具有半球形足端的六足机器人步态生成和能耗优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六足步行机器人是一种模仿多足动物运动方式的腿式运动结构。它作为一种移动机器人,相比与轮式和履带式机器人,具有落足点离散,主动隔振以及对地表状况适应性强等众多特点,使得它具备广泛应用于各种复杂地表环境的潜能,并因此成为研究热点。但在实际应用中它存在结构复杂、速度慢、控制难度大以及能耗较大等缺点,因而受到很大限制。
     本论文为改善六足机器人地表环境适应能力,通过设计具有半球形足端的腿部机构,建立了相应的运动学和步态修正算法。针对多足机器人能量利用率低的缺点,通过分析六足步行机器人的运动学、静力学和动力学问题,并建立系统的能量消耗模型,从多个方面对六足机器人的系统能耗进行了优化分析,并通过仿真和实验对优化结果进行验证。
     第1章以大量的国内外文献调研为基础,介绍了本课题的研究背景和研究意义。全面论述了多足步行机器人及其相关技术的发展历程,重点介绍了多足机器人腿部机构特征、步态生成和控制方法、足端脚力分配算法和能耗优化策略。最后,提出了研究的主要内容。
     第2章通过建立机器人的三维机构模型和运动学模型,对机器人步行运动下各驱动关节的角度/角速度矢量与各腿足端位置矢量之间的关系展开了正/逆运动学分析。在此基础上,进一步研究了半球形足端对静态稳定步行时关节轨迹生成和躯体运动轨迹所造成的影响,提出了基于半球形足端模型的六足机器人运动学修正算法,并基于三角步态和改进型波浪步态对修正算法进行了仿真和对比分析。
     第3章在建立电机能耗模型的基础上,推导出了整个机器人系统的能耗方程以及优化目标函数,指出了系统能耗和各关节负载转矩之间存在的联系。在运动学分析的基础上,对六足步行机器人进行准静力学分析,提出了六足机器人足端脚力分配问题。在分析了机器人的平衡条件,并结合摩擦锥等相关约束的基础上,建立了一系列机器人足端脚力的约束方程。利用动力学分析得到了机器人足端脚力与关节转矩之间的关系,将原有的脚力分配问题变换为关节力矩分配问题,获得了各关节力矩的线性等式约束和不等式约束条件,从而对以系统能耗最低为目标的优化目标函数利用序列二次规划法进行求解。与传统的脚力分配方法相比较证明,新的力矩分配方法能够有效节省系统能耗。
     第4章进一步研究了机器人在步行状态下具有不同步态参数时的系统能耗。利用多项式,对关节空间下的单腿各关节运动轨迹进行构造,运用遗传算法对机器人摆腿相足端轨迹进行了优化设计。以系统能耗比阻作为评估指标,通过仿真获得了机器人在不同总质量下的躯体结构的最优质量分配和躯体高度以及步态的最优步长等参数。最后以力矩分配算法为基础,采用蒙特卡洛法分析了机器人各腿部足端的工作空间及运动裕量,通过分析单腿能耗与该腿足端运动裕量之间的关系,寻求最优的机器人静立姿态。
     第5章设计搭建了具备仿哺乳类腿机构的六足步行机器人样机平台及其人机交互系统,在此基础上展开了诸如球型足端下的行走实验,静立姿态下的能耗实验以及不同步态参数下的步行能耗实验等一系列实验,对前述理论和仿真分析的结论加以验证。
Multi-legged walking machine, compared with wheeled or tracked locomotion, is widely recognized as a much more effective and efficient transportation vehicle, especially on complex and unstructured terrains. Hexapod robots, as a kind of legged walking machines, generally have much more superior performance than those with fewer legs in terms of less complexity of the control method, more walking statically stability and faster walking speed and therefore has already become the research hotspot. However, the legged system today has its own disadvatages, such as low payload to machine load ratio and high energy consumption. Since power is a very limited resource in autonoumous robots, it becomes urgent and imperative for researchers to explore the power-consumption optimizaition techniques. Therefore, this dissertation focues on the minimization of energy expenditure in hexapod robots'standing and walking status.
     This dissertation is organized as follows:
     The first chapter of this dissertation performs the background and significance of the project. Based on lots of domestic and foreign literature and reference, this chapter generally introduces the development of multi-legged walking robots and their gait generation techniques. The advantages and disadvantages of variable foot-force distribution methods as well as power consumption optimization methods are especially discussed in this chapter. At the end, the main research purpose and contents are illustrated.
     In the second chapter, the kinematic model of the robot is built, while the forward/inverse kinematic analysis is used to describe the relationship between the joints'angles/angular velocity and the foot-point positions in the body reference frame. Additional, this chapter analyse the hip misplaced problem caused by round rigid foot and provides a hip-control algorithm for restoring leg coordination. The algorithm is implemented in simulation model with a large-radius ball foot in order to evaluate how the algorithm would perform if applied to a real robot.
     The third chapter derived the robot's dynamic model with the foot-force distribution problem formulated. By using the joint torques as the primary variables, the distribtuion of required force and moments to the supporting legs of the hexapod robot is tackled as a torque-distribution problem. The objective function of this problem, which is constructed as the sum of the mechanical energetic cost and heat loss power, is formulated as to minimize the quadratic objective funtion with respect to linear equality and inequality constraints. In contrast to the force distribution method whose objective function corresponds to the sum of the squares of the tip-point force components, the torque distribution scheme could save the system energy cost obviously with appropriate walking velocities and duty factors of robot.
     In the fourth chapter, the optimal target of the robot standing posture about the dissipation power was proposed through utilizing the energy consumption mathematical model. Combining with the calculation of the foot-points workspace and the kinematic constraints, the Monte-Carlo Method was proposed to analyze the system energy consumption of the robot with different footholds. Furthermore, the protraction movement of a three-joint robot leg is optimized for minimum energy consumption. Foot-point trajectory is performed for various initial-final tip point positions of protraction by genetic algorithm. This chapter also provides analysis on parameters by simulation such as optimal stride length, duty factor, walking velocities, body height and lateral offset with various body mass and payload.
     In the fifth chapter, the mammal-like hexapod walking robot platform with its Human-Machine Interface are established. The hip-control algorithm lead by round rigid feet is implemented in the platform, while the power consumption experiments on standing posture and walking patterns with varies gait/structure parameters are also carried out. The optimal results of the former chapters derived from simulation are justified by those experiment.
引文
[1]罗均,谢少荣,翟宇毅等.特种机器人[M].北京:化学工业出版社,2006
    [2]张秀丽.四足机器人节律运动及环境适应性的生物控制研究[D].北京:清华大学,2004.
    [3]BAUDOIN Y, COLON E. Humanitarian demining and robotics[C]//Proceedings of the 1998 IEEE International Conference on Control Applications, Trieste, Italy:IEEE, 1998:433-435.
    [4]NONAMI K, HUANG Q J, KOMIZO D, et al. Humanitarian mine detection six-legged walking robot[C]//Proceedings of the third international conference on climbing and walking robots.2000:861-868.
    [5]HUANG Q J, NONAMI K. Humanitarian mine detecting six-legged walking robot and hybrid neuro walking control with position/force control [J]. Mechatronics,2003, 13:773-790.
    [6]GONZALEZ P, GARCIA E, ESTREMERA J, et al. SILO6:Design and Configuration of a Legged Robot for Humanitarian Demining[C]//Int. Advanced Robotics Program, Int. Workshop on Robots for Humanitarian Demining. Vienna, Austria:2002.
    [7]BARES J E, WETTERGREEN D S. Dante II:Technical description, results and lesson learned[J]. The International Journal of Robotics Research,1999,18(7):621-649.
    [8]AKIZONO J, IWASAKI M, NEMOTO T, ASAKURA O. Development on walking robot for underwater inspection[C]//Proceedings of the International Conference on Advanced Robotics, Springer-Verlag,1989:652-663.
    [9]AYERS J. A Reactive Ambulatory Robot Architecture for Operation in Current and Surge[C]//Proc. Of the Autonomous Vehicles in Mine Countermeasures Symposium,1995: 15-31.
    [10]DUPUIS R, TREMBLAY D. Search, Identify, and Destroy:A Robotic Solution to Urban Warfare[D]. Kingston:Land Forces Technical Staff Programme V Royal Military College, 2000.
    [11]Plustech Inc. Available in http://www.plustech.fi/Walkingl.html,2004.
    [12]ZIELINSKA T, HENG J. Development of a walking machine:mechanical design and control problems[J]. Mechatronics,2002,12:737-754.
    [13]ZIELINSKA T, HENG J. Mechanical design of multifunctional quadruped[J]. Mechanism and Machine Theory,2003,38:463-478.
    [14]ROSSMANN T, PFEIFFER F. Control of a pipe crawling robot[C]//Conference Proceedings Biology and Technology of Walking, Munich, Germany:Euromech 1998:133-140.
    [15]KROTKOV E, SIMMONS R. Performance of a Six-Legged Planetary Rover:Power, Positioning, and Autonomous Walking[C]//Proceedings of the 1992 IEEE, International Conference on Robotics and Automation, Nice, France:IEEE,1992:169-174.
    [16]HIROSE S, UMETANI Y. Some consideration on a feasible walking mechanism as a terrain vehicle[C]//Proc Third International CISM-IFToMM Symposium, Udine, Italy,1978, 357-375.
    [17]SONG S M, VOHNOUT V J, WALDRON K J, et.al. Computer-aided design of a leg for an energy efficient walking machine[J], Mech Mach Theory 1984,19:17-24.
    [18]ALEXANDER R M. Three uses of springs in legged locomotion [J], Int J Robot Res,1990,9: 53-61.
    [19]SHIN E and STREIT D A. An energy efficient quadruped with two stage equilibrator[J], ASME J Mech Des,1993,115:156-163.
    [20]ORIN D E and OH Y. A mathematical approach to the problem of force distribution in locomotion and manipulation systems containing closed kinematic chains[C]//Proc Third International CISM-IFToMM Symposium, Udine, Italy,1978:1-23.
    [21]ORIN D E and OH Y. Control of force distribution in robotic mechanisms containing closed kinematic chains[J]. ASME Journal of Dynamic System Measure Control,1981:102: 134-141.
    [22]CARBONE G, CECCARELLI M. Legged Robotic Systems. In:Cutting Edge Robotics ARS Scientific Book[M]. Wien,2005.
    [23]LISTON R A, MOSHER R S. A Versatile Walking Truck[C]//Proceeding of 1968 Transportation Engineering Conference, Washington, D.C:ASME-NYAS,1968.
    [24]MOSHER R S. Test and Evaluation of Versatile Walking Truck[C]//Proceedings of off-Road Mobility Research Symposium, International Society for Terrain Vehicle System, Washington, D.C,1968:359-379.
    [25]陈秉聪.步行车辆理论[M].北京:机械工业出版社,1991.
    [26]WARDRON K J, MCGHEE R B. The Adaptive Suspension Vehicle[J]. IEEE Control Systems Magazine,1986:7-12.
    [27]Walking Machine Catalogue, http://www.walking-machines.org/,2008.
    [28]PAAKKUNAINEN M. Method for Adjusting Supply Pressure.US 6,305,163 B1[P]. 2001-10-23.
    [29]PAAKKUNAINEN M. Leg Mechanism. US 6,109,378[P].2000-8-29.
    [30]ILG W, ALBIEZ J, JEDELE H, BERNS K, et al. Adaptive periodic movement control for the four legged walking machine BISAM[C]//Proceedings of the 1999 IEEE International Conference on Robotics & Automation. Detroit, Michigan:IEEE,1999:2354-2359.
    [31]BERNS K, ILG W, DECK M, et al. The Mammalian-Like Quadrupedal Walking Machine BISAM[J]. IEEE AMC, COIMBRA,1998:429-433.
    [32]BERNS K, ILG W, DECK M, et al. Adaptive Control of the Four-legged Walking Machine BISAM[C]//Proceedings of the 1998 IEEE. International Conference on Control Applications. Trieste, Italy:IEEE,1998:428-432.
    [33]ALBIEZ J, ILG W, LUKSCH T, et al. Learning a Reactive Posture Control on the Four-Legged Walking Machine BISAM[C]//Proceedings of the 2001 IEEE/RSJ. International Conference on Intelligent Robots and Systems. Mami, Hawaii:IEEE, 2001:999-1004.
    [34]BERNS K, ILG W, DECK M, et al. Mechanical Construction and Computer Architecture of the Four-Legged Walking Machine BISAM[J]. IEEE/ASME Transactions on Mechatronics, 1999,4(1).
    [35]ARIKAWA K, HIROSE S. Development of Quadruped Walking Robot TITAN-VIII[C]. Intelligent Robots and Systems'96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on, osaka, Japan:IEEE,1996,1:208-214.
    [36]HIROSE S, YONEDA K, TSUKAGOSHI H. TITAN-VIII:Quadruped Walking and Manipulating Robot on a Steep Slope[C]//Proc Int Conf On Robotics and Automation, Albuquerque. New Mexico,1997:494-500.
    [37]HIROSE S, YOKOTA S, TORII A, et al. Quadruped walking robot centered demining system-development of TITAN-IX and its operation[C]//In:Proceedings of the IEEE international conference on robotics and automation, IEEE,2005:1296-1302.
    [38]GONZALEZ P., JIMENEZ M A., ARMADA M A. Dynamic Effects in Statically Stable Walking Machines[J]. Journal of Intelligent and Robotic Systems,23(1),1998:71-85.
    [39]GALVEZ J A, ESTREMERA J, GONZALEZ P. A new legged-robot configuration for research in force distribution[J]. Mechatronics,2003,13:907-932.
    [40]GARCIA E, GONZALEZ P. Using Soft Computing Techniques for Improving Foot Trajectories in Walking Machines[J]. Journal of Robotic Systems,2001,18(7):343-356.
    [41]SONG S M, WALDRON K J. Machines that Walk:the Adaptive Suspension Vehicle[M]. Cambridge, MA:The MIT Press,1989.
    [42]LEHTINEN H. Force based motion control of a walking machine[D]. Technical Research Center of Finland,1994.
    [43]GONZALEZ P, COBANO J A, GARCIA E, et al. A Six-legged robot-based system for humanitarian demining missions[J]. Mechatronics,2007,17:417-430.
    [44]GONZALEZ P, ESTREMERA J, GARCIA E. Optimizing Leg Distribution Around the Body in Walking Robots[C]//Proceedings of the 2005 IEEE, International Conference on Robotics and Automation, Barcelona, Spain,2005:.
    [45]GONZALEZ P, GARCIA E, ESTREMERA J. Improving walking-robot performances by optimizing leg distribution [J]. Auton Robot,2007,23:247-258.
    [46]RAIBER M, BLANKESPOOR K, NELSON G, et al. BigDog, the Rough-Terrain Quadruped Robot[C]//Proceedings of the 17th World Congress The International Federation of Automatic Control. Seoul, Korea,2008.
    [47]PLAYTER R, BUEHLER M, RAIBERT M. BigDog[C]//Proc. Of SPIE Vol.6230.201-206.
    [48]DOROFTEI I. PREUMONT, Development of an autonoumous micro walking robot with articulated body[C], in Proc Int Conf on Climbing and Walking Robots(CLAWAR-99), Portsmouth, UK,1999,497-507.
    [49]KAR D.C. Design of Statically Stable Walking Robot:A Review[J]. Journal of Robotic Systems 2003:20(11),671-686.
    [50]KANEKO M., ABE M., TANIE K. A hexapod walking machine with decoupled freedoms[J], IEEE J Robot Autom,1985,1(4):183-190.
    [51]KUMAR V.R. WALDRON K.J. A review of research on walking vehicles[J], in the robotics review 1, MIT, Cambridge 1989,243-266.
    [52]GURFINKE V.S., GURFINKEL E.V., SHNEIDER, A.Y., et al. Walking robot with supervisory control[J], Mech Mach Theory,1981,16:(2) 31-36.
    [53]MCGHEE R.B., CHAO C.S., JASWA V.C., et al. Real time computer control of hexapod vehicle[C], in Proc Third Int CISM-IFToMM Symposium, Udine, Italy,1978:323-339.
    [54]KLEIN C.A., BRIGGS R.L. Use of active compliance in the contrl of legged vehicles[J], IEEE Trans Syst ManCybern 1980,10(7):393-400.
    [55]AKIZOONO J., IWSAKI M., NEMETO T. et al. Development on walking robot for underwater application[C], in Proc Fourth Int Conf on Advanced Robotics,1989,pp. 652-663.
    [56]CHALMERS P. Lobster special[J], Mech Eng,2000,122:82-84.
    [57]FULL R.J., BLICKHAN R., TING L.H. Leg desings in hexapedal runners[J], J Exp Biol 1991,158:369-390.
    [58]NELSON G.M., QUINN R.D., BACHMANN R.J., et al. Design and simulation of a cockroach-like hexapod robot[C], in Proc IEEE Int Conf on Robotics and Automation, Albuquerque, NM,1997:1106-1111.
    [59]G.BARTHOLET T. Odetics makes great strides[J], Nucl Eng Int 1985,4:37-38.
    [60]PUGH D.R., RIBBLE E.A., VOHNOUT V.J., et al. Technical description of the adaptive suspension vehicle[J], Int J Robot Res 1990,9(2):24-42.
    [61]CUBERO S.N., WALKINGTON S., DANZI C. Design of a six-legged passenger carrying hybrid walking vehicle with four-wheel drive capability[C], in Proc Int Conf on Climbing and Walking Robots(CLAWAR-99), Portsmouth, UK,1999,657-665.
    [62]HIROSE S., TAKEUCHI H. Study on roller-walk (basic characteristics and its control)[C], in Proc IEEE Int Conf on Robotics and Automation,1996,3265-3270.
    [63]MAHAJAN A, FIGUEROA F. Four-legged intelligent mobile autonomous robot[J]. Robotics and Computer Integrated Manufacturing,1997,13(1):51-61.
    [64]MUYBRIDGE E. Animals in Motion[M]. New York:New Dover Edition. Dover Publications, Inc.,1957.
    [65]MUYBRIDGE E. The Human Figure in Motion[M]. New York:Dover Publications Inc., 1955.
    [66]TOMOVIC R, KARPLUS W J. Land Locomotion Simulation and Control[C]//Proceedings Third International Analogue Computation Meeting, Opatija, Yugoslavia,1961:385-390.
    [67]HILDEBRAND M. Symetrical Gaits of Horses[J]. Science,1965,15:701-708.
    [68]MCGHEE R B. Some Finite State Aspects of Legged Locomotion[J]. Mathematical Biosciences,1968,2,(1/2):67-84.
    [69]MCGHEE R B, FRANK A A. On the Stability properties of Quadruped Creeping Gaits[J]. Mathematical Biosciences,1968,3:331-351.
    [70]BESSENOV A P, UMNOV N V. The Analysis of Gait in Six-Legged Vehicles According to Their Static Stability[C]//Proceeding of Symposium on Theory and Practice of Robots and Manipulators, Udine, Italy,1973.
    [71]WILSON, D. Insect Walking[J]. Annual Review of Entomology,1966,11:103-122.
    [72]PEARSON, K G, FRANKLIN R. Characteristics of leg movements and patterns of coordination in locusts walking on rough terrain[J]. The International Journal of Robotics Research,1984,3(2):101-112.
    [73]CRUSE H. What mechanisms coordinate leg movement in walking arthropods?[J] Trends in Neurosciences,1990,13:15-21.
    [74]CRUSE H, DURR V, SCHMITZ J, et al. Control of hexapod walking in biological systems[J]. Adaptive motion of animals and machines,2006:17-29.
    [75]FERRELL C. A comparison of three insect-inspired locomotion controllers[J]. Robotics and Autonomous Systems,1995,16:135-159.
    [76]DONNER M D. Real time control of walking[M]. Boston:Birkhauser,1987.
    [77]SONG S M, CHOI B S. The optimally stable ranges of 2n-legged wave gaits[J]. IEEE Transactions on System, Man, and Cybernetics,1990,20(4):888-902.
    [78]INAGAKI K. Gait study for hexapod walking with disabled leg[C]//Proceedings of the 1997 IEEE/RSJ-international conference on intelligent robots and systems (IROS'97), IEEE, 1997,1:408-413.
    [79]PREUMONT A, ALEXANDRE P, GHUYS D. Gait analysis and implementation of a six leg walking machine[C]//Proceedings of the fifth international conference on advanced robotics (91 ICAR-IEEE),1991,2:941-945.
    [80]PAL P K, MAHADEV V, JAYARAJAN K. (1994). Gait generation for six-legged walking machine through graph search[C]//Proceedings of 1994 IEEE international conference on robotics and automation, IEEE,1994,2:1332-1337.
    [81]INAGAKI K, KOBAYASHI H. Adaptive wave gait for hexapod synchronized walking. In Proceedings of 1994 IEEE international conference on robotics and automation, IEEE, 1994,2:1326-1331.
    [82]Ye T Y. Gait planning and transitions of walking robots on smooth and rough terrains[D]. Chicago:Mechanical Engineering in the Graduate College of the University of Illinois, 2003.
    [83]PORTA J M, CELAYA E. Walking in Unstructured Natural Environments[C]. European Workshop on Hazardous Robotics, CSIC-UPC,1996:99-107.
    [84]ABBAS J J, ROBERT J, WINTERS F J, et al. Neuromechanical Ineteraction in Cyclic Movement[M], Springer-Verlag,2000.
    [85]袁鹏.仿生机器蟹步行机理分析及控制系统研究[D],哈尔滨:哈尔滨工程大学,2003:10-15.
    [86]CRUSE H, KINDERMANN T, SCHUMM M, et al, Walknet-a biologically inspired network to control six legged walking[J], Neural Networks,1998,11:1435-1447.
    [87]PORTA J M, CELAYA E. Reactive free-gait generation to follow arbitrary trajectories with a hexapod robot[J]. Robotics and Autonomous Systems,2004.
    [88]GUDDAT M, FRIK M. Control of Walking Machines With Artificial Reflexes[C]// Advanced Motion of Animals and Machines, Second Intenational Symposium on Impact and Friction of Solids, Structures and Intelligent Machines, Montreal, Canada,2000.
    [89]CELAYA E. PORTA J M. A Control Structure for the Locomotion of a Legged Robot on Difficult Terrain[J]. IEEE Robotics and Automation Magazine, Special Issue on Walking Robots.1998,5(2).
    [90]JONES J L原魁,邹伟译.机器人编程技术一基于行为的机器人实战指南,北京:机械工业出版社,2006.
    [91]CELAYA E, PORTA J M, Angulo V. Reactive Gait Generation for Varying Speed and Direction[C]//First International Conference on Climbing and Walking Robots and the Supporting Technologies for Mobile Machines, Wiley:1998.
    [92]CELAYA E, ALBARRAL J L. Implementation of a hierarchical walk controller for the LAURON III hexapod robot[C]//Climbing and Walking Robots and the Supporting Technologies for Mobile Machines:CLAWAR 2003, Wiley:2003,409-412.
    [93]BROOKS R A. A Robust Layered Control System for a Mobile Robot[J]. IEEE Journal of Robotics and Automation.1986,2(1):14-32.
    [94]RANDALL M J. Stable Adaptive Neural control of systems with Closed Kinematic Chains Applied to Biologically-Inspired Walking Robots[D]. Bristol, University of the West of the England,1999.
    [95]KLAASSEN B, LINNEMANN R, SPENNEBERG D, et al. Biomimetic walking robot SCORPION:Control and modeling[J], Robotics and Autonomous Systems,2002,41: 69-76.
    [96]ERDEN M S, LEBLEBICIOGLU K. Free gait generation with reinforcement learning for a six-legged robot[J]. Robotics and Autonomous Systems,2008,56:199-212.
    [97]CHENG F T, ORIN D E. Efficient Formulation of the Force Distribution Equations for Simple Closed-Chain Robotic Mechanisms [J]. IEEE Transactions on Systems, Man, And Cybernetics,1991,21(1):25-32.
    [98]WALDRON K J. Force and Motion Management in Legged Locomotion[J]. IEEE Journal of Robotics and Automation,1986,2(4):214-220.
    [99]NAKAMURA Y. Advanced Robotics:Redundancy and Optimization[M]. Massachusetts, USA:Addison-Wesley, Reading,1991.
    [100]KLEIN C A, CHUNG T S. Force Interaction and Allocation for the Legs of a Walking Vehicle[J]. IEEE Journal of Robotics and Automation,1987,3(6):546-555.
    [101]KLEIN C A, KITTIVATCHARAPONG S. Optimal Force Distribution for the Legs of a Walking Machine with Friction Cone Constraints [J]. IEEE Transaction on Robotics and Automation,1990,6(1):73-85.
    [102]魏权龄等.数学规划与优化设计[M].北京:国防工业出版社,1984.
    [103]CHENG F T, ORIN D E. Efficient Algorithm for Optimal Force Distribution-The Compact-Dual LP Method[J]. IEEE Transaction on Robotics And Automation,1990,6(2): 178-187.
    [104]NAHON M, ANGELES J. Real-Time Force Optimization in Parallel Kinematic Chains Under Inequality Constraints[C]//Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, California:IEEE,1991:2198-2203.
    [105]WALDRON K J. Force and Motion Management in Legged Locomotion[C]// Proceedings of 24th IEEE Conference on Decision and Control, Fort Lauderdale, FL:IEEE, 1985:12-17.
    [106]GARDNER J F. Force Distribution in Walking Machines over Rough Terrain[J]. Trans. of the ASME :J. of Dynamic Systems, Measurement, and Control,1991,113:754-758.
    [107]GARDNER J F, SRINIVASAN K, WALDRON K J. Closed Loop Trajectory Control of Walking Machines[J]. Robotica,1990,8:13-22.
    [108]MAHFOUDI C, DJOUANI K, RECHAK S. Optimal Force Distribution for the Legs of an Hexapod Robot[J]. IEEE,2003:657-663.
    [109]ZHOU D, LOW K H, ZIELINSKA T. An efficient foot-force distribution algorithm for quadruped walking robots[J]. Robotica,2000,18:403-413.
    [110]GAO X C, SONG S M. Stiffness Matrix Method for Foot Force Distribution of Walking Vehicles[C]//Proceedings of the International Conference on Robotics and Automation, Los Alamitos, CA, USA,1990:1470-1475.
    [111]GAO X C, SONG S M, ZHENG C Q. A Generalized Stiffness Matrix Method for Force Distribution of Robotics Systems with Indeterminacy [J]. J.Mechanical Design,1993, 115(3):585-591.
    [112]HONG D W, CIPRA R J. Optimal Force Distribution for Tethered Climbing Robots in Unstructured Environments[C]//Proceedings of the ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada,2002
    [113]HONG D W. Analysis and Visualization of the Contact Force Solution Space for Multi-Limbed Mobile Robots[D]. West Lafayette, IN:Purdue University,2002.
    [114]HONG D W, CIPRA R J. Analysis and Visualization of the Contact Force Solution Space for Multi-Limbed Mobile Robots with Three Feet Contact[C]//Proceedings of the ASME 2003 DETC, Chicago,2003.
    [115]HONG D W, CIPRA R J. Visualizaiton of the Contact Force Solution Space for Multi-Limbed Robots[J]. ASME J.Mech,2006,128(1):295-302.
    [116]HONG D W, CIPRA R J. Optimal Contact Force Distribution for Multi-Limbed Robots[J]. Transactions of the ASME,2006,128:566-573.
    [117]HUGHES G M. The coordination of insect movements. I. The walking movements of insects[J]. Journal of Experimental Biology,1952,29:267-284.
    [118]PEARSON K. The control of walking[J]. Scientific American,1976,235(6):72-86.
    [119]MCMAHON T A. The role of compliance in mammalian running gaits[J]. Journal of Experimental Biology,1985,115:263:282.
    [120]KANEKO M, TACHIS, TANIE K, et al. Basic study on similarity in walking machine from a point of energetic efficiency[J]. IEEE J Robot Autom,1987, RA-3:19-30.
    [121]GRAHAM D. A behavioural analysis of the temporal organization of walking movements in the 1st instar and adult stick insect Carausius morosus[J]. J Comp Physiol, 1972,81:23-52.
    [122]SPIRITO C P, MUSHRUSH D L. Interlimb coordination during slow walking in the cockroach. I. Effects of substrate alternations[J]. Journal of Experimental Biology,1979, 78:233-243.
    [123]HEGLUND N C, TAYLOR CR. Speed, stride frequency and energy cost per stride: how do they change with body size and gait[J]. Journal of Experimental Biology.1988,138: 301-318.
    [124]FULL R J, TU M S. Mechanics of six-legged runners[J]. Journal of Experimental Biology 1990,148:129-146.
    [125]ZOLLIKOFER CPE. Stepping patterns in ants. Ⅱ. Influence of body morphology [J]. Journal of Experimental Biology,1994,192:107-118.
    [126]TING L H, BLICKHAN R, FULL R J. Dynamic and static stability in hexapedal runners[J]. Journal of Experimental Biology,197:251-269.
    [127]HERREID C F Ⅱ, FULL R J, PRAWEL D A. Energetics of cockroach locomotion[J]. Journal of Experimental Biology,1981,94:189-202.
    [128]TAYLOR C R, HEGLUND N C, MALOIY GMO. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals[J]. Journal of Experimental Biology,1982,97:1-21.
    [129]HERREID C F II, FULL R J. Cockroaches on a treadmill:aerobic running[J]. Journal of Insect Physiology,1984,30:395-403.
    [130]KRAM R, TAYLOR C R. Energetics of running:a new perspective [J]. Nature,1990, 346:265-267.
    [131]KRAM R. Inexpensive load carrying by rhinoceros beetles[J]. Journal of Experimental Biology 1996,199:609-612.
    [132]D.E. ORIN and OH S Y. Control of force distribution in robotic mechanisms containing close kinematic chains[J], Journal of Dynamic Systems, Measurement, and Control,1981, 103,134-141.
    [133]NAHON M A and AANGELES J. Minimization of power losses in cooperating manipulators[J], Journal of Dynamic Systems, Measurement, and Control,1992,114, 213-219.
    [134]KAR D C, KURIEN K I, JAYARAJAN K. Minimum energy force distribution for a walking robot[J]. Journal of robotic systems.2001,18(2),47-54.
    [135]ERDEN M S, LEBLEBICIOGLU K. Torque Distribution in a Six-Legged Robot[J]. IEEE Transactions on Robotics,2007,23(1):179-186.
    [136]GARCIA E, GALVEZ J A and GONZALEZE D S. On Finding the relevant dynamics for model-based controlling walking robots[J]. Journal of Intelligent and robotic systems. 2003,37:375-398.
    [137]GUARDABRAZO T A and GONZALEZ D S. Building an energetic model to evaluate and optimize power consumption in walking robots[J]. Industrial Robot:An International Journal,2004, Vol,31,11(2):201-208.
    [138]NISHII J. Gait pattern and energetic cost in hexapods[C]//Engineering in Medicine and Biology Society, Proceedings of the 20th Annual International Conference of the IEEE, HongKong, China,1998,5:2430-2433.
    [139]ERDEN M S, LEBLEBICIOGLU Ku. Analysis of wave gaits for energy efficiency [J]. Auton Robot,2007,23:213-230.
    [140]ORIN D E and OH Y. A mathematical approach to the problem of force distribution in locomotion and manipulation systems containg closed kinematic chains[C]//Proc Third International CISM-IFToMM Symposium, Udine, Italy,1978,1-23.
    [141]ORIN D E and OH Y. Control of force distribution in robotic mechanisms containg closed kinematic chains[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1981,102,134-141.
    [142]ERDEN M.S. Optimal protraction of a biologically inspired robot leg[J]. J Intell Robot Syst. DOI 10.1007/s10846-011-9538-8.
    [143]蒋新松.机器人学导论[M].辽宁:辽宁科学技术出版社,1993.
    [144]唐杰,原培章,修道喜.海底六足步行机器人[J],光学机械.1990,3.
    [145]汪劲松,易昕,张伯鹏.QW-I型全方位四足步行机器人的设计及实验研究[J].机械工程学报,1991,27(5):69-73.
    [146]汪劲松.全方位步行机器人的研究开发[M].北京:清华大学精密仪器与机械学习,1990.
    [147]汪劲松,荣松年,张伯鹏.全方位双三足步行机器人(Ⅰ)--步行原理、机构及控制系统[J],清华大学学报(自然科学版),1994,2:102-107.
    [148]郑浩峻,张秀丽,关旭,等.基于生物中枢模式发生器原理的四足机器人[J].清华大学学报,2004,44(2):166-169.
    [149]张秀丽,郑浩峻,赵里遥.一种小型管道检测机器人[J].机器人,2001,23(S7):626-629.
    [150]ZHANG X, DUAN G, ZHENG H, et al. Bionic Design of the Quadrupedal Robot and Motion Simulation[C]//Proc of the IEEE International Conf on Robotics, Intelligent Systems and Signal Processing, Changsha, Hunan:IEEE,2003:137-141.
    [151]张秀丽.四足机器人节律运动及环境适应性的生物控制研究[D].北京:清华大学,2004.
    [152]马培荪,窦小红,刘臻.全方位四足步行机器人的运动学研究[J].上海交通大学学报,1 994,28(2),39-47.
    [153]马培荪,马烈.全方位四足机器人JIUWM-II转弯步态控制的研究[J].上海交通大学学报,1995,29(5):92-97.
    [154]汪国宝.一种新型微小型六足步行机器人[D].上海:上海交通大学,2002.
    [155]祝捷,曹志奎,马培荪.关于微型六足机器人躯体柔性化的研究[J].机械与电子,2003:29-31.
    [156]陈学东,孙翊,贾文川等.多足步行机器人运动规划与控制[M].武汉:华中科技大 学出版社,2006.
    [157]田文罡,陈学东.六足步行机器人的多关节协调控制[J].机器人技术与应用,2003,6:33-37.
    [158]苏军,陈学东.六足步行机器人分级控制及通信[J].机械,2004,31(2):53-56.
    [159]苏军,陈学东.六足步行机器人全方位步态的研究[J].机械与电子2004,3:48-52.
    [160]祝捷,曹志奎,马培荪.SMA驱动的微型双三足步行机器人作全方位运动的研究[J].船东技术,2002,4:11-14.
    [161]甘建国,王悦凤,干东英.六足步行机缩放式腿机构的运动学、动力学及控制算法[J].光学机械,1990,117(6):34-38.
    [162]刘鹏,郑浩峻,关旭.基于并联腿机构的四足仿生机器人开发[J].机器人技术,2007,23,2(2):226-227,264.
    [163]郑浩峻,汪劲松.基于Petri网模型控制的步行机器人的自由步态[J].清华大学学报,2001,41(28).
    [164]LIU H Y, WEN B C. Force Distribution for the Legs of a Quadruped Walking Vehicle[J], Journal of Robotic Systems,1997,14(1):1-8.
    [165]王新杰,多足步行机器人运动及力规划研究[D].武汉:华中科技大学,2005.
    [166]张海涛,孟庆国.步行机器人水平静稳定行走能量分析——关节驱动功率的计算[J].天津轻工业学院学报,2001,37(2):13-15.
    [167]张海涛,孟庆国.步行机器人水平静稳定行走能量分析——能量分析状态解析[J].天津轻工业学院学报,2001,38(3):14-17.
    [168]罗庆生,韩宝玲,赵小川,等.现代仿生机器人设计[M].北京,电子工业出版社,2008.
    [169]CHEN X, WATANABE K. Optimal force distribution for the legs of quadruped robot[J], Machine intelligence and robotique control,1999,1:87-94.
    [170]WETTERGREEN D., THORPE C., WHITTAKER R. Exploring mount Erebus by walking robot[J], Robotics and Autonomous Systems 1993,11:171-185.
    [171]BARES J.E., WHITTAKER W.L. Configuration of autonomous walkers for extreme terrain[J], International Journal of Robotics Research,1993,12(6):535-559.
    [172]GONZALEZ DE SANTOS P., ARMADA M.A., JIMENEZ M.A., Ship building with ROWER[J], IEEE Robotics and Automation Magazine,2000,7(4):35-43.
    [173]MOSHER R.S., Test and evaluation of walking truck[C], in:Cornell Aeronautical Lab/ISTVS Off-road Mobility Research Symposium, Washington DC,1968.
    [174]BERNS K., KEPPLIN V, MULLER R., SCHMALENBACH M. Airbug—insect-like machine actuated by fluidic muscle[C], in:Proceedings of the 4th Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR'2001, Professional Engineering Publishing, Karlsruhe,2001,237-244.
    [175]OKHOTSIMSKI, D. PLATONOV A., GERKHEN-GUBANOV G., et, al. Integrated walking robot simulation and modeling[C], in:Proceedings of the 7th Conference of the IFAC, A Link between Science and Applications of Automatic Control, Preprints of the 7th IFAC World Congress, Pergamon Press,1978,1085-1092.
    [176]PREUMONT A. An investigation of the kinematic control of a six-legged walking robot[J], Mechatronics,1994,4(8):821-829.
    [177]BERNS K., KEPPLIN V., DILLMANN R. Terrain and obstacles detection for walkingmachines using a stereo-camera/head[C], in:Proceedings of the 24th Annual Conference of the IEEE, IECON'98, Indeustrial Electronics Society, Aachen,1998,2, 1170-1175.
    [178]PFEIFFER F., ELTZE J., WEIDEMANN H.J. The TUM-walking machine[J], Intelligent Automation and Soft Computing,1995, 1(3):307-323.
    [179]FRIK M., GUDDAT M., LOSCH D.C., et, al. Terrain adaptive control of the walking machine Tarry II[C], in:Proceedings of the European Mechanics Colloquiu, EUROMECH 375, Biology and Technology of Walking, Munich,1998,108-115.
    [180]HIROSE S., UMETANI Y. Some considerations on a feasible walking mechanism as a terrain vehicle[C], in:Proceedings of the 3rd CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, Udine, Italy,1978.
    [181]HIROSE S., MASUI T., KIKUCHI H. TITAN III:A quadruped walking vehicle—its structure and basic characteristic[C], in:Proceedings of the 2nd International Symposium on Robotic Research, The MIT Press,1985,325-331.
    [182]HIROSE S., YONEDA K., ARAI K., et, al. Design of prismatic quadruped walking vehicle, TITAN VI[C], in:Proceedings of the 5th International Conference on Advanced Robotics, Pisa, Italy,1991,723-728.
    [183]NONAMI K., HUANG Q.J. Humanitarian mine detection six-legged walking robot comet-Ⅱ with two manipulators[C], in:Proceedings of the 4th Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR'2001, Professional Engineering Publishing, Karlsruhe,2001,989-996.
    [184]GONZALEZ DE SANTOS P., GALVEZ J.A., ESTREMERA J., GARCIA E. SILO4--A true walking robot for the comparative study of walking machine techniques[J], IEEE Robotics and Automation Magazine,2003,10(4):23-32.
    [185]FIELDING M.R., DAMAREN C.J., DUNLOP R. HAMLET:Force/position control hexapod walker—design and systems[C], in:Proceedings of the IEEE Conference on Control Applications, Mexico,2001.
    [186]GUARDABRAZO T A, JIMENEZ M A, GONZALEZ P. Analysing and solving body misplacement problems in walking robots with round rigid feet[J]. Robotics and Autonomous Systems,2006,54:256-264.
    [187]CRAIG J.J,贠超译.机器人学导论,第三版,Introduction to Robotics Mechanics and Control, Third Edition[M]北京,机械工业出版社,2006.
    [188]朱世强,王宣银,等.机器人技术及其应用[M].杭州,浙江大学出版社,2001.
    [189]蔡自兴.机器人学[M].北京,清华大学出版社,2009.
    [190]MARHEFKA, D.W., ORIN. D.E. Gait planning for energy efficiency in walking machines[C]. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, April,1997.
    [191]赵燕江,张永德,姜金刚,等.基于Matlab的机器人工作空间求解方法[J].机械科学与技术,2009,28(12):1657-1666.
    [192]雷静桃,高峰,崔莹.六足步行机足端轨迹规划及仿真研究[J],机械设计与研究,2006,22(4):42-45.
    [193]王立权.两栖仿生机器蟹模型建立与步行足协调控制技术研究[D],哈尔滨工程大学,2003(3).
    [194]JIMENEZ M.A., GONZALEZ DE SANTOS P. Terrain-Adaptive Gait for Walking Machines[J]. The International Journal of Robotics Research 1997,16:320-339.
    [195]GARG D.P., KUMAR M. Optimization techniques applied to multiple manipulators for path planning and torque minimization[J]. Engineering Applications of Artificial Intelligence 2002:15,241-252.
    [196]WU T.Y., YEH T.J. Optimal design and implementation of an energy-efficient biped walking in semi-active manner[J]. Robotica,2009,27:841-852.
    [197]SILVA M.F., TENREIRO MACHADO J.A., LOPES A.M. Modelling and simulation of artificial locomotion systems[J]. Robotica.2005,23:595-606.
    [198]SILVA M.F., TENREIRO MACHADO, A.M. LOPES. Performance analysis of multi-legged systems[C]. Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washingtong, DC, May 2002.
    [199]雷英杰MATLAB遗传算法工具箱及应用[M].西安电子科技大学出版社.149-150.
    [200]CONN A.R., GOULD N.I.M., TOINT PH.L. "A Globally Convergent Augmented Lagrangian Algorithm for Optimization with General Constraints and Simple Bounds,"[J] SIAM Journal on Numerical Analysis,1991,28(2):545-572.
    [201]CONN A.R., GOULD N.I.M., TOINT PH.L. A Globally Convergent Augmented Lagrangian Algorithm for Optimization with General Inequality Constraints and Simple Bounds[J], Mathematics of Computation,1997,66(217):261-288.
    [202]PARK J.H., CHOI M. Generation of an Optimal Gait Trajectory for Biped Robots Using a Genetic Algorithm[J]. JSME International Journal,2004,47(2):715-721.
    [203]NISHII J. Legged insects select the optimal locomotion pattern based on the energetic cost[J]. Biological Cybernetics,2000,83:435-442.
    [204]GONZALEZ DE SANTOS, P., GARCIA, E., PONTICELLI, R., et.al. Minimizing energy consumption in hexapod robots[J], Advanced Robotics,2009,23:681-704.
    [205]胡厦,金波,俞亚新.新型六足爬行机器人设计[J].机电工程,2007,6,23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700