Fang F Z,Liu X D,Lee L C.Ultra-precision machining of brittle materials—A review of diamond-cutting brittle materials[J].纳米技术与精密工程,2003,1(1):P38-47
    [59]赵奕,周明,董申,李旦.脆性材料塑性域超精密加工的研究现状[J].高技术通讯,1999(4):P 59-63
    [60]史兴宽,仝猛,徐传义.控制力超精密研抛测控系统[J].航空精密制造技术,2000,36(1):P 13-16
    [61]万珍平,刘亚俊,汤勇.玻璃的脆塑性域高效精密切削[J].机械科学与技术,2005,24(2):P 217-220
    [62]陈明君,张飞虎,董申,李旦.光学玻璃塑性模式超精密磨削加工的研究[J].中国机械工程,2001,12(4):P460-462
    [63]卢泽生,王明海.硬脆光学晶体材料超精密切削理论研究综述[J].机械工程学报,2003,(8):P15-21
    [64]Blake P N.,Scattergood R O.Ductile regime machining of germanium and silicon[J].Journal of the American Ceramic Society,1990,73(4):P949-957
    [65]Blackley W S,Scattergood R O.Ductile-regime machining model for diamond turning of brittle materials[J].Precision engineering,1991,13(2):P95-103
    [66]George J.Micro indentation analysis of diamond hydrogen single crystals[J].J.Mater Sci.,1985,20:P3150-3156
    [67]T G Bifano,T A Dow,R O Scattergood.Ductile regime grinding:A new technology for machining brittle materials[J].Journal of Engineering for Industry,1991,113(2):P184-189
    [68]Schinker M G.Subsurface damage mechanisms at high speed ductile machining of optical glasses[J].Precision Engineering,1991,13(3):P208-218
    [69]史兴宽,藤霖,李雅卿等.硬脆材料延性域磨削的临界条件[J].航空精密制造技术,1996,32(6):P10-13
    [701 阎纪旺,于骏一,史国权等.金刚石车削单晶锗的试验研究[J].中国机械工程,1995,6(6):24-26
    [71]于栋利,李东春,何巨龙.硅片的在线电解修整超精密磨削[J].中国机械工程,1999,10(5):P 566-569
    [72]陈明君,董申,李旦,张飞虎.脆性材料超精密磨削时影响表面质量因素的研究[J].机械工程学报,2001,37(3):P1-4
    [73]陈明君,董申,李旦.单晶硅脆性材料塑性域超精密磨削加工的研究[J].航空精密制造技术,2000,36(2):P8-11
    [74]赵清亮,梁迎春,程凯,董申.基于AFM微加工的单晶硅表层性质的研究[J].微纳电子技术,2003(7/8):P261-265
    [75]谢存毅.纳米压痕技术在材料科学中的应用[J].物理,2001,30(7):P432-435
    [76]Vispi Homi Bulsara.Scratch formation in brittle solids and its application to polishing.Doctor thesis[D],Purdue University,1997.3
    [77]J.A.Greenwood and J.B.P.Williamson,“Contact of Nominally Flat Surfaces”,Proc.R.Soc.London,Ser.A,1966,295:P300-319.
    [78]M.O'Callaghan and M.A.Cameron.Static contact under load between nominally fiat surfaces in which deformation is purely elastic,Wear,1976,36:P79-97.
    [79]H.A.Francis.Application of spherical indentation mechanics to reversible and irreversible contact between rough surfaces.Wear,1977,45:P221-269.
    [80]John I.McCool.Comparison of models for the contact of rough surfaces,Wear,1986,107:P 37-60.
    [81]D.J.Whitehouse and J.F.Archard.The Properties of Random Surfaces of Significance in their Contact.Proc.R.Soc.London,Ser.A,1970,316:P97-121.
    [82]R.A.Onions and J.F.Archard.The contact of surfaces having a random structure[J].Phys.D:Appl.Phys.,1973,6:P289-304.
    [83]John I.McCool.Non-Gaussian effects in microcontact.Int.J.Mach.Tools Manufact.1992,32:P115-123.
    [84]Ning Yu and Andreas A.Polycarpou.Contact of Rough Surfaces with Asymmetric Distribution of Asperity Heights.ASME J.Tribol.,2002,124:P367-376.
    [85]W.R.Chang,I.Etsion and D.B.Bogy.An Elastic-Plastic Model for the Contact of Rough Surfaces.ASME J.Tribol.,1987,109:P257-263.
    [86]D.G.Evseev,B.M.Medvedev and G.G.Grigoriyan.Modification of the Elastic-Plastic Model for the Contact of Rough Surfaces.Wear,1991,150:P79-88.
    [87]S.Kucharski,T.Klimczak,A.Polijaniuk and J.Kaczmarek.Finite-Elements Model for the Contact of Rough Surfaces.Wear,1994,177:p1-13.
    [88]J.H.Horng.An Elliptic Elastic-Plastic Asperity Microcontact Model for Rough Surfaces.ASME J.Tribol.,1998,120:P82-89.
    [89]Yongwu Zhao,David M.Maietta and L.Chang.An Asperity Microcontact Model Incorporating the Transition From Elastic Deformation to Fully Plastic Flow.ASME J.Tribol.,2000,122:P86-93.
    [90]L.Kogut and I.Etsion.Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat.ASME Jour.Appl.Mech.,2002,69:P657-662.
    [91]L.Kogut and I.Etsion.A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces.Tribol.Trans.,2003,46:P383-390.
    [92]Yeau-Ren Jeng and Pei-Ying Wang.An Elliptical Microcontact Model Considering Elastic,Elastoplastic,and Plastic Deformation.ASME J.Tribol.,2003,125:P232-240.
    [93]D.J.Whitehouse and J.F.Archard.The Properties of Random Surfaces of Significance in their Contact.Proc.R.Soc.London,Set.A,1970,316:P97-121.
    [94]D.J.Whitehouse and M.J.Phillips.Discrete Properties of Random Surfaces.Proc.R.Soc.London,Ser.A,1978,290:P267-298.
    [95]D.J.Whitehouse and M.J.Phillips.Two-Dimensional Discrete Properties of Random Surfaces.Proc.R.Soc.London,Ser.A,1982,305:P441-468.
    [96]P.R.Nayak.Random process model of rough surfaces.J.Lubrication Technol.,1971,93:P 398-407.
    [97]J.A.Greenwood.A Unified Theory of Surface Roughness.Proc.R.Soc.London,Ser.A,1984,393:P133-157.
    [98]M.S.Longuet-Higgins.The Statistical Analysis of a Random,Moving Surface.Proc.R.Soc.London,Ser.A,1957,249:P321-387.
    [99]万建松.压痕试验的计算模拟及小晶界的疲劳响应[D].西北工业大学硕士学位论文,2001.3
    [100]Bifano,Thomas Gary.Ductile-regime grinding of brittle materials[D].North Carolina State University,1988
    [10l]许志义.薄膜压痕试验之有限元素分析[D].国立暨南国际大学硕士论文,2005
    [102]周泽华,郑汉卿,曾志新,杨晓斌.玻璃切削机理——玻璃切削模型及切削过程[J].机械工程学报,1993,(4):P13-18
    [103]Loubet J L,Georges J M,Marchesini O,et al.Vickers indentation curves of magnesium oxide (MgO)[J].J.Tribology,1984,106(1):P43-48
    [104]B.Stor(?)kers,P.-L.Larsson.On Brinell and Boussinesq indentation of creeping solids[J].J.Mech.Phys.Solids,1994,42:P307-332
    [105]Harrison,J.,Wilks,J.The Hertz indentation test and Auerbach's law.Journal of Physics D:Applied Physics,1978,11(1):P73-81.
    [106]Padfield,Sida Q.The indentation of a thick sheet of elastic material by a rigid cylinder[J].J Mechanics Appl.Math.,1957,10:P271-275
    [107]Oliver W C,Pharr G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].J.Mater.Res.,1992,7(6):P 1564-1583
    [108]N Lucas,W C Oliver.Indentation power-law creeps of high-purity indium[J].Metallurgical and materials transactions,1999,30A:P601-610
    [109]Pharr,G.M.,Oliver,W.C.Nanoindentation of silver-relations between hardness and dislocation structure[J].Journal of Materials Research,1989,4(1):P94-101
    [110]F.N.Dzegilenko,D.Srivastava,S.Saini,Nanoscale etching and indentation of silicon(001)surface with carbon nanotube tips[J].Nanotechnology,1999,10(3):P253.
    [111]Cheong WCD,Zhang L,Molecular dynamics simulation of phase transformation in silicon monocrystals due to nano-indentation[J],Nanotechnology,2000,11:P173
    [112]Cheong WCD,Zhang L,Effect of repeated nano-indentations on the deformation in monocrstalline silicon,J Mat Sci Lett,2000(19):P439
    [113]Fang F.,Yang W.,Indentation-induced cracking and 90° domain switching pattern in barium titanate ferroelectric single crystals under different poling.Materials Letters 2002,57:P198-202
    [114]Gannepalli A,Mallapragada S K.Molecular dynamics studies of plastic deformation during silicon nanoindentation.Nanotechnology,2001,12:P250-257
    [115]A.C.Fischer-Cripps.Nanoindentation:Mechanical Engineering Series[M],Springer-Verlag,2002
    [116]顾长志,金曾孙等.微波方法制备晶面取向的金刚石薄膜[J].科学通报,1998,43(6):P647-652
    [117]鲁聪达.高亮度LED蓝宝石衬底低损伤研磨机理的研究[D].浙江工业大学博士学位论文,2007.11
    [118]Keith Puttick.Brittle to ductile trasition in machining[J].Key Engineering Materials.2003,234:P59-70.
    [119]MTS system nanoindentation xp~@ operation introduction,2005
    [120]张泰华,微/纳米力学测试技术及其应用[M],北京:机械工业出版社,2004.10
    [121]Tabor D.Hardness of Metal.Oxford:University Press,1951
    [122]Fischer-Cripps A C.Nanoindentation.New York:Spring-Verlag,2002
    [123]袁巨龙.先进陶瓷精密高效加工技术基础研究.国家自然科学基金项目申请书,2006.
    [124]Majumdar,A.and Tien,C.L.Fractal Characterization and Simulation of Rough Surface[J].Wear,1990,136:P313-327.
    [125]Gagnepain,J.J.,and Roques-Carmes,C.Fractal Approach to Two-Dimensional and Three -Dimensional Surface Roughness[J].Wear,1986,109:P119-126.
    [126]Ling,F.F.Scaling Law for Contoured Length of Engineering Surface[J].Jounal of Applied Physics,1987,62(6):P2570-2572.
    [127]Zahouani,H.Vargiolu,R.and Loubet,J.L.Fractal Models of Surface Topography and Contact Mechanics[J].Math.Couput.Modell,1998,28(4-8):P517-534.
    [128]Yan,W.,and Komvopoulos,K.Contact Analysis of Elastic-Plastic Fractal Surfaces[J]Journal of Applied Physics,1998,84(7):P3617-3624.
    [129]Othmani,A.and Kaminsky,C.Three Dimensional Fractal Analyses of Sheet Metal Surfaces [J].Wear,1998,214:P147-150.
    [130]Chung,J.C.Lin,J.F.Fractal Model Developed for Elliptic Elastic-Plastic Microcontacts of Rough Surfaces[J].ASME Journal of Tribology,2004,126:P646-654.
    [131]Chung,J.C.Lin,J.F.Variation in Fractal Properties and Non-Gaussian Distributions of Micro -contact Between Elastic-Plastic Rough Surfaces With Mean Surface Separation[J].ASME Journal of Applied Mechanics,2006,73:P143-152.
    [132]Bhushan,B.Handbook of Micro/Nanotribology,CRC press 2~(nd)ed.1986.
    [133]Berry,M.V.Diffractals.J.Phys.A:Math Gen.,1979,12,No.6:P781-797.
    [134]丛秋滋,多晶二维X射线衍射.北京:科学出版社,1997,
    [135]M.Harting,etc.Stress in Hydrogenated Amorphous Silicon Determined by X-Ray Diffraction.Thin Solid Films,2003,430:P153-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700