八足机器人步行机制及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人技术研究的深入,足式仿生机器人逐渐成为了研究热点。这得益于其在非结构化环境下显现出的运动灵活、稳定性好和行走速度快的性能优势。本课题源自于国家自然科学基金“多足仿生机器蟹复杂地貌行走方法研究”。旨在通过对生物蟹身体结构的分析研究,设计制作出八足仿生机器人本体;并模仿生物蟹的运动机理,研究合理有效的步态规划方法,使八足机器人行走更加平稳高效。
     本文首先对国内外多足机器人的发展研究概况进行了简要的阐述,分析了多足机器人领域的研究重点和未来技术发展趋势。在此基础上,对八足机器人进行了总体结构的设计,完成了基于弹性转动驱动的模块化关节及圆弧式仿生足端结构设计。并对八足机器人递阶式控制系统硬件电路设计进行了简要的介绍。在结构设计的基础上,对八足机器人的整体和单步行足进行了模型简化分析,利用D-H法建立了摆动步行足的运动学模型,并对八足机器人整体运动学进行了简要的分析;同时,对八足机器人进行了动力学分析,其中包括弹性转动驱动关节动力学分析,摆动足动力学分析和整体动力学分析。运动学和动力学分析为机器人运动机制研究奠定了完整的理论基础。
     随后,在八足机器人机构特征分析和运动学分析的基础上,应用规范化能量稳定裕度判据得出了八足机器人静态稳定性描述方法。建立了各种行走环境下机器人静态稳定裕度计算的通用数学模型,并分别对水平面、斜面两种典型行走环境下的不同行走方式的稳定性进行了对比分析。
     接着,结合稳定性研究的成果对八机器人的行走步态进行了深入研究,提出了连续类滚步态,并与传统的双四足步态进行了性能对比分析,得出了连续类滚动步态的优越特性;在横向行走步态研究的基础上,又对纵向行走步态和越障步态进行了研究,将跟导步态的思想应用到了八足机器人纵向行走步态规划方法中。
     最后,针对八足机器人研究的关键技术进行了实验。其中包括基于"ADAMS"和“Pro/E”联合虚拟仿真的弹性转动驱动关节吸振性能测试实验;基于"dSPACE"和原理样机的连续类滚动步态行走性能实验、纵向跟导步态行走性能实验。通过实验分析,验证了弹性转动驱动关节的良好吸振特性和连续类滚动步态的优良行走性能。
With the development of the robot technology, walking bionic robot is gradually becoming the hotspot. This is due to that its advantage of mobility, good stability, fast walking speed in unstructured terrain. This research is originated from "Research on the Multi-legged Bionic Crab-liked Robot's Walking Method of the Complex Topography", which is funded by National Natural Science Foundation of China. Through the analysis of the crab body structure, the research aims to design and product a eight-legged bionic robot, imitate the crab movement mechanism and find the appropriate gait planning method, which will make eight-legged robot walk more stably and efficiently.
     Firstly, This thesis presents the multi-legged robot development at home and abroad briefly and the key technologies and the development trend of multi-legged robot. Based on the achievement of the former, the overall structure are proposed and designed, including modular joint based on elastic rotation drive and the arc-type bionic leg-end structure. This thesis also presents the hierarchical control architecture scheme and hardware circuit design of the eight-legged robot briefly. Base on the structure design, though the analysis of the institutional characteristics of the whole eight-legged robot and single leg, both of them are simplified. According to the simplified body model, the kinematics model of the single leg is established with the D-H method, and the whole robot kinematic model is analyzed briefly. Meanwhile, the author carries out the dynamics analysis of the eight-legged robot, including dynamics analysis of the single elastic rotated joints, the single leg and the overall dynamics analysis. Kinematics and dynamics analysis lays a complete theoretical foundation for the study on the eight-legged robot movement mechanism.
     Moreover, based on mechanism characteristics analysis and kinematics analysis of the eight-legged robot, the author presents the robot static stability description method which is realized by using normalized energy stability margin criterion, and general statically-stable margin mathematical calculation model of the robot are established. And the stability with different walk way was compared on the horizontal and inclined plane respectively.
     Then, with the result of research on stability, the studies on the robot walking gait are presented. The author puts forward the continuous likeness rolling gait, which are compared with traditional double four-footed gait on performance, proving the superior properties of the continuous likeness rolling gait. Base on the study of the horizontal walking gait, the author also analyses the longitudinal walking gait and obstacle-navigation gait, getting the following guide gait thoughts be applied to the longitudinal walking gait planning of the eight-legged robot.
     At last, a number of experiments on the key technologies of the eight-legged robot studies are carried out, including vibration performance testing of the elastic rotation drive joints, which is based on "ADAMS" and "Pro/E" virtual simulation; continuous likeness rolling gait's walking performance testing and longitudinal guiding gait's walking performance testing; both of which are based on "dSPACE" and prototype. Through the experimental analysis, the author proves the good vibration characteristics of the elastic rotation drive joints, and excellent walking performance of the continuous likeness rolling gait.
引文
[1]王鹏飞,孙立宁,黄博.地面移动机器人系统的研究现状与关键技术[J].机械设计.2006(07):1-4页
    [2]MillerDP. Multiple behavior-controlled micro-robots for planetary surface missions[C]. Proeeedings of the IEEE International Conferenee on Systems, Man and Cybernetics. USA:IEEE,1990:289-292P
    [3]黄俊军,葛世荣,曹为.多足步行机器人研究状况及展望[J].机床与液压.2008(05):187-191页
    [4]张秀丽,郑浩峻,陈恳,段广洪.机器人仿生学研究综述[J].机器人2002(02):188-192页
    [5]迟冬祥,颜国正.仿生机器人的研究状况及其未来发展[J].机器人2001(05):476-480页
    [6]De Santos P G,Galvez J A, Estremera J,等.SIL04:a true walking robot for the comparative study of walking machine techniques [J]. Robotics & Automation Magazine, IEEE,2003,10(4):23-32P
    [7]彭聿松,钟世勇,唐华溢.现代机器人的巅峰之作——BIGDOG[J].科技资讯.2010(29):2页
    [8]Maufroy C, Nishikawa T, Kimura H. Stable dynamic walking of a quadruped robot "Kotetsu" using phase modulations based on leg loading/unloading[C]. Robotics and Automation (ICRA),2010 IEEE International Conference on.2010:5225-5230P
    [9]Sattar J, Giguere P, Dudek G. A visual servoing system for an aquatic swimming robot[C]. Intelligent Robots and Systems,2005. (IROS 2005).2005 IEEE/RSJ International Conference on.2005:1483-1488P
    [10]Dudek G, Jenkin M, Prahacs C. A visually guided swimming robot[C]. Intelligent Robots and Systems,2005. (IROS 2005).2005 IEEE/RSJ International Conference on.2005:3604-3609P
    [11]J. A. Cobano, R. Ponticelli, P. Gonzalez de Santos.Mobile robotic system for detection and location of antipersonnel land-mines:Field tests[J]. Industrial Robot,2008,35 (6):520-527P
    [12]Ferrell C. Robust and adaptive locomotion of an autonomous hexapod[C]. From Perception to Action Conference.1994:66-77P
    [13]Wilcox B H. ATHLETE:An Option for Mobile Lunar Landers[C]. Aerospace Conference,2008 IEEE.2008:1-8P
    [14]Fujii S, Inoue K, Takubo T. Ladder climbing control for limb mechanism robot "ASTERISK"[C]. Robotics and Automation,2008. ICRA 2008. IEEE International Conference on.2008:3052-3057P
    [15]Spenneberg D, McCullough K, Kirchner F. Stability of walking in a multilegged robot suffering leg loss[C]. Robotics and Automation,2004. Proceedings. ICRA 04.2004 IEEE International Conference on.2004:2159-2164 Vol.3.
    [16]Luk B L, Collie A A, Piefort V. Robug III:a tele-operated climbing and walking robot[C]. Control 96, UKACC International Conference on (Conf. Publ. No.427). 1996:347-352 vol.1.
    [17]http://spidernaut. jsc. nasa. gov/default. asp
    [18]王新杰.多足步行机器人运动及力规划研究[D].华中科技大学博士学位论文.2005:
    [19]Ying Cui, Feng Gao. Research on a Six-Legged Robot with Omnidirectional Steering Mechanism[C]. Mechatronics and Automation,2007. ICMA 2007. International Conference on.2007:1938-1943P
    [20]王立权,孙磊,陈东良,张玲,孟庆鑫.仿生机器蟹样机研究[J].哈尔滨工程大学学报,2005,(05).
    [21]穆星科.多足机器人运动控制系统研究[D].哈尔滨工程大学硕士学位论文.2010:18-21页,15-16页
    [22]McGhee, R. B. Frank, A. A..On the stability properties of quadruped creeping gaits[J]. Mathematical Bioscience,1968,3331-351P
    [23]Mcghee R B, Iswandhi G I. Adaptive Locomotion of a Multilegged Robot over Rough Terrain[J]. Systems, Man and Cybernetics, IEEE Transactions on,1979,9(4): 176-182P
    [24]Messuri D A. Optimization of the locomotion of a legged vehicle with respect to maneuverability[D]. The Ohio State University PhD dissertation,1985:
    [25]Nagy P V. An investigation of walker/terrain interaction [D]. Carnegie Mellon University PhD dissertation,1991.
    [26]Hirose S, Tsukagoshi H, Yoneda K. Normalized energy stability margin and its contour of walking vehicles on rough terrain[C]. Robotics and Automation,2001. Proceedings 2001ICRA. IEEE International Conference on.2001:181-186 vol.1.
    [27]Orin D E. Interactive control of a six-legged vehicle with optimization of both stability and energy[D]. The Ohio State University PhD dissertation,1976.
    [28]Dong-Oh Kang, Yun-Jung Lee, Seung-Ha Lee. A study on an adaptive gait for a quadruped walking robot under external forces[C]. Robotics and Automation,1997. Proceedings.,1997 IEEE International Conference on.1997:2777-2782 vol.4.
    [29]Garcia E., Estremera J., Gonzalez de Santos P. A clasification of stability margins for walkign robots [C].5th International Conference on Climbing and Walking Robots. Paris:2002:799-808P
    [30]Elena Garcia, Pablo Gonzalez de Santos.An Improved Energy Stability Margin for Walking Machines Subject to Dynamic Effects[J]. Robotica,2005,2313-20P
    [31]李林.多足仿生机器蟹结构设计及实验研究[D].哈尔滨工程大学硕士学位论文.2010:24-27页,16-19页
    [32]周建军,张俊芳.机器人新型摆线传动技术综述[C].中国广州:中国机械工程学会生产工程分会.2001.
    [33]季宝锋.两栖多足机器人虚拟样机技术研究[D].哈尔滨工程大学硕士学位论文.2008:21-23页,16-18页
    [34]杨恩霞.机械设计[M].第一版.哈尔滨:哈尔滨工程大学.2006:164-169页
    [35]李明智.新型液气缓冲器的设计及分析[D].大连海事大学硕士学位论文.2010:
    [36]师翼.液压技术在机械缓冲应用中的讨论[J].贵州工业大学学报(自然科学版).2008(04):164-167页
    [37]任华.液力缓冲器的设计及受力分析[J].中外能源.2008(01):52-55页
    [38]赵少华,薄玉成,韩世俊.某种转管武器的缓冲器设计[J].机械管理开发.2010(04):28-29页
    [39]张玲.仿生机器蟹机构模型及控制系统研究[D].哈尔滨工程大学硕士学位论文.2006:50-53页
    [40]许娜,孙爽,许立勇等.Agent体系结构综述[J].内蒙古科技与经济.2008(06):220-221+223页
    [41]陈学东,孙翊,贾文川.多足步行机器人运动规划与控制[M].第一版.武汉:华中科技大学出版社.2006:191-199页,39-59页,99-101页,115-116页
    [42]李彩虹.移动机器人智能体混合式体系结构研究[D].山东大学博士学位论文.2007.
    [43]于艳爽.八足仿生机器蟹运动协调与控制系统研究[D].哈尔滨工程大学硕士学位论文.2004:17-21页
    [44]郝欣伟.仿生机器蟹步行足协调运动控制系统研究[D].哈尔滨工程大学硕士学位论文.2007:25-35页
    [45]陈东良.仿生机器蟹两栖步行机理与控制方法研究[D].哈尔滨工程大学博士学位论文.2006:51-54页
    [46]王立权.两栖仿生机器蟹模型建立与步行足协调控制技术研究[D].哈尔滨工程大学.2003:18-22页
    [47]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].第一版.北京:机械工业出版社.1997:278-279页,283-292页,294-296页,292-294页
    [48]王沫楠,王立权,孟庆鑫,袁鹏,瞿晓荣.两栖仿生机器蟹行走过程运动学研究[J].哈尔滨工程大学学报.2003,(02):179-183页
    [49]张铁,谢存禧.机器人学[M].第一版.广州:华南理工大学出版社.2004:74-80页
    [50]熊有伦.机器人技术基础[M].第一版.武汉:华中科技大学出版社.2004:72-73页
    [51]Kyoungchul Kong, Joonbum Bae, Tomizuka M. A compact rotary series elastic actuator for knee joint assistive system[C]. Robotics and Automation (ICRA),2010 IEEE International Conference on.2010:2940-2945P
    [52]霍伟.机器人动力学与控制[M].第一版.北京:高等教育出版社.2005:51-63页
    [53]甘建国,于东英.六足步行机的能量稳定性[J].机器人.1990(03):13-17页
    [54]Hirose S., Tsukagoshi H., Yoneda K. Normalized energy stability margin: generalized stability criterion for walking vehicles[C]. Proceedings of 1st Int. Conf. On Climbing and Walking Robots.1998:71-76P
    [55]Papadopoulos E G, Rey D A. A new measure of tipover stability margin for mobile manipulators[C]. Robotics and Automation,1996. Proceedings.,1996 IEEE International Conference on.1996:3111-3116 vol.4.
    [56]王立权,刘德峰,陈东良等.两栖多足机器人水下步态分析[J].机器人.2008,(04):333-339页
    [57]袁鹏.仿生机器蟹步行机理分析及控制系统研究[D].哈尔滨工程大学博士学位论文.2003:114-122页
    [58]甘建国,朱玮,干东英.六足步行机跟导步态研究[J].机器人.1994(4)
    [59]叶献伟,陈樊,高建华.六足仿生机器人越障步态方法研究[J].浙江理工大学学报.2008(05):611-614页
    [60]王沫楠,王立权,孟庆鑫,袁鹏,于艳爽.基于ADAMS软件两栖仿生机器蟹的动力学建模与仿真[J].哈尔滨工程大学学报.2003,(04):355-358页
    [61]尹博.单足弹跳机器人虚拟样机关键技术的研究[D].哈尔滨工程大学硕士学位论文.2009:56-58页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700