仿生甲虫可重构机器人机构建模与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人技术的发展,机器人的应用领域不断扩展,人们希望机器人能够更加灵活地适应各种工作环境,完成更为复杂的任务。传统机器人因其自身机械结构的限制,很难适应工作环境和工作任务的变化,而可重构机器人则可以很好的解决上述问题。我们将具有很强环境适应能力的甲虫的身体构造和运动机理运用到可重构机器人的研究中,提出“仿生甲虫可重构机器人机构建模与仿真”的课题。不难看出,仿生甲虫可重构机器人的研究对在非结构化环境或未知环境中执行特殊任务如空间及海底探索、军事侦察、核电站检修、灾难救援等具有重要的理论价值和实际意义。
     论文主要研究仿生甲虫可重构机器人的机械结构设计、运动步态规划、运动学建模、动力学建模以及运动仿真等相关问题。
     (1)论文详细介绍了可重构机器人和步行多足机器人的国内外研究现状,给出了论文研究的主要内容。
     (2)基于甲虫的身体结构特征,运用机器人机构学、仿生机器人设计方法等,确定仿生甲虫可重构机器人各组成单元的自由度和关节尺寸,设计可重构模块单元,利用三维实体设计软件SOLIDWORKS构建出机器人完整的物理模型。
     (3)根据甲虫的运动特点,进行仿生甲虫可重构机器人运动步态的规划,设计出不同运动模式下机器人直走和定点转弯的步态,得到相应的足端位置向量,为实现机器人的稳定行走提供理论支持。
     (4)运用D-H方法建立仿生甲虫可重构机器人坐标系,利用齐次变换法进行运动学分析。基于运动学分析结果,应用拉格朗日功能平衡法建立仿生甲虫可重构机器人动力学模型,并进行一系列的运动仿真。
     (5)利用三维实体设计软件SOLIDWORKS和机械系统动力学仿真软件ADAMS联合构建出复杂环境特征以及完整的仿生甲虫可重构机器人仿真模型,得到一系列仿真数据,为仿生甲虫可重构机器人物理样机的研究以及机构的优化提供了一定的理论依据。
With the development of robot technology,the application of robot expands. In this case,people hope that robot can adapt to various work environment more flexibly and accomplishmore complex tasks. Because of its limitations of mechanical structure, traditional robot isdifficult to adapt to the changes in work environment and tasks. However, reconfigurable robotcan solve the problems. We apply the body structure and motion theory of beetle which has astrong ability to adapt to work environment in the study on reconfigurable robot and start atopic of Modeling and Simulation for a Bionic Beetle-liked Reconfigurable Robot. It’s veryclear that, study on the bionic beetle-liked reconfigurable robot has an important theoreticalvalue and practical significance in performing special tasks in unstructured and unknownenvironment such as space and undersea exploration, military reconnaissance, nuclear powerplant maintenance, disaster relief and so on.
     The main research of this paper includes mechanical structure design of bionic beetle-likedreconfigurable robot, motion gait planning, kinematic modeling, dynamic modeling, motionsimulation and some other related problems.Firstly, the paper introduces the research status of reconfigurable robot and multi-leggedwalking robot at home and abroad in detail and gives the main content of the paper.Based on body structure features of beetle, the paper determines the freedom of robot andthe size of joints, design the reconfigurable unit and use three-dimensional modeling softwareSOLDWORKS to make up the complete physical model by robot mechanism theory and bionicrobot design method.
     Then, according to the characteristics of the motion of beetle, the paper carries the motiongait planning of the bionic beetle-liked reconfigurable robot out, designs the gait of walkingstraight and turning and gets the robot’s foot end position vectors of different motion modes.These provide theoretical support for realizing stable walking of the robot.After that, the paper uses the D-H law to establish the coordinate of the bionic beetle-likedreconfigurable robot and homogeneous transformation method to complete the kinematicanalysis. Based on the result of the kinematic analysis, the dynamic model is built byLagrange method and some simulations are also finished.
     At last, the complex environmental characteristics and integrated simulation model areconstructed by three-dimensional modeling software SOLDWORKS and mechanical systemdynamic simulation software ADAMS. A series of simulation data are obtained and all thesedata provide references for the study of the bionic beetle-liked reconfigurable robot prototypesand the optimization of robot’s mechanism.
引文
[1]徐超.可重构机器人研究的现状和展望[J].华中科技大学学报(自然科学版),2004,32(增刊):32~34.
    [2]刘明尧,谈大龙,李斌.可重构模块化机器人现状和发展[J].机器人,2001,23(3):275~279.
    [3]王鹏飞,秦小云.可重构模块化机器人的研究[J].中国水运,2007,7(7):164~165.
    [4]Satoshi Murata, Haruhisa Kurokawa. Self-Reconfigurable Robots Shape-Changing Cellular Robots CanExceed Conventional Robot Flexibility [J]. IEEE Robotics and Automation Magazine,pp.71~78,2007.
    [5]Kawauch I. Dynamically Reconfigurable Intelligent System of Cellular Robotic System (CEBOT) withRntropy Min/Max Hybrid Algorithm [C]. IEEE Robotics&Automation,pp.464~469,1994.
    [6]Donald Schmitz. The CMU Reconfigurable Modular Manipulator System [C]. Proceeding of TheInternational Symposium and Exposition on Robots,pp.473~488,1988.
    [7]Stewart. Rap id Development of Robotic Applications using Component-based Real-time Software [A].Proceedings of the1995IEEE International Conference on Intelligent Robots and Systems, vol.1, pp.465~70,1995.
    [8]Gregory. Kinematics of a Metamorphic Robotic System [A]. Proceedings IEEE conference on Robotics andAutomation, pp.449~455,1994.
    [9]Murata. Self-Assembling Machine [A]. Proceedings IEEE Conference on Robotics andAutomation,pp.441~448,1994.
    [10]Yoshida. Miniaturized Self-reconfigurable System using Shape Memory Alloy [A]. Proceedings IEEEConference on Robotics and Automation,pp.1579~1585,1999.
    [11]Yim Mark, Duff David G, Roufas Kimon D. PolyBot: a Modular Reconfigurable Robot [A]. Proceedings-IEEE International Conference on Robotics and Automation, vol.1,pp.514~520,2000.
    [12]M. Yim, Y. Zhang, D.G. Duff. Modular Robots [C]. IEEE Spectr., vol.39, No.2,pp.30~34, Feb.2002.
    [13]S. Murata, E. Yoshida, H. Kurokawa, K. Tomita, S. Kokaji. Concept of self-reconfigurable modular roboticsystem [C]. J. AI Eng., vol.15,No.4,pp.383~387,2001.
    [14]S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita, S. Kokaji. M-TRAN: Self-reconfigurablemodular robotic system [C]. IEEE/ASME Trans. Mechatron., vol.7,pp.431~441, Dec.2002.
    [15]E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, S. Kokaji. A self-reconfigurable modularrobot: reconfiguration planning and experiments [C]. Int. J. Robot. Res., vol.21,No.10, pp.903~916,2003.
    [16]B. Salemi, M. Moll, W.-M. Shen. SUPERBOT: A deployable, multi-functional, and modularself-reconfigurable robotic system [A]. Proc.2006IEEE/RSJ Intl. Conf. Intelligent RobotsSystems,pp.3636~3641, Oct.2006.
    [17]Mark Yim, Wei-Min Shen, Behnam Salemi, Daniela Rus, Mark MollL, Hod Lipson, Eric Klavins, GregoryS., Chirikjian. Modular Self-Reconfigurable Robot Systems Challenges and Opportunities for the Future [J].IEEE Robotics and Automation Magazine,pp.42~52, MARCH2007.
    [18]Farhad Aghili,Kourosh Parsa. A Reconfigurable Robot With Lockable Cylindrical Joints [C]. IEEETRANSACTIONS ON ROBOTICS, vol.25,No.4,pp.785~797,2009.
    [19]Alexandre da Silva Sim es, Esther Luna Colombini, Jackson Paul Matsuura, Marcelo Nicoletti Franchin.TORP: The Open Robot Project A Framework for Module-Based Robots. Journal of Intelligent&RoboticSystems [C], Online First,19August2011.
    [20]Chytra Pawashe, Steven Floyd, Metin Sitti. Assembly and Disassembly of Magnetic MobileMicro-Robots towards2-D Reconfigurable Micro-Systems [C]. Robotics Research: Springer Tracts inAdvanced Robotics, vol.70,pp.731~747,2011.
    [21]陈丽,王越超,马书根,李斌.一种可重构蛇形机器人的研究[J].中国机械工程,2003,14(16):1351~1353.
    [22]王明辉,马书根,李斌,王越超,贺鑫元.可重构星球探测机器人控制系统的设计与实现[J].机器人.2006,27(3):273~277.
    [23]刘金国,李斌,王越超,马书根.链式可重构机器人单模块结构设计与运动实验[J].机械设计与制造,2005,(8):94~96.
    [24]Yi Sun, Xuedong Chen, Tianhong Yan, Wenchuan Jia. Modules Design of a Reconfigurable Multi-LeggedWalking Robot [A]. Proceedings of the2006IEEE International Conference on Robotics andBiomimetics,pp.1444~1449,2006.
    [25]赵杰,唐术锋,朱延河,崔馨丹. UBot自重构机器人拓扑描述方法[J].哈尔滨工业大学学报,2011,43(1):46~49.
    [26]蒋东升,管恩广,付庄,赵言正.一种新型自重构机器人模块的对接机构设计[J].上海交通大学学报,2010,44(8):1026~1030.
    [27]周雪峰,江励,朱海飞,蔡传武,管贻生,张宪民.一个模块化机器人平台的设计[J].华南理工大学学报(自然科学版),2011,39(4):50~55.
    [28]Fielding M.R., Dunlop R. and Damaren C.J. Hamlet: force/position controlled hexapod walker design andsystems [A]. Proceedings of the IEEE Conference on Control Applications (CCA2001),Mexico City,Mexico,pp.984~989,2001.
    [29]Thomas J.Allen, Roger D. Quinn, Richard J. Bachmann, Roy E.Ritzmann. Abstracted BiologicalPrinciples Applied with Reduced Actuation Improve Mobility of Legged Vehicles [A]. Proceedings of the2003IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, vol.2, pp.1370~1375,2003.
    [30]Takubo Tomohito, Arai Tatsuo, Inoue Kenji, Ochi Hikaru, Konishi Takeshi, Tsurutani Taisuke, HayashibaraYasuo, Koyanagi Eiji. Integrated Limb Mechanism Robot ASTERISK [C]. J Rob Mechatron,vol.18,no.2,pp.203~214,2006.
    [31]Sangbae Kim, Matthew Spenko, Salomon Trujillo, Barrett Heyneman, Virgilio Mattoli, Mark R. Cutkosky.Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbingrobot [A]. Proceedings of the2007IEEE International Conference on Robotics and Automation,pp.1268~1273,2007.
    [32]Beer, Randall D., Roger D. Quinn, Hilled J. Chiel, and Roy E.Ritzmann. Biologically Inspired Approachesto Robotics [J]. Communications of the ACM,pp.30~38,1997.
    [33]http://www.robotster.org/entry/ole-new-robot-concept-to-combat-forest-fires/
    [34]Arne Roennau, Thilo Kerscher, Marco Ziegenmeyer, Johann Marius Zollner and Rudiger Dillmann.Adaptation of a Six-legged Walking Robot to Its Local Environment [C]. Robot Motion and Control2009,LNCIS396, pp.155~164,2009.
    [35]肖勇,王建平,蒋晓魁,李晓峰,刘志刚.八足蜘蛛机器人的设计与实现[J].机电一体化,2006,(6):79~82.
    [36]王倩,陈甫,臧希喆,赵杰.新型六足机器人机构与控制系统设计[J].机械设计与制造,2008,3:148~150.
    [37]罗红魏.两栖仿生机器蟹关键技术研究[D].哈尔滨:哈尔滨工程大学,2007.
    [38]Gang Wang, Lixun Zhang, Dongliang Chen, Defeng Liu, Xi Chen. Modeling and Simulation ofmulti-legged walking machine prototype [A]. Proceedings of the2009International Conference onMeasuring Technology and Mechatronics Automation,pp.251~254,2009.
    [39]罗庆生,刘祎玮,牛锴,吴帆,梁冠豪,王禛.新型轮腿式机器人研究[J].大连理工大学学报,2011,51(增刊):88~92.
    [40]Jingjing Tang, Shuhai Jiang, Pei Sun, Li Chen, Bo Chen. Virtual Prototype Design of Hexapod Bio-robot
    [A]. The11th International Conference on Intelligent Technologies, Dec14~16,2010, Bankok, Thailind.
    [41]黄真,孔令富,方跃法.并联机器人机构学理论控制.北京:机械工业出版社,1997.
    [42]陈学东,孙翊,贾文川.多足步行机器人运动规划与控制.武汉:华中科技大学出版社,2006.
    [43]李晨霞.生物蟹胸足的机械原理[J].哈尔滨理工大学学报.1997,2(2):19-23.
    [44]丹尼斯·克拉克,迈克尔·欧文斯著.宗光华,张慧慧译.机器人设计与控制.北京:科学出版社,2004.
    [45]大熊繁.机器人控制[M].北京:科学出版社,2002.
    [46]聂澄辉,刘莉,陈恳.模块化可重构足式仿生机器人设计[J].机械设计与制造,2009(2):7~9.
    [47]Bojinov H, Casal A, Hogg T. Emergent structures in modular self-reconfigurable robots [A]. In:Proceedings of the2000IEEE International Conference on Robotics&Automation. SanFrancisco,pp.1734~1741,2000.
    [48]Zhang Liang, Zhao Jie, Cai Hegao. Research on mechanism design and motion planning of a modularself-reconfigurable robot [A]. In: Proceedings of the5thWorld Congress on Intelligent Control andAutomation. Hangzhou,pp.4821~4825,2004.
    [49]宋立博.从动轮式溜冰机器人运动学与动力学研究[D].上海:上海交通大学,2002.
    [50]刘方湖.管道形轮腿式月球探测机器人及其运动特性的研究[D].上海:上海交通大学,2002.
    [51]R. B. McGhee. Some Finite State Aspects of Legged Locomotion [J]. Mathematical Biosci., vol.2, no.112,pp.67~84, Feb.1968.
    [52]R. B. McGhee and A. A. Frank. On the Stability Properties of Quadruped Creeping Gait [J]. Math. Biosci.,vol.3: no.3, pp.331~351,1968.
    [53]Song S M, Waldron K J. An Analytical Approach for Gait Study and Its Application on Wave Gaits [C]. Int.J. of Robotic Research, vol.6, pp.60~71.
    [54]Hirose S, Nose M, Kikuchi H. Adaptive Gait Control of A Quadruped Walking Vehicle. Robotca Research(1stInt. Symp.)[M]. Cambridge, USA: The MIT Press, pp.253~277.
    [55]漆向军,陈霖,刘明丹.控制六足仿生机器人三角步态的研究[J].计算机仿真,2007,24(4):158~161.
    [56]陈佳品,程君实,冯萍,马培荪,潘俊民,席裕庚.四足机器人对角小跑步态的研究[J].上海交通大学学报,1997,31(6):18~23.
    [57]Friedrich Pfeiffer, Jiirgen Eltze, Hans-Jiirgen Weidemann. Six-legged technical walking consideringbiological principles [J]. Robotics and Autonomous Systems, vol14,pp.223~232,1995.
    [58]苏军,陈学东,田文罡.六足步行机器人全方位步态的研究[J].机械与电子,2004(3):48~52.
    [59]谢存禧,张铁.机器人技术及其应用[M].北京:机械工业出版社,2005.
    [60]熊有伦.机器人技术基础[M].武汉:华中理工大学出版社,1996.
    [61] Denavit, J., and Hartenberg, R.S. A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices, J.App. Mech., vol.77,pp.215~221,1955.
    [62]黄真.并联机器人及其机构学理论[J].燕山大学学报,1998,22(1):13~17.
    [63] Paul, R.P., Shimano, B. E., and Mayer, G.. Kinematic Control Equations for Simple Manipulators, IEEETrans. Systems, Man, Cybern., vol.SMC-11: no.6,pp.449~455,1981.
    [64]于靖军,刘辛军,丁希仑,戴建生.机器人机构学的数学基础[M].北京:机械工业出版社,2008.
    [65]蔡自兴.机器人学(第二版)[M].北京:清华大学出版社,2009.
    [66]王沫楠.两栖仿生机器蟹运动学、动力学分析及虚拟样机研究[D].哈尔滨:哈尔滨工程大学,2003.
    [67]郭希娟,黄真.并联机器人机构加速度的性能指标分析,中国机械工程,2002,13(24):2087~2091.
    [68]沈林成,徐昕,朱华勇,胡天江.移动机器人自主控制理论与技术[M].北京:科学出版社,2011.
    [69] Saeed B. Niku著.孙富春,朱纪洪,刘国栋译.机器人学导论—分析、系统及应用.北京:电子工业出版社,2006.
    [70]Riekert P,Schunk T. The driving mechanism of rubber-tired of motor vehicle [J]. Engineering IngenieurArchiv,1940,11:210~224.
    [71]Bernhard Klaassen, Frank Kirchner, Dirk Spenneberg. Integration of robot control programs intoADAMSTM including sensor feedback [A], in: Proceedings of the14th European SimulationMulticonference,2000,pp.259~262.
    [72]Bernhard Klaassen, Ralf Linnemann, Dirk Spenneberg, Frank Kirchner.Biomimetic walking robotSCORPION: control and modeling [J].Robotics and Autonomous System,Vol41,pp.69~76,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700