Urocortin对抗糖尿病肾病的发展及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高糖诱导内皮细胞线粒体活性氧族(reactive oxygen species,ROS)的过度生成是包括糖尿病肾病(diabetic nephropathy,DN)在内的糖尿病并发症的最主要的分子学机制。在2型糖尿病状态下内皮依赖的血管舒张作用受到损害。肾小球胞外基质(extracelluar matrix,ECM)过度生成和降解障碍导致ECM沉积。Urocortin(UCN)是一个40个氨基酸的多肽,属于促肾皮质激素释放激素(corticotrophin releasing factor,CRF)家族的一员。UCN抑制内皮细胞活性氧族的释放,诱导内皮依赖的大鼠冠状动脉的舒张;抑制内皮细胞增殖,下调VEGF表达;诱导绒毛膜滋养层细胞、羊膜上皮细胞、合包体滋养层细胞分泌基质金属蛋白酶-9(Matrix metalloproteinase,MMP-9),后者与基质降解密切相关。这些报道提示UCN可能与DN的发生发展有一定关联。
     本文采用肾小球系膜细胞(mesangial cell,MC)作为离体研究模型,db/db鼠和链佐星-弗氏完全佐剂(streptozotocin-complete Freund'sadjuvant,STZ-CFA)联合诱导的DN模型作为整体动物模型,研究了UCN对抗DN发展的作用及可能的作用机制。
     本文的第一部分采用了体外糖基化终产物(advanced glycationend products,AGEs)生成实验和MC作为研究对象,研究了UCN对AGEs生成及高糖/AGEs作用下MC增殖、组织转化生长因子-β1(transforming growth factor-β1,TGF-β1)、结缔组织生长因子(connective tissue growth factor,CTGF)、Ⅳ型胶原(collagen typeⅣ,collaⅣ)表达的影响,及对TGF-β1作用下血管肉皮生长因子(vascularendothelium growth factor,VEGF)分泌的影响。以荧光法测定AGEs的生成,~3H-TDR掺入法测定细胞增殖状态,免疫细胞化学法测定TGF-β1、CTGF、collaⅣ的表达,ELISA测定VEGF的分泌。结果表明,UCN对AGEs生成没有明显影响,但可以抑制高糖/AGEs诱导的MC的异常增殖和TGF-β1、CTGF、collaⅣ的过度表达和TGF-β1诱导的VEGF过度分泌。而CRF受体阻断剂astressin(AS)能减弱UCN的上述作用。
     本文第二部分研究了UCN对db/db鼠肾病动物模型DN发展的影响。采用公认的2型DN模型db/db鼠为研究对象,给药六周,连续监测了UCN对血糖、体重、进食量的影响,并检测了UCN对db/db鼠血浆胰岛素、尿素氮(blood urine nitrogen,BUN)、肌酐(creatinine,Crea)、AGEs、红细胞内山梨醇(sorbitol,SB)含量、肾组织匀浆中超氧化物岐化酶(superoxide dismutase,SOD)活性、丙二醛(malonaldehyde,MDA)水平的影响及对肾组织病理学、肾小球ECM沉积的影响。结果表明,UCN对模型动物血糖、进食量、血浆胰岛素水平没有明显影响,但从给药第三周起能够降低模型动物体重,并且能降低血浆BUN、Crea、AGEs水平、红细胞内SB含量、肾匀浆中MDA含量,提高肾匀浆中SOD活性,减轻肾小球病理变化及肾小球系膜基质聚积和系膜区扩张。AS除不能对抗UCN降低红细胞内SB含量的效应外,可逆转UCN对抗db/db鼠肾病发展的保护作用。
     本文第三部分研究了UCN对STZ-CFA联合诱导的糖尿病模型大鼠DN发展的影响。采用STZ-CFA联合诱导辅以高脂饮食,连续喂养14周制作DN模型。连续给药8周(自实验开始第7周起给药),监测UCN对体重、血糖的影响;生化检测UCN对血清血糖、胰岛素(放免)、BUN、Crea、总胆固醇、HDL-胆固醇、LDL-胆固醇、SOD、MDA水平的影响,收集24 h尿液,测定尿液体积、尿液中Crea、尿素氮、尿微量白蛋白(放免)水平,计算肌酐清除率;观察了UCN对肾脏病理组织学的影响及对系膜基质聚积的影响;免疫组织化学方法研究了肾小球TGF-β1、CTGF、VEGF的表达,RT-PCR方法检测肾组织VEGF mRNA的表达。结果表明,UCN对DN大鼠血糖、胰岛素、体重没有明显影响,但减轻肾脏重量;可以改善DN状态下的脂代谢紊乱:降低血清总胆固醇、LDL水平,提高HDL水平;改善氧化还原失衡状态:提高血清SOD水平、降低血清MDA水平,降低血清AGEs水平和红细胞内SB含量;改善肾脏功能:减少24 h尿液体积和微白蛋白排出量,提高尿液尿素氮、Crea水平,降低血清BUN、Crea水平,提高肌酐清除率(creatinine clearance rate,Ccr);减轻肾小球胞外基质聚积和系膜区增宽程度,抑制肾小球TGF-β1、CTGF、VEGF、VEGF mRNA、collaⅣ的过度表达。除对SB的影响外,AS能够减弱UCN对STZ-CFA诱导的DN模型的作用。此外,本文还研究了STZ-CFA辅以高脂饮食诱导的DN模型肾脏UCN表达的变化。采用RT-PCR和免疫组织化学方法分别检测UCN mRNA和UCN在肾脏组织的表达。结果表明,UCN mRNA在DN模型大鼠肾脏表达有增加的趋势,但无统计学意义,而UCN在肾脏组织中的蛋白表达水平没有明显差异,由于时间所限,此结果仅为初步结果,尚需进一步实验研究。
     综上所述,UCN能够改善肾脏功能,减少尿微白蛋白排出,这与UCN通过多途径对抗DN发展的机制有关:抑制MC异常增殖,抑制促纤维化因子(TGF-β1、CTGF、VEGF、VEGF mRNA)的过度表达从而抑制肾小球ECM聚积和系膜基质增生(collaⅣ),减少AGEs堆积、抑制PP活性、纠正机体氧化还原失衡,降低血清总胆固醇、LDL、提高HDL水平。除对SB的影响外,UCN改善DN的作用与CRF受体相关。此外,UCN在DN肾脏中表达变化,尚需更多的数据支持。
Hyperglycemia induces process of overproduction of mitochondrial reactive oxygen stress (ROS) in endothelial cells, which is believed to be the main molecular mechanism of diabetic complications including diabetic nephropathy (DN). Impairment of endothelium-dependent vasodilatation is found in type 2 diabetes. Increased thickness of glomerular basement membrane and augmentation of glomerular extracellular matrix (ECM) are recognized as pathological hallmarks of diabetic nephropathy. ECM accumulation is due to the increased synthesis and decreased degradation of ECM. UCN is a 40-amino-acid peptide related to the corticotrophin-releasing factor (CRF) family, which suppresses production of ROS & expression of VEGF in endothelial cells and sustains endothelium-dependent rat coronary artery relaxation. Furthermore, UCN induces matrix metalloproteinase (MMP-9) expression of cultured cells from human placenta and fetal membranes, which is related to extracelluar matrix (ECM) degradation. These reports highly indicate that UCN may play an important role in the development of DN.
     We investigated effects of UCN on DN and the possible mechanisms by using cultured rat mesangial cells (MC), db/db mice and DN model rats induced streptozotocin-complete Freund's adjuvant (STZ-CFA).
     In the first part, advanced glycation end products (AGEs) formation in vitro and cultured MC were used to investigate the effects of UCN on AGEs formation, high glucose/AGEs induced abnormal cell proliferation, overexpression of transforming growth factor (TGF-β1), connective tissue growth factor (CTGF), collagen type IV and TGF-β1 induced overproduction of vascular endothelial growth factor (VEGF). The results showed that UCN did not affect the AGEs formation process, however, it inhibited the over expression of TGF-β1, CTGF, collagen type IV induced by high glucose/AGEs and overproduction of VEGF induced by TGF-β1. Treatment with unselective CRF receptor blocker-astressin reversed such effects.
     In the second part, db/db mice were used to investigate the amelioration effect of UCN on type 2 DN. UCN was injected intraperitoneally to the mice for 6 weeks. The effects of UCN on blood glucose, body weight & food intake were recorded weekly. At the end of the experiment, plasma insulin, blood glucose, blood urine nitrogen (BUN), creatinine (Crea), AGEs level, sorbitol concentration in RBC and superoxide dismutase (SOD) activity & malonaldehyde (MDA) level in kidney homogenate were examined. The pathology change of kidney was observed by using HE- and PAS- stained paraffin section. The results showed that UCN significantly decreased body weight, plasma AGEs level, BUN level and Crea level. However, food intake, plasma insulin and plasma glucose level remained unaffected. Superoxide dismutase (SOD) activity was markedly increased, whereas malonaldehyde (MDA) level in kidney homogenate and concentration of sorbitol in red blood cells (RBC) were significantly decreased in UCN-treated group. UCN significantly decreased ECM expansion and accumulation in kidney. The beneficial effects of UCN on db/db mice could be abolished by astressin except its inhibition of sorbitol accumulation.
     In the third part, UCN was injected intraperitoneally to DN rat model induced by STZ-CFA (from the 7th week after the beginning of the experiment) daily for 8 weeks. Body weight and blood glucose were recorded weekly. At the end of the experiment, blood sample was collected to analyze effects of UCN on blood glucose, insulin, BUN, Crea, cholesterol, HDL, LDL, SOD, MDA level and sorbitol concentration in RBC. Urine of 24 h was collected and the effects of UCN on urine volume, Crea, urine nitrogen, microalbuminuria were detected and creatinine clearance rate (Ccr) was calculated. ECM accumulation & mesangial area expansion were observed by using HE- and PAS- stained paraffin section and percent mesangial area was calculated. Overexpression of TGF-β1、CTGF、VEGF and VEGF mRNA in the renal was presented by using immunohistochemistry & RT-PCR. Our results showed that UCN did not influence the serum blood glucose, insulin level and body weight; however, it decreased serum cholesterol, LDL, MDA, BUN, Crea, AGEs level, RBC sorbitol concentration and kidney weight significantly. Likewise, serum HDL level and SOD activity were obviously enhanced by UCN treatment. Total urine volume and microalbumin excretion of 24 h were diminished and Ccr increased significantly by UCN. Furthermore, UCN ameliorated ECM accumulation, mesangial area expansion and collagen type IV expression, which was related to its decreasing effects on overexpression of TGF-β1、CTGF、VEGF、VEGF mRNA in the kidney or glomeruli. Astressin treatment reversed the effects of UCN except its inhibitory effect on polyol pathway activity. RT-PCR and immunohistochemistry were used to compare the expression of UCN & UCN mRNA in kidney between normal rats and STZ-CFA induced DN rats. Although UCN mRNA expression appeared to increase in DN rats, UCN expression was not obviously enhanced. It needs further investigation to do other experiments to quantify the expression of UCN and UCN mRNA due to the time limitation.
     Taken together, UCN could significantly prevent DN development and this effect was related to CRF receptors. Inhibition of AGE accumulation, polyol pathway activation, ECM expansion & accumulation, TGF-β1, VEGF & CTGF over-expression, ROS over-production and regulation of lipid profiles may all contribute to the amelioration of DN by UCN.
引文
[1] Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004. 27:1047-1053.
    
    [2] Rossing P. Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history. Curr Diab Rep 2006. 6:479-483.
    [3] Hisashi M, Yoshihiro M, Kazutomo S, Kiyoshi M, Masashi M, Kazuwa N, et al. Shin-ichi S altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes 2006. 55:2747-2756.
    [4] Guhua Z, Cai L, Lu C. Advanced glycation end-products induce connective tissue growth factor-mediated renal fibrosis predominantly through transforming growth factor β-independent pathway. Am J Pathol 2004. 165:2033-2043.
    [5] Umezono T, Toyoda M, Kato M, Miyauchi M, Kimura M, Maruyama M, Honma M, Yagame M, Suzuki D. Glomerular expression of CTGF, TGF-beta 1 and type IV collagen in diabetic nephropathy. J Nephrol 2006.19:751-757.
    [6] Gupta S, Clarkson MR, Duggan J, Brady HR. Connective tissue growth factor: potential role in glomerulosclerosis and tubulointerstitial fibrosis, Kidney Int 2000. 58:1389-1399.
    [7] McLennan SV, Kelly DJ, Cox AJ, Cao Z, Lyons JG, Yue DK, Gilbert RE. Decreased matrix degradation in diabetic nephropathy: effects of ACE inhibition on the expression and activities of matrix metalloproteinases. Diabetologia 2002. 45:268-275.
    [8] Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 2008. 4:39-45.
    
    [9] Wang J, Xu Y, Xu Y, Zhu H, Zhang R, Zhang G, Li S. Urocortin's inhibition of tumor growth and angiogenesis in hepatocellular carcinoma via corticotrophin-releasing factor receptor 2. Cancer Invest 2008. 26:359-368.
    [10] Wang L, Kwak JH, Kim SI, He Y, Choi ME. Transforming growth factor-beta1 stimulates vascular endothelial growth factor 164 via mitogen-activated protein kinase kinase 3-p38alpha and p38delta mitogen-activated protein kinase-dependent pathway in murine mesangial cells. J Biol Chem 2004. 279:33213-33219.
    
    [11] Forbes JM, Fukami K, Cooper ME. Diabetic nephropathy: where hemodynamics meets metabolism. Exp Clin Endocrinol Diabetes 2007. 115:69-84.
    [12] Michael Brownlee. Biochemistry and molecular cell biology of diabetic complications. Nature 2001. 414(13):813-820.
    [13] Horiuchi S. Advanced glycation end products(AGE)-modified proteins and their potential relevance to atherosclerosis. Trends Cardiovasc 1996. 6:163-168.
    [14] Nobutake Ohgami, Akira Miyazakj, Masakazu Sakai. Advanced glycation end products (AGE) inhibit scavenger receptor class B type 1-mdiaged reverse cholesterol transport: a new crossroad of AGE to cholesterol metabolism Journal of atherosclerosis and thrombosis 2002.10:1-6.
    [15] Schalkwijk CG, Stehouwer CD, van Hinsbergh VW. Fructose-mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab Res Rev 2004. 20:369-382.
    [16] Dan Q, Wong RL, Yin S, Chung SK, Chung SS, Lam KS. Interaction between the polyol pathway and non-enzymatic glycation on mesangial cell gene expression. Nephron Exp Nephrol 2004. 98:e89-99.
    [17] Sun SZ, Wang Y, Li Q, Tian YJ, Liu MH, Yu YH. Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats. Chin MedJ(Engl) 2006. 119:814-821.
    [18] Jenkins AJ, Rowley KG, Lyons TJ, Best JD, Hill MA, Klein RL. Lipoproteins and diabetic microvascular complications. Curr Pharm Des 2004. 10:3395-3418.
    [19] Leiva E, Mujica V, Elematore I, Orrego R, Diaz G, Prieto M, Arredondo M. Relationship between Apolipoprotein E polymorphism and nephropathy in type-2 diabetic patients. Diabetes Res Clin Pract 2007. 78:196-201.
    [20] Donaldson CJ, Sutton SW, Perrin MH, Corrigan AZ, Lewis KA, Rivier JE, et al. Cloning and characterization of human UCN. Endocrinology 1996. 137:2167- 2170.
    [21] Fekete EM, Zorrilla EP. Physiology, pharmacology, and therapeutic relevance of UCNs in mammals: Ancient CRF paralogs. Front Neuroendocrino 2007. 28:1-27.
    [22] Kageyama K, Bradbury MJ, Zhao L, Blount AL, Vale WW. UCN messenger ribonucleic acid: tissue distribution in the rat and regulation in thymus by lipopolysaccharide and glucocorticoids. Endocrinology 1999. 140:5651-5658.
    
    [23] Honjo T, Inoue N, Shiraki R, Kobayashi S, Otsui K, Takahashi M, et al. Endothelial UCN has potent antioxidative properties and is upregulated by inflammatory cytokines and pitavastatin. J Vasc Res 2006. 43:131-138.
    [24] Huang Y, Chan FL, Lau CW, Tsang SY, He GW, Chen ZY, et al. UCN-induced endothelium- dependent relaxation of rat coronary artery: role of nitric oxide and K+ channels. Br J Pharmacol 2002. 135:1467-1476.
    [25] Sanz E, Fernandez N, Monge L, Climent B, Dieguez G, Garcia-Villalon AL. Relaxation by UCN of rat renal arteries: effects of diabetes in males and females. Cardiovasc Res 2003. 58:706-711.
    [26] Rademaker MT, Charles CJ, Espiner EA, Frampton CM, Lainchbury JG, Richards AM. Four-day UCN-I administration has sustained beneficial haemodynamic, hormonal, and renal effects in experimental heart failure. Eur Heart J 2005. 26:2055-2062.
    [27] Liu CN, Yang C, Liu XY, Li S. In vivo protective effects of UCN on ischemia-reperfusion injury in rat heart via free radical mechanisms. Can J Physiol Pharmacol 2005. 83:459-465.
    [28] Yang C, Xu Y, Mendez T, Wang F, Yang Q, Li S. Effects of intravenous UCN on angiotensin-converting enzyme in rats. Vascul Pharmacol 2006. 44:238-246.
    [29] Li W, Challis JR. Corticotropin-releasing hormone and UCN induce secretion of matrix metalloproteinase-9 (MMP-9) without change in tissue inhibitors of MMP-1 by cultured cells from human placenta and fetal membranes, J Clin Endocrinol Metab 2005. 90:6569-6574.
    [30] Solinas G, Summermatter S, Mainieri D, Gubler M, Montani JP, Seydoux J, Smith SR, Dulloo AG. Corticotropin-releasing hormone directly stimulates thermogenesis in skeletal muscle possibly through substrate cycling between de novo lipogenesis and lipid oxidation. Endocrinology 2006. 147:31-38.
    [1] Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004. 27:1047-1053.
    [2] Rossing P. Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history. Curr Diab Rep 2006. 6:479-483.
    [3] Sugimoto H, Grahovac G, Zeisberg M, Kalluri R. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 2007. 56:1825-1833.
    [4] Couser WG, Johnson RJ. Mechanisms of progressive renal disease in glomerulonephritis. Am J Kidney Dis 1994. 23:193-198.
    [5] Oshima S, Yoshizawa N. Effects of glucose on proliferation and collagen synthesis in cultured rat mesangial cells, Nippon Jinzo Gakkai Shi 1992. 34:871-881.
    [6] Cohen MP, Ziyadeh FN.Amadori glucose adducts modulate mesangial cell growth and collagen gene expression, Kidney Int 1994. 45:475-484.
    [7] Murphy M, Godson C, Cannon S, Kato S, Mackenzie HS, Martin F, et al.. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J Biol Chem 1999. 274:5830-5834.
    [8] Mclennan SV, Wang XY, Moreno V, Yue DK, Twigg SM. Connective tissue growth factor mediates high glucose effects on martrix degradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy. Endocrinology 2004.145: 5646-5655.
    [9] Riser BL, Denichilo M, Cortes P, Baker C, Grondin JM, Yee J, Narins RG. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis, J Am Soc Nephrol 2000. 1:25-38.
    [10] Liu BC, Sun J, Chen Q, Ma KL, Ruan XZ, Phillips AO. Role of connective tissue growth factor in mediating hypertrophy of human proximal tubular cells induced by angiotensin II, Am J Nephrol 2003. 23:429-437.
    [11] Valladares D, Quezada C, Montecinos P, Concha II, Yanez AJ, Sobrevia L, San Martin R. Adenosine A(2B) receptor mediates an increase on VEGF-A production in rat kidney glomeruli. Biochem Biophys Res Commun 2008. 366:180-185.
    [12] Janickova Zdarska D, Zavadova E, Kvapil M. The effect of ramipril therapy on cytokines and parameters of incipient diabetic nephropathy in patients with type 1 diabetes mellitus. J Int Med Res 2007. 35:374-383.
    [13] Ohshiro Y, Ma RC, Yasuda Y, Hiraoka-Yamamoto J, Clermont AC, Isshiki K, Yagi K, Arikawa E, Kern TS, King GL Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes 2006 55:3112-3120.
    [14] Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 2008. 4:39-45.
    [15] Kuiper EJ, Hughes JM, Van Geest RJ, Vogels IM, Goldschmeding R, Van Noorden CJ, Schlingemann RO, Klaassen I. Effect of VEGF-A on expression of profibrotic growth factor and extracellular matrix genes in the retina. Invest Ophthalmol Vis Sci 2007. 48:4267-4276.
    [16] Wang L, Kwak JH, Kim SI, He Y, Choi METransforming growth factor-beta1 stimulates vascular endothelial growth factor 164 via mitogen-activated protein kinase kinase 3-p38alpha and p38delta mitogen-activated protein kinase-dependent pathway in murine mesangial cells. J Biol Chem 2004. 279:33213-33219.
    [17] Tremolada G, Lattanzio R, Mazzolari G, Zerbini G. The therapeutic potential of VEGF inhibition in diabetic microvascular complications. Am J Cardiovasc Drugs 2007. 7:393-398.
    [18] Wang J, Xu Y, Xu Y, Zhu H, Zhang R, Zhang G, Li S. Urocortin's inhibition of tumor growth and angiogenesis in hepatocellular carcinoma via corticotrophin-releasing factor receptor 2. Cancer Invest 2008. 26:359-368.
    [19] Xia L, Wang H, Munk S, Frecker H, Goldberg HJ, Fantus IG, Whiteside CI. Reactive oxygen species, PKC-beta1, and PKC-zeta mediate high-glucose-induced vascular endothelial growth factor expression in mesangial cells. Am J Physiol Endocrinol Metab 2007. 293:E1280-1288.
    [20] Like AA, Lavine RL, Poffenbarger PL, Chick WL. Studies in the diabetic mutant mouse. VI. Evolution of glomerular lesions and associated proteinuria. Am J Pathol 1972. 66:193-224.
    [21] Starkey JM, Haidacher SJ, LeJeune WS, Zhang X, Tieu BC, Choudhary S, et al. Diabetes-induced activation of canonical and noncanonical nuclear factor-kB pathways in renal Cortex. Diabetes 2006. 55:1252-1259.
    [22] Chen A, Brar B, Choi CS, Rousso D, Vaughan J, Kuperman Y, et al. UCN 2 modulates glucose utilization and insulin sensitivity in skeletal muscle. Proc Natl Acad Sci USA 2006. 103:16580-16585.
    [23] Li C, Chen P, Vaughan J, Blount A, Chen A, Jamieson PM, et al. UCN III is expressed in pancreatic beta-cells and stimulates insulin and glucagon secretion. Endocrinology 2003.144:3216-24.
    [24] Hope PJ, Turnbull H, Farr S, Morley JE, Rice KC, Chrousos GP, et al. Peripheral administration of CRF and UCN: effect on food intake and the HPA axis in the marsupial Sminthopis crassicaudata. Peptides 2000. 21:669-677.
    [25] Kinney JW, Scruggs B, Avery DD. Peripheral administration of UCN suppresses operant responding for food reward. Peptides 20002. 2:583-578.
    [26] Kastin AJ, Pan W, Akerstrom V , Hackler L, Wang C, Kotz CM. Novel peptide-peptide cooperation may transform feeding behavior. Peptides 2002. 23:2189-2196.
    [27] Sharma K, McCue P, Dun SR. Diabetic kidney disease in db/db mouse. Am J Physiol Renal Physiol 2003. 284:F1138- F1144.
    [28] Fruehwald-Schultes B, Kern W, Beyer J, Forst T, Pfutzner A, Peters A. Elevated serum leptin concentrations in type 2 diabetic patients with microalbuminuria and macroalbuminuria. Metabolism 1999. 48:1290-1293.
    [29] Javor ED, Moran SA, Young JR, Cochran EK, DePaoli AM, Oral EA, et al.. Proteinuric Nephropathy in Acquired and Congenital Generalized Lipodystrophy: Baseline Characteristics and Course during Recombinant Leptin Therapy. J Clin Endocrinol Meta 2004. 89:3199-3207.
    
    [30] Yamagishi S, Inagaki Y, Okamoto T, Amano S, Koga K, Takeuchi M, et al.. Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J Biol Chem 2002. 277:20309-20315.
    [31] Sugimoto H, Grahovac G, Zeisberg M, Kalluri R. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 2007. 56:1825-1833.
    [32] Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int Suppl 2000. 77:S2-S122000.
    [33] Mohora M, Virgolici B, Paveliu F, Lixandru D, Muscurel C, Greabu M. Free radical activity in obese patients with type 2 diabetes mellitus. Rom J Intern Med 2006. 44:69-78.
    [34] Kedziora-Kornatowska K, Szram S, Kornatowski T, Szadujkis-Szadurski L, Kedziora J, Bartosz G. Effect of vitamin E and vitamin C supplementation on antioxidative state and renal glomerular basement membrane thickness in diabetic kidney. Nephron Exp Nephrol 2003. 95:e134-143.
    [35] Smedsrod B, Melkko J, Araki N, Sano H, Horiuchi S. Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J 1997. 322:567-573.
    [36] Charalampopoulos I, Androulidaki A, Minas V, Chatzaki E, Tsatsanis C, Notas G, et al. A Neuropeptide UCN and its receptors are expressed in rat Kupffer cells. Neuroendocrinology 2006. 84:49-57.
    [37] Dan Q, Wong R, Chung SK, Chung SS, Lam KS. Interaction between the polyol pathway and non-enzymatic glycation on aortic smooth muscle cell migration and monocyte adhesion. Life Sci 2004. 76:445-459.
    [38] Thallas-Bonke V, Thorpe SR, Coughlan MT, Fukami K, Yap FY, Sourris KC, Penfold SA, Bach LA, Cooper ME, Forbes JM. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 2008. 57:460-469.
    [39] Liu CN, Yang C, Liu XY, Li S. In vivo protective effects of UCN on ischemia-reperfusion injury in rat heart via free radical mechanisms. Can J Physiol Pharmacol 2005. 83:459-465.
    [40] Hisashi M, Yoshihiro M, Kazutomo S, Kiyoshi M, Masashi M, Kazuwa N, et al. Shin-ichi S altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes 2006. 55:2747-2756.
    [41]Yang Y,Santamaria P.Lessons on autoimmune diabetes from animal models.Clin Sci(Lond)2006.110:627-639.
    [42]Wasan KM,Risovic V,Yuen VG,McNeill JH.Differences in plasma homocysteine levels between Zucker fatty and Zucker diabetic fatty rats following 3 weeks oral administration of organic vanadium compounds.J Trace Elem Med Biol 2006.19:251-258.
    [43]Kawada J.New hypotheses for the mechanisms of streptozotocin and alloxan inducing diabetes mellitus.Yakugaku Zasshi 1992.112:773-791.
    [44]Moore SA,Peterson RG,Felten DL,O'Connor BL.A quantitative comparison of motor and sensory conduction velocities in short-and long-term streptozotocin-and alloxan-diabetic rats.J Neurol Sci 1980.48:133-152.
    [45]Onishi E,Yamada T,Yamada K,Inoue H,Seyama Y,Yamashita S.Comparison of experimental diabetes induced by streptozotocin and cyproheptadine.Nippon Yakurigaku Zasshi 1986.87:105-112.
    [46]Namming NA,Reynold WA.NA synthesis in pancreatic islet and acinar cell in rat with streptozotoxin induced diabetes.Horm Metab Res(1977)(9):114-116.
    [47]Kohnert KD,Falt K,Ziegler B,Odselius R.Histopathological lesions in the pancreas of a rat model of diabetes induced with complete Freund's adjuvant and low-dose streptozotocin.Exp Clin Endocrinol 1990.95:47-56.
    [48]Pighin D,Karabatas L,Pastorale C,Dascal E,Carbone C,Chicco A,Lombardo YB,Basabe JC.Role of lipids in the early developmental stages of experimental immune diabetes induced by multiple low-dose streptozotocin.J Appl Physiol 2005.98:1064-1069.
    [49]Sun SZ,Wang Y,Li Q,Tian Y J,Liu MH,Yu YH.Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats.Chin Med J(Engl)2006.119:814-21.
    [50]Shankland S J,Scholey JW,Ly H,Thai K.Expression of transforming growth factor-beta 1during diabetic renal hypertrophy.Kidney Int 1994.46:430-42.
    [51]Sun SZ,Wang Y,Li Q,Tian YJ,Liu MH,Yu YH.Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats.Chin Med J(Engl)2006.119:814-821.
    [52]Picard S,Borson-Chazot F,Berthezene F.Association of atherosclerosis and nephropathy in diabetes mellitus.Role of lipid anomalies.Presse Med 1991.20:1672-1676.
    [53]Kramer-Guth A,Quaschning T,Greiber S,Wanner C.Potential role of lipids in the progression of diabetic nephropathy.Clin Nephrol 1996.46:262-25.
    [54]Best JD,O'Neal DN.Diabetic dyslipidaemia:current treatment recommendations.Drugs 2000.59:1101-1111.
    [55]Tolonen N,Forsblom C,Thorn L,Waden J,Rosengard-Barlund M,Saraheimo M,Heikkila O,Pettersson-Fernholm K,Taskinen MR,Groop PH.Relationship between lipid profiles and kidney function in patients with type 1 diabetes.Diabetologia 2008.51:12-20.
    [56] Agaba EI, Duguru M, Agaba PA, Angbazo D. Serum lipid profile of Nigerian diabetics with end stage renal disease. West Afr J Med 2005. 24:305-308.
    [57] Wang LH, Duan HJ, Shi YH, Liu QJ. Protective effects of Lovastatin on early diabetic renal tissue and the possible mechanism. Wei Sheng Yan Jiu 2005. 34:70-73.
    [58] Sun SZ, Wang Y, Li Q, Tian YJ, Liu MH, Yu YH. Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats. Chin Med J(Engl) 2006. 119:814-821.
    [59] Giuseppe Remuzzi, Ariela Benigni, and Andrea Remuzzi. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. The Journal of Clinical Investigation 2006. 116:288-296.
    [60] Adler SG, Kang SW, Feld S, Cha DR, Barba L, Striker L, Striker G, Riser BL, LaPage J, Nast CC. Glomerular mRNAs in human type 1 diabetes: biochemical evidence for microalbuminuria as a manifestation of diabetic nephropathy. Kidney Int 2001. 60:2330-2336.
    [61] Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus. A systematic overview of the literature. Arch Intern Med 1997. 157:1413-1418.
    [62] Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983. 32 Suppl 2:64-78.
    [63] Sperandeo M, D'Amico G, Varriale A, Sperandeo G, Annese MA, Correra M. Pulsed-wave color Doppler echography of the intrarenal vessels in patients with insulin-dependent diabetes. Arch Ital Urol Androl 1996. 68:183-187.
    [64] Sharma K, Ziyadeh FN, Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 1995. 44:1139-1146.
    [65] Iwano M, Kubo A, Nishino T, Sato H, Nishioka H, Akai Y, Kurioka H, Fujii Y, Kanauchi M, Shiiki H, Dohi K. Quantification of glomerular TGF-beta 1 mRNA in patients with diabetes mellitus. Kidney Int 1996. 49:1120-1126.
    [66] Crean JK, Furlong F, Finlay D, Mitchell D, Murphy M, Conway B, Brady HR, Godson C, Martin F. Connective tissue growth factor [CTGF]/CCN2 stimulates mesangial cell migration through integrated dissolution of focal adhesion complexes and activation of cell polarization, FASEB J 2004. 18:1541-1543.
    [67] Umezono T, Toyoda M, Kato M, Miyauchi M, Kimura M, Maruyama M, Honma M, Yagame M, Suzuki D. Glomerular expression of CTGF, TGF-beta 1 and type IV collagen in diabetic nephropathy. J Nephrol 2006. 19:751-757.
    [68] Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 2008. 4:39-45.
    [69] Kuiper EJ, Hughes JM, Van Geest RJ, Vogels IM, Goldschmeding R, Van Noorden CJ, Schlingemann RO, Klaassen I. Effect of VEGF-A on expression of profibrotic growth factor and extracellular matrix genes in the retina. Invest Ophthalmol Vis Sci 2007. 48:4267-4276.
    [70] Tremolada G, Lattanzio R, Mazzolari G, Zerbini G.The therapeutic potential of VEGF inhibition in diabetic microvascular complications. Am J Cardiovasc Drugs 2007. 7:393-398.
    [1] Guder WG, Schmolke M, Wirthensohn G. Carbohydrate and lipid metabolism of the renal tubule in diabetes mellitus. EurJ Clin Chem Clin Biochem 1992. 30:669-674.
    [2] Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983. 32 Suppl 2:64-78.
    [3] Sperandeo M, D'Amico G, Varriale A, Sperandeo G, Annese MA, Correra M. Pulsed-wave color Doppler echography of the intrarenal vessels in patients with insulin-dependent diabetes. Arch Ital Urol Androl 1996. 68:183-187.
    [4] Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, Chugh S, Danesh FR. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood) 2008. 233:4-11.
    [5] Forbes JM, Fukami K, Cooper ME. Diabetic nephropathy: where hemodynamics meets metabolism. Exp Clin Endocrinol Diabetes 2007. 115:69-84.
    [6] Wolf G. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest 2004. 34:785-796.
    [7] Zerbini G, Bonfanti R, Meschi F, Bognetti E, Paesano PL, Gianolli L, Querques M, Maestroni A, Calori G, Del Maschio A, Fazio F, Luzi L. Chiumello G. Persistent renal hypertrophy and faster decline of glomerular filtration rate precede the development of microalbuminuria in type 1 diabetes. Diabetes 2006. 55:2620-2625.
    [8] Lemley KV. Diabetes and chronic kidney disease: lessons from the Pima Indians. Pediatr Nephrol 2008. [Epub ahead of print]).
    [9] Sharma K, McCue P, Dunn SR. Diabetic kidney disease in the db/db mouse. Am J Physiol Renal Physiol 2003. 284 :F1138-1144.
    
    [10] Wei P, Lane PH, Lane JT, Padanilam BJ, Sansom SC. Glomerular structural and functional changes in a high-fat diet mouse model of early-stage Type 2 diabetes. Diabetologia 2004. 47:1541-1549.
    [11] Tone A, Shikata K, Sasaki M, Ohga S, Yozai K, Nishishita S, Usui H, Nagase R, Ogawa D, Okada S, Shikata Y, Wada J, Makino H. Erythromycin ameliorates renal injury via anti-inflammatory effects in experimental diabetic rats. Diabetologia 2005. 48:2402-2411.
    [12] Guo M, Ricardo SD, Deane JA, Shi M, Cullen-McEwen L, Bertram JF. A stereological study of the renal glomerular vasculature in the db/db mouse model of diabetic nephropathy. J Anat 2005.207:813-821.
    [13] Mahimainathan L, Das F, Venkatesan B, Choudhury GG. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes 2006. 55:2115-2125.
    [14] Fukami K, Ueda S, Yamagishi S, Kato S, Inagaki Y, Takeuchi M, Motomiya Y, Bucala R, Iida S, Tamaki K, Imaizumi T, Cooper ME, Okuda S. AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin II type I receptor interaction. Kidney Int 2004. 66:2137-2147.
    [15]Yoo CW,Song CY,Kim BC,Hong HK,Lee HS.Glycated albumin induces superoxide generation in mesangial cells.Cell Physiol Biochem 2004.14(4-6):361-368.
    [16]Singh LP,Jiang Y,Cheng DW.Proteomic identification of 14-3-3zeta as an adapter for IGF-1and Akt/GSK-3beta signaling and survival of renal mesangial cells.Int J Biol Sci 2006.3:27-39.
    [17]Abdel-Wahab N,Weston BS,Roberts T,Mason RM.Connective tissue growth factor and regulation of the mesangial cell cycle:role in cellular hypertrophy.J Am Soc Nephrol 13:2437-2445.
    [18]Wolf G.Cell cycle regulation in diabetic nephropathy.Kidney Int Supp12000.77:S59-66.
    [19]Wolf G,Schroeder R,Ziyadeh FN,Thaiss F,Zahner G,Stahl RA.High glucose stimulates expression of p27Kipl in cultured mouse mesangial cells:relationship to hypertrophy.Am J Physiol 1997.273:F348-356.
    [20]Wolf G,Schanze A,Stahl RA,Shankland SJ,Amann K.p27(Kipl)Knockout mice are protected from diabetic nephropathy:evidence for p27(Kip1)haplotype insufficiency.Kidney Int 2005.68:1583-1589.
    [21]Wolf G,Reinking R,Zahner G,Stahl RA,Shankland SJ.Erk 1,2 phosphorylates p27(Kip1):Functional evidence for a role in high glucose-induced hypertrophy of mesangial cells.Diabetologia 2003.46:1090-1099.
    [22]Fan YP,Weiss RH.Exogenous attenuation of p21(Waf1/Cip1)decreases mesangial cell hypertrophy as a result of hyperglycemia and IGF-1.J Am Soc Nephrol 2004.15:575-584.
    [23]Yanagita M.The role of the vitamin K-dependent growth factor Gas6 in glomerular pathophysiology.Curr Opin Nephrol Hypertens 2004.13:465-470.
    [24]Arai H,Nagai K,Doi T.Role of growth arrest-specific gene 6 in diabetic nephropathy.Vitam Horm 2008.78:375-392.
    [25]Arai H,Nagai K,Doi T.Role of growth arrest-specific gene 6 in diabetic nephropathy.Vitam Horm 2008.78:375-392.
    [26]Brizzi MF,Dentelli P,Rosso A,Calvi C,Gambino R,Cassader M,Salvidio G,Deferrari G,Camussi G,Pegoraro L,Pagano G,Cavallo-Perin P.RAGE-and TGF-beta receptor-mediated signals converge on STATS and p21 war to control cell-cycle progression of mesangial cells:a possible role in the development and progression of diabetic nephropathy.FASEB J 2004.18:1249-1251.
    [27]Masson E,Wiernsperger N,Lagarde M,El Bawab S.Glucosamine induces cell-cycle arrest and hypertrophy of mesangial cells:implication of gangliosides.Biochern J 2005.388:537-544.
    [28]Raster C,Bondeva T,Franke S,Forster M,Wolf G.Advanced glycation end-products induce cell cycle arrest and hypertrophy in podocytes.Nephrol Dial Transplant 2008.[Epub ahead of print].
    [29]Xu ZG,Yoo TH,Ryu DR,Cheon Park H,Ha SK,Han DS,Adler SG,Natarajan R,Kang SW. Angiotensin II receptor blocker inhibits p27Kipl expression in glucose-stimulated podocytes and in diabetic glomeruli. Kidney Int 2005. 67:944-952.
    [30] Shechter P, Boner G, Rabkin R. Tubular cell protein degradation in early diabetic renal hypertrophy. J Am SocNephrol 1994. 4:1582-1587.
    [31] Liu BC, Sun J, Chen Q, Luo DD, Ma KL, Ruan XZ. Effect of irbesartan on angiotensin II-induced hypertrophy of human proximal tubular cells. Chin Med J (Engl) 2004. 117:547-551.
    [32] Liu BC, Sun J, Chen Q, Ma KL, Ruan XZ, Phillips AO. Role of connective tissue growth factor in mediating hypertrophy of human proximal tubular cells induced by angiotensin II. Am JNephrol 2003. 23:429-437.
    [33] Fujita H, Omori S, Ishikura K, Hida M, Awazu M ERK and p38 mediate high-glucose-induced hypertrophy and TGF-beta expression in renal tubular cells. Am J Physiol Renal Physiol 2004. 286:F120-126.
    [34] Guo XH, Liu ZH, Dai CS, Li H, Liu D, Li LS. Rhein inhibits renal tubular epithelial cell hypertrophy and extracellular matrix accumulation induced by transforming growth factor beta1. Acta Pharmacol Sin 2001. 22:934-938.
    [35] Guh JY, Yang ML, Yang YL, Chang CC, Chuang LY. Captopril reverses high-glucose-induced growth effects on LLC-PK1 cells partly by decreasing transforming growth factor-beta receptor protein expressions. J Am Soc Nephrol 1996. 7:1207-1215.
    [36] Huang HC, Preisig PA. G1 kinases and transforming growth factor-beta signaling are associated with a growth pattern switch in diabetes-induced renal growth. Kidney Int 2000. 58:162-172.
    [37] Sebekova K, Schinzel R, Ling H, Simm A, Xiang G, Gekle M, Munch G, Vamvakas S. Heidland A Advanced glycated albumin impairs protein degradation in the kidney proximal tubules cell line LLC-PK1. Cell Mol Biol (Noisy-le-grand) 1998. 44:1051-1060.
    [38] Schenk O, Ling H, Sebekova K, Vamvakas S, Heidland A. High-glucose media enhance the responsiveness of tubular cells to growth promoters: effect on lysosomal cathepsins and protein degradation. Miner Electrolyte Metab 1998. 24:254-260.
    [41] Kato M, Yuan H, Xu ZG, Lanting L, Li SL, Wang M, Hu MC, Reddy MA, Natarajan R. Role of the Akt/FoxO3a pathway in TGF-beta1-mediated mesangial cell dysfunction: a novel mechanism related to diabetic kidney disease. J Am Soc Nephrol 2006. 17:3325-3335.
    [42] Sharma K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 1995. 44:1139-1146.
    [43] Oh JH, Ha H, Yu MR, Lee HB. Sequential effects of high glucose on mesangial cell transforming growth factor-beta 1 and fibronectin synthesis. Kidney Int 1998. 54:1872-1878.
    [44] Riser BL, Denichilo M, Cortes P, Baker C, Grondin JM, Yee J, Narins RG. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol 2000. 11:25-38.
    [45] Lee GT, Ha H, Jung M, Li H, Hong SW, Cha BS, Lee HC, Cho YD. Delayed treatment with lithospermate B attenuates experimental diabetic renal injury. J Am Soc Nephrol 2003. 14:709-720.
    [46] Lee HS, Moon KC, Song CY, Kim BC, Wang S, Hong HK. Glycated albumin activates PAI-1 transcription through Smad DNA binding sites in mesangial cells. Am J Physiol Renal Physiol 2004. 287:F665-672.
    [47] Murphy M, Godson C, Cannon S, Kato S, Mackenzie HS, Martin F, Brady HR. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells. J Biol Chem 1999. 274:5830-5834.
    [48] Weston BS, Wahab NA, Mason RM. CTGF mediates TGF-beta-induced fibronectin matrix deposition by upregulating active alpha5betal integrin in human mesangial cells. J Am Soc Nephrol 2003. 14:601-610.
    [49] Makino H, Mukoyama M, Sugawara A, Mori K, Suganami T, Yahata K, Fujinaga Y, Yokoi H, Tanaka I, Nakao K. Roles of connective tissue growth factor and prostanoids in early streptozotocin-induced diabetic rat kidney: the effect of aspirin treatment. Clin Exp Nephrol 2003. 7:33-40.
    [49] McLennan SV, Death AK, Fisher EJ, Williams PF, Yue DK, Turtle JR. The role of the mesangial cell and its matrix in the pathogenesis of diabetic nephropathy. Cell Mol Biol (Noisy-le-grand) 1999.45:123-135.
    [50] Singh R, Alavi N, Singh AK, Leehey DJ. Role of angiotensin II in glucose-induced inhibition of mesangial matrix degradation Diabetes 1999. 48:2066-2073.
    [51] Leehey DJ, Singh AK, Alavi N, Singh R. Role of angiotensin II in diabetic nephropathy. Kidney Int Suppl 2000. 77:S93-98.
    [52] Hong SW, Isono M, Chen S, Iglesias-De La Cruz MC, Han DC, Ziyadeh FN. Increased glomerular and tubular expression of transforming growth factor-beta1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse. Am J Pathol 2001. 158:1653-1663.
    [53] McLennan SV, Wang XY, Moreno V, Yue DK, Twigg SM. Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy. Endocrinology 2004. 145:5646-5655.
    [54] McLennan SV, Kelly DJ, Schache M, Waltham M, Dy V, Langham RG, Yue DK, Gilbert RE. Advanced glycation end products decrease mesangial cell MMP-7: a role in matrix accumulation in diabetic nephropathy? Kidney Int 2007. 72:481-488.
    [55] Singh R, Song RH, Alavi N, Pegoraro AA, Singh AK, Leehey DJ. High glucose decreases matrix metalloproteinase-2 activity in rat mesangial cells via transforming growth factor-beta1. Exp Nephrol 2001. 9:249-257.
    [56] McLennan SV, Wang XY, Moreno V, Yue DK, Twigg SM. Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy Endocrinology 2004. 145:5646-5655.
    [57] Ding HL, Guo Y, Xu MT, Li HY, Fu ZZ. Effect of angiotensin II receptor blocker on glucose-induced mRNA expressions of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat mesangial cells. Chin Med J (Engl) 2007. 120:1886-1889.
    [58] Bai Y, Wang L, Li Y, Liu S, Li J, Wang H, Huang H. High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes. Cell Physiol Biochem 2006. 17:57-68.
    [59] Jones SC, Saunders HJ, Pollock CA. High glucose increases growth and collagen synthesis in cultured human tubulointerstitial cells. Diabet Med 1999. 16:932-938.
    [60] Sharma K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 1995. 44:1139-1146.
    [61] Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int 1999. 56:1627-1637.
    [62] Phillips A. The role of proximal tubular cells in interstitial fibrosis: understanding TGF-beta1. Chang Gung Med J 2007. 30:2-6.
    [63] Wang S, Denichilo M, Brubaker C, Hirschberg R. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Kidney Int 2001. 60:96-105.
    [64] Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol 2003. 23:532-543.
    [65] Schenk O, Ling H, Sebekova K, Vamvakas S, Heidland A. High-glucose media enhance the responsiveness of tubular cells to growth promoters: effect on lysosomal cathepsins and protein degradation. Miner Electrolyte Metab 1998. 24:254-260.
    [66] Suzuki D, Miyazaki M, Jinde K, Koji T, Yagame M, Endoh M, Nomoto Y, Sakai H. In situ hybridization studies of matrix metalloproteinase-3, tissue inhibitor of metalloproteinase-1 and type IV collagen in diabetic nephropathy. Kidney Int 1997. 52:111-119.
    [67] Ina K, Kitamura H, Tatsukawa S, Takayama T, Fujikura Y, Shimada T. Transformation of interstitial fibroblasts and tubulointerstitial fibrosis in diabetic nephropathy. Med Electron Microsc 2002. 35:87-95.
    [68] Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 2008. 4:39-45.
    
    [69] Guh JY, Huang JS, Chen HC, Hung WC, Lai YH, Chuang LY. Advanced glycation end product-induced proliferation in NRK-49F cells is dependent on the JAK2/STAT5 pathway and cyclin D1. Am J Kidney Dis 2001. 38:1096-1104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700