Urocortin在大鼠血栓闭塞性脉管炎中的作用和对COX-2表达的影响及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血栓闭塞性脉管炎(thromboangitis obilterans, TAO)是一种炎症性、闭塞性和周期发作的慢性周围血管病,多发于青壮年男性,主要侵犯四肢远端的中小动静脉,尤其是下肢血管,是青壮年男性肢体缺血及致残的主要原因之一。病理变化为血管壁节段性、非化脓性炎症伴腔内血栓形成,阻塞管腔引起肢体缺血、疼痛,呈周期性发作,最终引起肢端坏疽。目前只知TAO发病诱因为寒冻、吸烟以及性激素等,而其发病机理尚未完全阐明,还没有哪一种观点可以解释TAO的所有临床表现;同时该病的治疗方法和使用的药物不尽相同,疗效报道不一,仍为医学领域的难题之一。因此,探索TAO发病机理有着重大的理论与实际意义。
     Urocortin(Ucn)是一个40个氨基酸的多肽,属于促肾上腺皮质激素释放因子(corticotrophin-releasing factor, CRF)肽类家族。Ucn通过结合CRF受体(corticotrophin-releasing factor receptors, CRFRs)发挥多种生物学效应。近年来包括本实验室在内的研究表明,外周的Ucn作为一个自分泌或旁分泌的促炎因子参与很多炎性疾病,如风湿性关节炎、骨性关节炎、溃疡性结肠炎等。而且在很多炎症状态下,Ucn能促进炎性介质的释放,加重炎症。另外,Ucn还被报道参与了血管内皮功能紊乱。
     环加氧酶2 (cyclooxygenase-2, COX-2),作为一种参与花生四烯酸代谢的限速酶,被广泛报道参与各种炎症,包括血管炎症(动脉粥样硬化、TAO)。有研究表明,和正常人相比,TAO病人肱动脉内皮依赖性舒张能力下降了近50%,而选择性COX-2抑制剂则明显改善血管内皮功能。同时,Fiessinger等人多次临床病例对照试验结果也支持COX-2和TAO的关系。另一方面,近年来的很多文献支持Ucn和COX-2在炎症中的关系。Ucn能促进COX-2的表达从而参与了一系列的炎性疾病,如风湿性关节炎、血管炎等。而且,COX-2途径参与了Ucn诱导的炎症介质(如TNF-α、IL-6)的释放。更为重要的是,选择性COX-2抑制剂能取消Ucn引起的上述效应,缓解炎症。
     综上所述,鉴于TAO的血管炎本质和Ucn的促炎作用(包括参与血管内皮功能紊乱),我们推测Ucn与TAO可能有着非常密切的联系。那么究竟Ucn对TAO的发生发展有无影响?有何影响?COX-2是否参与了Ucn的上述作用?至今还未见报道。本文第一部分采用月桂酸钠注射大鼠股动脉复制TAO大鼠模型,研究Ucn、COX-2在TAO大鼠病变血管和血液中的表达,探索Ucn对TAO发生发展的影响,评价COX-2在TAO中的作用;第二部分利用体外分离培养的大鼠主动脉内皮细胞(RAECs),旨在细胞水平上研究Ucn对大鼠血管内皮炎症(LPS预先刺激造模)中COX-2表达的影响,并探讨相应受体和细胞内信号通路机制。
     第一部分Urocortin在大鼠血栓闭塞性脉管炎中的作用及对血管COX-2表达的影响
     目的:研究Ucn对大鼠TAO发生发展的影响,评价COX-2在TAO中的作用,探索TAO的发病机理。
     方法:月桂酸钠注射大鼠股动脉复制TAO动物模型,并以第十二天各组大鼠患肢的外观进行病变分级。H-E染色用来观察大鼠股动脉的形态学改变;大鼠的血液学指标(包括血常规、凝血和血液流变学指标)用于生化检测;ELISA用于检测血浆Ucn、TXB2和PGE2的水平;RT-PCR和Western blotting用于检测大鼠股动脉Ucn、CRFR1/2和COX-2的表达。
     结果:在造模后的第十二天大多数大鼠呈典型的TAO症状和体征。和假手术大鼠相比,TAO模型大鼠血液呈高凝状态,血浆内源性Ucn、PGE2水平显著升高,股动脉Ucn、CRFR1、CRFR1α和COX-2表达明显增加。给予外源性Ucn则进一步加重了高凝状态,促进了COX-2和PGE2的表达,恶化了TAO。Ucn的上述效应能被选择性CRFR1拮抗剂NBI-27914或非选择性CRFRs拮抗剂astressin阻断,然而选择性CRFR2拮抗剂antisauvagine-30则对Ucn组大鼠无明显作用。
     结论: Ucn能促进TAO大鼠血液高凝状态、COX-2的表达,加重脉管炎。上述作用是由CRFR1介导的。而血小板和COX-2可能是Ucn对TAO影响的潜在靶点。
     第二部分Urocortin对大鼠主动脉内皮细胞COX-2表达影响及机制的研究
     目的:研究Ucn对大鼠血管内皮炎症(LPS预先刺激造模)中COX-2表达的影响,并探讨相应的受体和细胞内信号通路机制。
     方法:大鼠主动脉内皮细胞(RAECs)的分离、培养和鉴定。实验均采用生长稳定的5-8代RAECs。RT-PCR和Western blotting分别用于检测COX-2 mRNA和蛋白的表达。ELISA用于检测细胞上清液中PGE2的含量;Western blotting检测MAPKs (p38MAPK、ERK1/2、JNK)、Akt和NF-κB的磷酸化水平;免疫荧光细胞化学法检测RAECs内NF-κB的核转位情况。
     结果:Ucn呈时间和浓度依赖性地增强LPS刺激下的RAECs中COX-2的表达;而且上调的COX-2 mRNA和蛋白分别在4h和8h达到峰值。Ucn的上述作用能被CRFR2拮抗剂antisauvagine-30完全阻断,而CRFR1拮抗剂NBI-27914却没有明显的作用。ELISA检测各组细胞上清液PGE2的结果也进一步证实了上述的发现。更为重要的是p38MAPK和NF-κB参与了RAECs上CRFR2介导的COX-2表达,而ERK1/2、JNK和Akt无明显改变。
     结论:Ucn通过CRFR2增强了LPS刺激下的RAECs中COX-2的表达从而参与了血管炎症,而且p38MAPK和NF-κB参与了CRFR2介导的上述效应。
     综上所述,本文工作的主要创新之处在于:
     1.整体实验揭示了Ucn对TAO大鼠血管炎有显著地促进作用,其机制与加重血液高凝和上调COX-2等相关,为探索TAO的发病机理积累了学术基础。
     2.离体实验表明Ucn上调了RAECs中COX-2的表达从而参与了血管炎症,其机制是由CRFR2介导的,与p38MAPK、NF-κB信号通路的激活相关,为血管炎症的药物治疗提供了新的靶标。
     3.整体和离体实验结果提示COX-2途径是Ucn参与血管炎症的重要机制之一。研究结果为血管炎症的防治提供了理论依据。
Thromboangiitis obliterans (TAO) is a nonatherosclerotic, segmental, inflammatory disease that most commonly affects the small and medium-sized arteries, veins and nerves of the extremities. In the characteristic acute phase lesion, in association with occlusive cellular thrombosis, the acute inflammation which involves all layers of the vessel wall leads TAO to be classified as a vasculitis. Cold, tobacco and sexual hormone are reported to have strong associations with TAO. However, the exact etiology for TAO has not been well defined. Furthermore, treatments of TAO are diverse while curative effects of TAO are controversial. Taken together, it is greatly necessary and meaningful to explore the mechanisms of TAO.
     Urocortin (Ucn), a 40 aa corticotropin-releasing factor (CRF) family peptide, has been demonstrated to be widely expressed in peripheral tissues including cardiovascular system, gastrointestinal tract, immune system, et al. Recently, Ucn has been considered to be a potent locally expressed autocrine or paracrine pro-inflammatory factor in a series of inflammatory diseases, such as rheumatoid arthritis & osteoarthritis and ulcerative colitis. Moreover, it can stimulate the release of pro-inflammatory mediators under inflammatory conditions. In addition, Ucn may have a negative impact on the normal function of ECs by suppressing vascularization.
     COX-2, the rate-limiting enzyme in metabolism of arachidonic acid, has been abundantly reported to take part in inflammatory diseases including artherosclerosis and TAO. In case-control studies, prostacycline derivatives have shown to be more effective than placebo for the therapy of. Moreover, blockade COX-2 could ameliorate capability of endothelium-dependent vasodilation of brachial arteroy in TAO patients. On the other hand, CRF family peptides could induce COX-2 expression under a series of inflammatory conditions, such as human arthritis, vasculitis and so on. Furthermore, COX-2 pathway is involved in regulation of Ucn-mediated pro-inflammatory cytokine productions, such as TNF-α, IL-6 and so on. COX-2 inhibitor application could abolish the above effects induced by Ucn. Taken together, CRF family peptides may participate in the pathophysiology of many inflammatory conditions via COX-2 pathway.
     Taken together, it is reasonable to believe that Ucn, which can be synthesized and secreted by systemic vasculature, may be a potent locally expressed pro-inflammatory factor in TAO, which is classified as a vasculitis with endothelial dysfunction. However, Ucn’s function on peripheral vasculitis and potential role in modulating TAO progression has rarely been illustrated. In this study, we investigated and first reported the role of Ucn in sodium laurate induced TAO rat model and COX-2 expression. Furthermore, we examined the effects of Ucn on COX-2 expression in lipopolysaccharide (LPS)-induced rat aortic endothelial cells (RAECs) and explore the relevant mechanisms.
     Part 1 Effects of urocortin on the development of vasculitis and COX-2 expression in thromboangiitis obliterans rat model
     Background and purpose: The present study was performed to examine the effects of Ucn on sodium laurate induced peripheral arterial occlusive disease in rats, exploring the mechanisms of thromboangiitis obliterans (TAO).
     Experimental approach: Sodium laurate induced peripheral vasculitic rat model was made. The degree of the disease on the 12th day was macroscopically graded. Histopathology and transmission electron microscopy observation were used to investigate the histological changes of rat femoral arteries. The parameters of blood routine, blood rheology, blood coagulation and plasma Ucn, TXB2 and PGE2 levels were measured. The expressions of Ucn, CRFR1/2 and COX-2 at both mRNA and protein levels were determined by RT-PCR and Western blotting.
     Key results: Most rats showed TAO signs and symptoms on the 12th day after sodium laurate injection. In model group, the blood was in a hypercoagulable state; plasma Ucn and PGE2 levels were elevated; and the expressions of Ucn, CRFR1, CRFR1αsubtype and COX-2 from rat femoral arteries were markedly increased. Ucn application aggravated the hypercoagulable state and augmented COX-2 expression. Furthermore, these effects could be abolished by CRFR1 antagonist, NBI-27914, or nonselective CRFRs antagonist, astressin, while CRFR2 antagonist, antisauvagine-30, could not influence these effects of Ucn. Conclusion and implications: These findings suggest that Ucn can aggravate the hypercoagulable state and vasculitis in sodium laurate induced TAO model rats via CRFR1. COX-2 may participate in this aggravating process.
     Part 2 Urocortin induced COX-2 expression via corticotrophin releasing factor type 2 receptor in rat aortic endothelial cells
     Background and purpose: The present study was performed to examine the effects of Ucn on COX-2 expression in lipopolysaccharide (LPS)-induced rat aortic endothelial cells (RAECs) and explore the relevant mechanisms.
     Experimental approach: RAECs were isolated from adult male Wistar rats and identified at the first passage. Experiments were performed on cells at passages 5 through 8 from primary culture. The expression of COX-2 at both mRNA and protein levels were determined by semi-quantitative RT-PCR and Western blotting analysis. Levels of PGE2 in culture medium were measured by ELISA. Furthermore, phosphorylation status of p38MAPK, ERK1/2, JNK, Akt and NF-κB was analyzed by Western blotting; nuclear translocation of NF-κB was observed by immunofluorescence.
     Key results: Ucn augmented LPS-induced RAECs COX-2 expression in a time- and concentration-dependent manner. Ucn application increased PGE2 levels. These effects could be abolished by CRFR2 antagonist, antisauvagine-30, but not by CRFR1 antagonist, NBI-27914. Moreover, Ucn2 application activated p38MAPK and augmented NF-κB nuclear translocation while ERK1/2, JNK and Akt pathways were not involved in this process.
     Conclusions and implications: These findings suggest that Ucn exerted a pro-inflammatory function by augmenting LPS-induced RAECs COX-2 expression via CRFR2, in which p38MAPK and NF-κB pathways were involved.
     The major contributions of the present study lie in:
     1. The in vivo study suggests that Ucn can aggravate the hypercoagulable state and vasculitis in sodium laurate induced TAO model rats via CRFR1. COX-2 may participate in this aggravating process. These works provide a novel mechanism for the development of TAO.
     2. The in vitro study suggests that Ucn exerts a pro-inflammatory function by augmenting LPS-induced RAECs COX-2 expression via CRFR2, in which p38MAPK and NF-κB pathways were involved. Targeting CRFR2 may be a novel approach to treat vasculitis.
     3. Taken together, the in vivo and in vitro studies strongly indicate that COX-2 is one of the important target of Ucn’participating in vasculitis, which provides a therapeutic approach for vasculitis.
引文
[1] Fiessinger JN, Sch?fer M. Trial of iloprost versus aspirin treatment for critical limb ischaemia of thromboangiitis obliterans. The TAO study. Lancet,1990,335 (8689):555-557
    [2] Olin JW. Thromboangiitis obliterans (Buerger’s disease). N Engl J Med,2000, 343(12):864-869
    [3] Joras M, Poredos P, Fras Z. Endothelial dysfunction in Buerger's disease and its relation to markers of inflammation. Eur J Clin Invest,2006,36(6):376-382
    [4] Puéchal X, Fiessinger JN. Thromboangiitis obliterans or Buerger’s disease: challenges for the rheumatologist. Rheumatology,2007,46(2):192-199
    [5] Taher AT, Musallam KM, Khalil IM. Thromboangiitis obliterans and the inherited thrombophilias: does an association merit consideration? Blood Coagul Fibrinolysis,2009,20(3):223-224
    [6] Aso Y. Plasminogen activator inhibitor (PAI)-1 in vascular inflammation and thrombosis. Front Biosci,2007,12:2957-2966
    [7] Ruggeri ZM. The role of von Willebrand factor in thrombus formation. Thromb Res,2007,120:S5-9
    [8] Blanco-Rivero J, Balfagón G, Ferrer M. Orchidectomy modulates alpha2- adrenoceptor reactivity in rat mesenteric artery through increased thromboxane A2 formation. J Vasc Res,2006,43(1):101-108
    [9] Morel O, Morel N, Freyssinet JM, Toti F. Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses. Platelets,2008,19(1):9-23
    [10] Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R, Turnbull AV, Lovejoy D, Rivier C, Rivier J, Sawchenko PE, Vale W. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature, 1995,378(6654):287-292
    [11] Bale TL, Vale W. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol, 2004,44:525-557
    [12] Fekete EM, Zorrilla EP. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol, 2007,28(1):1-27
    [13] Inada Y, Ikeda K, Tojo K, Sakamoto M, Takada Y, Tajima N. Possible involvement of corticotropin-releasing factor receptor signaling on vascular inflammation. Peptides, 2009, 30(2):365-372
    [14] Saruta M, Takahashi K, Suzuki T, Torii A, Kawakami M, Sasano H. Urocortin 1 in colonic mucosa in patients with ulcerative colitis. J Clin Endocrinol Metab, 2004, 89(11):5352-5361
    [15] Theoharides TC, Donelan JM, Papadopoulou N, Cao J, Kempuraj D, Conti P. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci, 2004, 25(11):563-568
    [16] Wu Y, Xu Y, Zhou H, Tao J, Li S. Expression of urocortin in rat lung and its effect on pulmonary vascular permeability.J Endocrinol. 2006;189(1):167-178
    [17] Wu Y, Hu J, Zhang R, Zhou C, Xu Y, Guan X, Li S. Enhanced intracellular calcium induced by urocortin is involved in degranulation of rat lung mast cells. Cell Physiol Biochem, 2008,21(1-3):173-182
    [18] Bale TL, Giordano FJ, Hickey RP, Huang Y, Nath AK, Peterson KL, Vale WW, Lee KF. Corticotropin-releasing factor receptor 2 is a tonic suppressor of vascularization. Proc Natl Acad Sci USA,2002,99(11):7734-7739
    [19] Hao Z, Huang Y, Cleman J, Jovin IS, Vale WW, Bale TL, Giordano FJ. Urocortin2 inhibits tumor growth via effects on vascularization and cell proliferation. Proc Natl Acad Sci USA,2008,105(10):3939-3944
    [20] Wang J, Xu Y, Xu Y, Zhu H, Zhang R, Zhang G, Li S. Urocortin’s inhibition of tumor growth and angiogenesis in hepatocellular carcinoma via corticotrophin-releasing factor receptor 2. Cancer Invest, 2008,26(4):359-368
    [21] Yang C, Xu Y, Li S. Urocortin: A beneficial or detrimental agent to endothelium? Biochem Biophys Res Commun, 2008,371(3):345-349
    [22] Grignani G, Maiolo A. Cytokines and hemostasis. Haematologica, 2000,85(9):967-972
    [23] Fleisher-Berkovich S, Rimon G, Danon A. Modulation of endothelial prostaglandin synthesis by corticotropin releasing factor and antagonists. Eur J Pharmacol, 1998,353(2-3):297-302
    [24] Wu Y, Zhang R, Zhou C, Xu Y, Guan X, Hu J, Xu Y, Li S. Enhanced expression of vascular cell adhesion molecule-1 by corticotrophin-releasing hormone contributes to progression of atherosclerosis in LDL receptor-deficient mice. Atherosclerosis,2009,203(2):360-370
    [25] Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J, 1998,12(12): 1063-1073
    [26] Nizankowski R, Królikowski W, Bielatowicz J, Szczeklik A. Prostacyclin for ischemic ulcers in peripheral arterial disease. A random assignment, placebo controlled study. Thromb Res,1985,37(1):21-28
    [27] Cuccurullo C, Fazia ML, Mezzetti A, Cipollone F. COX-2 expression in atherosclerosis: the good, the bad or the ugly? Curr Med Chem, 2007, 14(15): 1595-1605
    [28] Cipollone F, Fazia ML. COX-2 and atherosclerosis. J Cardiovasc Pharmacol, 2006,47:S26-36
    [29] Szuba A, Cooke JP. Thromboangiitis obliterans -an update on Buerger’s disease.West J Med,1998,168(4):255-260
    [30] McEvoy AN, Bresnihan B, FitzGerald O, Murphy EP. Cyclooxygenase 2-derived prostaglandin E2 production by corticotropin-releasing hormone contributes to the activated cAMP response element binding protein content in rheumatoid arthritis synovial tissue. Arthritis Rheum, 2004,50(4):1132-1145
    [31] Tsatsanis C, Androulidaki A, Dermitzaki E, Gravanis A, Margioris AN. Corticotropin releasing factor receptor 1 (CRF1) and CRF2 agonists exert an anti-inflammatory effect during the early phase of inflammation suppressing LPS-induced TNF-alpha release from macrophages via induction of COX-2 and PGE2. J Cell Physiol, 2007,210(3):774-783
    [32] Kageyama K, Hanada K, Nigawara T, Moriyama T, Terui K, Sakihara S, Suda T. Urocortin induces interleukin-6 gene expression via cyclooxygenase-2 activity in aortic smooth muscle cells. Endocrinology, 2006,147(9):4454-4462
    [33] Siegle I, Klein T, Backman JT, Saal JG, Nüsing RM, Fritz P. Expression of cyclooxygenase 1 and cyclooxygenase 2 in human synovial tissue: differential elevation of cyclooxygenase 2 in inflammatory joint diseases. Arthritis Rheum, 1998,41(1):122-129
    [34] Zhang R, Li S. COX-2 as a novel target of CRF family peptides' participating in inflammation. Biochem Biophys Res Commun, 2009, 382(3):483-485
    [35] Ashida S, Ishihara M, Ogawa H, Abiko Y. Protective effect of ticlopidine onexperimentally induced peripheral arterial occlusive disease in rats. Thromb Res,1980,18(1-2):55-67
    [36] Murakami T, Sawada K, Taneda K, Hayashi M, Katsuura Y, Tanabe H, Kiyoki M, Araki H. Effect of isocarbacyclin methyl ester incorporated in lipid microspheres on experimental models of peripheral obstructive disease. Arzneimittelforschung, 1995,45(9):991-994
    [1] Olin JW. Thromboangiitis obliterans (Buerger’s disease). N Engl J Med,2000, 343(12):864-869
    [2] Puéchal X, Fiessinger JN. Thromboangiitis obliterans or Buerger’s disease: challenges for the rheumatologist. Rheumatology,2007,46(2):192-199
    [3] Taher AT, Musallam KM, Khalil IM. Thromboangiitis obliterans and the inherited thrombophilias: does an association merit consideration? Blood Coagul Fibrinolysis,2009,20(3):223-224
    [4] Ashida S, Ishihara M, Ogawa H, Abiko Y. Protective effect of ticlopidineonexperimentally induced peripheral arterial occlusive disease in rats. Thromb Res,1980,18(1-2):55-67
    [5] Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R, Turnbull AV, Lovejoy D, Rivier C, Rivier J, Sawchenko PE, Vale W. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin- releasing factor. Nature, 1995,378(6654):287-292
    [6] Fekete EM, Zorrilla EP. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol, 2007, 28(1):1-27
    [7] Bale TL, Vale W. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol, 2004,44:525-557
    [8] Inada Y, Ikeda K, Tojo K, Sakamoto M, Takada Y, Tajima N. Possible involvement of corticotropin-releasing factor receptor signaling on vascular inflammation. Peptides, 2009, 30(2):365-372
    [9] Yang C, Xu Y, Li S. Urocortin: A beneficial or detrimental agent to endothelium? Biochem Biophys Res Commun, 2008,371(3):345-349
    [10] Murakami T, Sawada K, Taneda K, Hayashi M, Katsuura Y, Tanabe H, Kiyoki M, Araki H. Effect of isocarbacyclin methyl ester incorporated in lipid microspheres on experimental models of peripheral obstructive disease. Arzneimittelforschung, 1995,45(9):991-994
    [11] Silver MJ, Hoch W, Kocsis JJ, Ingerman CM, Smith JB. Arachidonic acid causes sudden death in rabbits. Science,1974,183(129):1085-1087
    [12] Zarbock A, Ley K. The role of platelets in acute lung injury (ALI). Front Biosci, 2009, 14:150-158
    [13] Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J,1998,12(12):1063-1073
    [14] Nizankowski R, Królikowski W, Bielatowicz J, Szczeklik A. Prostacyclin for ischemic ulcers in peripheral arterial disease. A random assignment, placebo controlled study. Thromb Res,1985,37(1):21-28
    [15] Cuccurullo C, Fazia ML, Mezzetti A, Cipollone F. COX-2 expression in atherosclerosis: the good, the bad or the ugly? Curr Med Chem, 2007,14(15): 1595-1605
    [16] Fiessinger JN, Sch?fer M. Trial of iloprost versus aspirin treatment for critical limb ischaemia of thromboangiitis obliterans: the TAO study. Lancet, 1990,335(8689):555-557
    [17] Kohno M, Kawahito Y, Tsubouchi Y, Hashiramoto A, Yamada R, Inoue KI, Kusaka Y, Kubo T, Elenkov IJ, Chrousos GP, Kondo M, Sano H. Urocortin expression in synovium of patients with rheumatoid arthritis and osteoarthritis: relation to inflammatory activity. J Clin Endocrinol Metab, 2001,86(9):4344- 4352
    [18] Saruta M, Takahashi K, Suzuki T, Torii A, Kawakami M, Sasano H. Urocortin 1 in colonic mucosa in patients with ulcerative colitis. J Clin Endocrinol Metab, 2004,89(11):5352-5361
    [19] Theoharides TC, Donelan JM, Papadopoulou N, Cao J, Kempuraj D, Conti P. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci, 2004,25(11):563-568
    [20] Wu Y, Zhou H, Xu Y, Li S. Enhanced expression of urocortin in lung tissues of rats with allergic asthma. Biochem Biophys Res Commun,2006,341(2):532-540
    [21] Wu Y, Xu Y, Zhou H, Tao J, Li S. Expression of urocortin in rat lung and its effect on pulmonary vascular permeability. J Endocrinol, 2006,189(1):167-178
    [22] Wu Y, Hu J, Zhang R, Zhou C, Xu Y, Guan X, Li S. Enhanced intracellularcalcium induced by urocortin is involved in degranulation of rat lung mast cells. Cell Physiol Biochem,2008,21(1-3):173-182
    [23] Wu Y, Zhang R, Zhou C, Xu Y, Guan X, Hu J, Xu Y, Li S. Enhanced expression of vascular cell adhesion molecule-1 by corticotrophin-releasing hormone contributes to progression of atherosclerosis in LDL receptor-deficient mice. Atherosclerosis, 2009,203(2):360-370
    [24] Szuba A, Cooke JP. Thromboangiitis obliterans -an update on Buerger’s disease. West J Med,1998,168(4):255-260
    [25] Joras M, Poredos P, Fras Z. Endothelial dysfunction in Buerger's disease and its relation to markers of inflammation. Eur J Clin Invest,2006,36(6):376-382
    [26] Pfister SL. Role of platelet microparticles in the production of thromboxane by rabbit pulmonary artery. Hypertension,2004,43(2):428-433
    [27] Yokotani K, Murakami Y, Okada S, Hirata M. Role of brain arachidonic acid cascade on central CRF1 receptor-mediated activation of sympatho- adrenomedullary outflow in rats. Eur J Pharmacol, 2001,419(2-3):183-189
    [28] Bale TL, Giordano FJ, Hickey RP, Huang Y, Nath AK, Peterson KL, Vale WW, Lee KF. Corticotropin-releasing factor receptor 2 is a tonic suppressor of vascularization. Proc Natl Acad Sci USA, 2002, 99(11):7734-7739
    [29] Hao Z, Huang Y, Cleman J, Jovin IS, Vale WW, Bale TL, Giordano FJ. Urocortin2 inhibits tumor growth via effects on vascularization and cell proliferation. Proc Natl Acad Sci USA, 2008,105(10):3939-3944
    [30] Wang J, Xu Y, Xu Y, Zhu H, Zhang R, Zhang G, Li S. Urocortin’s inhibition of tumor growth and angiogenesis in hepatocellular carcinoma via corticotrophin- releasing factor receptor 2. Cancer Invest, 2008,26(4):359-368
    [31] Grignani G, Maiolo A. Cytokines and hemostasis. Haematologica, 2000,85(9): 967-972
    [32] Fleisher-Berkovich S, Rimon G, Danon A. Modulation of endothelial prostaglandin synthesis by corticotropin releasing factor and antagonists. Eur J Pharmacol, 1998,353(2-3):297-302
    [33] Strand V. Are COX-2 inhibitors preferable to non-selective non-steroidal anti-inflammatory drugs in patients with risk of cardiovascular events taking low-dose aspirin? Lancet,2007,370(9605):2138-2151
    [34] Cipollone F, Fazia ML. COX-2 and atherosclerosis. J Cardiovasc Pharmacol, 2006,47:S26-36
    [35] Napoli C, Ackah E, De Nigris F, Del Soldato P, D'Armiento FP, Crimi E, Condorelli M, Sessa WC. Chronic treatment with nitric oxide-releasing aspirin reduces plasma low-density lipoprotein oxidation and oxidative stress, arterial oxidation-specific epitopes, and atherogenesis in hypercholesterolemic mice. Proc N atl Acad Sci, 2002,99(19):12467-12470
    [36] Burleigh ME, Babaev VR, Yancey PG, Major AS, McCaleb JL, Oates JA, Morrow JD, Fazio S, Linton MF. Cyclooxygenase-2 promotes early atherosclerotic lection formation in ApoE2deficient and C57BL /6 mice. J Mol Cell Cardiol,2005,39(3):443-452
    [37] Pidgeon GP, Tamosiuniene R, Chen G, Leonard I, Belton O, Bradford A, Fitzgerald DJ. Intravascular thrombosis after hypoxia-induced pulmonary hypertension: regulation by cyclooxygenase-2. Circulation, 2004, 110(17): 2701-2707
    [38] Cathcart MC, Tamosiuniene R, Chen G, Neilan TG, Bradford A, O'Byrne KJ, Fitzgerald DJ, Pidgeon GP. Cyclooxygenase-2-linked attenuation of hypoxia- induced pulmonary hypertension and intravascular thrombosis. J Pharmacol Exp Ther,2008,326(1):51-58
    [39] McAdam BF, Catella-Lawson F, Mardini IA, Kapoor S, Lawson JA, FitzGeraldGA. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci U S A, 1999,96(1):272-277
    [40] McEvoy AN, Bresnihan B, FitzGerald O, Murphy EP. Cyclooxygenase 2-derived prostaglandin E2 production by corticotropin-releasing hormone contributes to the activated cAMP response element binding protein content in rheumatoid arthritis synovial tissue. Arthritis Rheum, 2004,50(4):1132-1145
    [41] Tsatsanis C, Androulidaki A, Dermitzaki E, Gravanis A, Margioris AN. Corticotropin releasing factor receptor 1 (CRF1) and CRF2 agonists exert an anti-inflammatory effect during the early phase of inflammation suppressing LPS-induced TNF-alpha release from macrophages via induction of COX-2 and PGE2. J Cell Physiol, 2007,210(3):774-783
    [42] Kageyama K, Hanada K, Nigawara T, Moriyama T, Terui K, Sakihara S, Suda T. Urocortin induces interleukin-6 gene expression via cyclooxygenase-2 activity in aortic smooth muscle cells. Endocrinology, 2006,147(9):4454-4462
    [43] Siegle I, Klein T, Backman JT, Saal JG, Nüsing RM, Fritz P. Expression of cyclooxygenase 1 and cyclooxygenase 2 in human synovial tissue: differential elevation of cyclooxygenase 2 in inflammatory joint diseases. Arthritis Rheum, 1998,41(1):122-129
    [44] Zhang R, Li S. COX-2 as a novel target of CRF family peptides' participating in inflammation. Biochem Biophys Res Commun, 2009, 382(3):483-485
    [45] Karalis K, Sano H, Redwine J, Listwak S, Wilder RL, Chrousos GP. Autocrine or paracrine inflammatory actions of corticotropinreleasing hormone in vivo. Science,1991,254(5030): 421-423
    [46] Webster EL, Lewis DB, Torpy DJ, Zachman EK, Rice KC, Chrousos GP. In vivo and in vitro characterization of antalarmin a nonpeptide corticotropin-releasinghormone (CRH) receptor antagonist: suppression of pituitary ACTH release and peripheral inflammation. Endocrinology,1996,137(12):5747-5750
    [47] Agelaki S, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. Infect Immun, 2002,70(11):6068-6074
    [48] Bamberger CM, Wald M, Bamberger AM, Ergün S, Beil FU, Schulte HM. Human lymphocytes produce urocortin, but not corticotropin-releasing hormone. J Clin Endocrinol Metab,1998,83(2):708-711
    [49] Baigent SM. Peripheral corticotropin-releasing hormone and urocortin in the control of the immune response. Peptides,2001,22(5):809-820
    [1] Bannerman DD, Goldblum SE. Endotoxin induces endothelial barrier dysfunction through protein tyrosine phosphorylation. Am J Physiol, 1997,273(1Pt1):L217-226
    [2] Fisher M. Injuries to the vascular endothelium: vascular wall and endothelial dysfunction. Rev Neurol Dis, 2008,5:S4-11
    [3] Little MA, Savage CO. The role of the endothelium in systemic small vessel vasculitis. Clin Exp Rheumatol,2008,26(3):S135-140
    [4] Tesfamariam B, DeFelice AF. Endothelial injury in the initiation and progression of vascular disorders. Vascul Pharmacol,2007,46(4):229-237
    [5] Raetz CR. Biochemistry of endotoxins. Annu Rev Biochem,1990,59:129-170
    [6] Munshi N, Fernandis AZ, Cherla RP, Park IW, Ganju RK. Lipopolysaccharide- induced apoptosis of endothelial cells and its inhibition by vascular endothelial growth factor. J Immunol,2002,168(11):5860-5866
    [7] Harari OA, Alcaide P, Ahl D, Luscinskas FW, Liao JK. Absence of TRAM restricts Toll-like receptor 4 signaling in vascular endothelial cells to the MyD88 pathway. Circ Res,2006,98(9):1134-1140
    [8] Fekete EM, Zorrilla EP. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol, 2007, 28(1):1-27
    [9] Inada Y, Ikeda K, Tojo K, Sakamoto M, Takada Y, Tajima N. Possible involvement of corticotropin-releasing factor receptor signaling on vascular inflammation. Peptides, 2009, 30(2):365-372
    [10] Saruta M, Takahashi K, Suzuki T, Torii A, Kawakami M, Sasano H. Urocortin 1 in colonic mucosa in patients with ulcerative colitis. J Clin Endocrinol Metab, 2004, 89(11):5352-5361
    [11] Theoharides TC, Donelan JM, Papadopoulou N, Cao J, Kempuraj D, Conti P. Mast cells as targets of corticotropin-releasing factor and related peptides. Trends Pharmacol Sci, 2004, 25(11):563-568
    [12] Wu Y, Xu Y, Zhou H, Tao J, Li S. Expression of urocortin in rat lung and its effect on pulmonary vascular permeability. J Endocrinol. 2006;189(1):167-178
    [13] Wu Y, Hu J, Zhang R, Zhou C, Xu Y, Guan X, Li S. Enhanced intracellular calcium induced by urocortin is involved in degranulation of rat lung mast cells. Cell Physiol Biochem, 2008,21(1-3):173-182
    [14] Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J, 1998,12(12): 1063-1073
    [15] Tsatsanis C, Androulidaki A, Dermitzaki E, Gravanis A, Margioris AN, Corticotropin releasing factor receptor 1 (CRF1) and CRF2 agonists exert an anti-inflammatory effect during the early phase of inflammation suppressing LPS-induced TNF-alpha release from macrophages via induction of COX-2 and PGE2. J Cell Physiol,2007,210(3):774-783
    [16] Gao L, Lu C, Xu C, Tao Y, Cong B, Ni X. Differential regulation ofprostaglandin production mediated by corticotropin-releasing hormone receptor type 1 and type 2 in cultured human placental trophoblasts. Endocrinology, 2008,149(6):2866-2876
    [17] Schmeck B, Brunsch M, Seybold J, Krüll M, Eichel-Streiber C, Suttorp N, Hippenstiel S. Rho protein inhibition blocks cyclooxygenase-2 expression by proinflammatory mediators in endothelial cells. Inflammation,2003,27(2):89-95
    [18] Kageyama K, Hanada K, Nigawara T, Moriyama T, Terui K, Sakihara S, Suda T. Urocortin induces interleukin-6 gene expression via cyclooxygenase-2 activity in aortic smooth muscle cells. Endocrinology,2006,147(9):4454-4462
    [19] Zhang R, Li S. COX-2 as a novel target of CRF family peptides' participating in inflammation. Biochem Biophys Res Commun, 2009, 382(3):483-485
    [20] Bale TL, Vale W. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol,2004,44:525-557
    [21] Bamberger CM, Wald M, Bamberger AM, Ergün S, Beil FU, Schulte HM. Human lymphocytes produce urocortin, but not corticotropin-releasing hormone. J Clin Endocrinol Metab,1998,83(2):708-711
    [22] Agelaki S, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. Infect Immun, 2002,70(11):6068-6074
    [23] Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol,2002,2(10):725-734
    [24] Ghosh S, Hayden MS. New regulators of NF-kappaB in inflammation. Nat Rev Immunol,2008,8(11):837-848
    [25] Bhat NR, Zhang P, Lee JC, Hogan EL. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitricoxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci,1998,18(5):1633-1641
    [26] Ojaniemi M, Glumoff V, Harju K, Liljeroos M, Vuori K, Hallman M. Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur J Immunol,2003,33(3):597-605
    [27] Jones BW, Heldwein KA, Means TK, Saukkonen JJ, Fenton MJ. Differential roles of Toll-like receptors in the elicitation of proinflammatory responses by macrophages. Ann Rheum Dis,2001,60: iii6-12
    [28] Kim WK, Hwang SY, Oh ES, Piao HZ, Kim KW, Han IO. TGF-beta1 represses activation and resultant death of microglia via inhibition of phosphatidylinositol 3-kinase activity. J Immunol,2004,172(11):7015-7023
    [29] Dermitzaki E, Tsatsanis C, Gravanis A, Margioris AN. Corticotropin-releasing hormone (CRH) induces Fas ligand production and apoptosis in PC12 cells via activation of p38 MAPK. J Biol Chem,2002,277(14):12280-12287
    [30] Sananbenesi F, Fischer A, Schrick C, Spiess J, Radulovic J. Mitogen-activated protein kinase signaling in the hippocampus and its modulation by corticotropin-releasing factor receptor 2: a possible link between stress and fear memory. J Neurosci,2003,23(36):11436-11443
    [31] Karteris E, Hillhouse EW, Grammatopoulos D. Urocortin II is expressed in human pregnant myometrial cells and regulates myosin light chain phosphorylation: pote potential role of the type-2 corticotropin-releasing hormone receptor in the control of myometrial contractility. Endocrinology, 2004,145(2):890-900
    [32] Moss AC, Anton P, Savidge T, Newman P, Cheifetz AS, Gay J, Paraschos S, Winter MW, Moyer MP, Karalis K, Kokkotou E, Pothoulakis C. Urocortin II mediates pro-inflammatory effects in human colonocytes viacorticotropin-releasing hormone receptor 2alpha. Gut,2007,56(9):1210-1217
    [33] Markovic D, Punn A, Lehnert H, Grammatopoulos DK. Intracellular mechanisms regulating corticotropin-releasing hormone receptor-2beta endocytosis and interaction with extracellularly regulated kinase 1/2 and p38 mitogenactivated protein kinase signaling cascades. Mol Endocrinol, 2008,22(3): 689-706
    [34] Schindler JF, Monahan JB, Smith WG. p38 pathway kinases as anti- inflammatory drug targets. J Dent Res,2007,86(9):800-811
    [35] Thalhamer T, McGrath MA, Harnett MM. MAPKs and their relevance to arthritis and inflammation. Rheumatology (Oxford),2008,47(4):409-414
    [36] Kageyama K, Suda T. Urocortin-related peptides increase interleukin-6 output via cyclic adenosine 5'-monophosphate-dependent pathways in A7r5 aortic smooth muscle cells. Endocrinology,2003,144(6):2234-2241
    [37] Huang M, Kempuraj D, Papadopoulou N, Kourelis T, Donelan J, Manola A, Theoharides T. Urocortin induces IL-6 release from rat cardiomyocytes through p38 MAP kinase, ERK and NF-{kappa}B activation. J Mol Endocrinol. 2009 DOI: 10.1677/JME-08-0120
    [38] Slominski A, Zbytek B, Zmijewski M, Slominski RM, Kauser S, Wortsman J, Tobin DJ. Corticotropin releasing hormone and the skin. Front Biosci, 2006,11: 2230-2248
    [39] Zhao J, Karalis KP. Regulation of nuclear factor-kappaB by corticotropin- releasing hormone in mouse thymocytes. Mol Endocrinol, 2002,16(11):2561- 2570
    [40] Moss AC, Anton P, Savidge T, Newman P, Cheifetz AS, Gay J, Paraschos S, Winter MW, Moyer MP, Karalis K, Kokkotou E, Pothoulakis C. Urocortin II mediates pro-inflammatory effects in human colonocytes via corticotropin-releasing hormone receptor 2alpha. Gut,2007,56(9):1210-1217
    [41] Chen CC. Signal transduction pathways of inflammatory gene expressions and therapeutic implications. Curr Pharm Des,2006,12(27):3497-3508
    [42] Chen CC, Chiu KT, Chan ST, Chern JW. Conjugated polyhydroxybenzene derivatives block tumor necrosis factor-alphamediated nuclear factor-kappaB activation and cyclooxygenase-2 gene transcription by targeting IkappaB kinase activity. Mol Pharmacol,2001,60(6):1439-1448
    [43] Chen CC, Rosenbloom CL, Anderson DC, Manning AM (1995). Selective inhibition of E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 expression by inhibitors of I kappa B-alpha phosphorylation. J Immunol,1995,155(7):3538-3545

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700