中国力学虚拟人颅骨系统研究及其在颌面骨缺损修复中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体骨骼肌肉个体间的差异性、多样性以及活体实验的局限性,使得关于人体生物特性的研究工作开展的十分困难。与此同时,随着医疗条件的改善,各种临床手术方法不断的涌现,如何有效的评价术后效果,成为当前相关领域生物医学研究者的重要研究工作。
     本文基于上海交通大学生命质量与机械工程研究所“中国力学虚拟人”重点项目以及三个与上海第九人民医院联合研究开发项目的支撑,在实现颌面“骨骼-肌肉”三维几何模型和力学模型的基础上,结合临床病例,将该模型应用于颌面外科手术领域,对不同颌面骨缺损的修复方法进行了手术仿真设计和生物力学评价。
     文中围绕研究在符合人体咀嚼周期生理状态的肌力与关节约束等边界条件下,人体颅骨的生物力学特性这一主题,构造了人体颅骨骨骼-肌肉的运动学仿真和有限元力学系统模型。采用NDI运动捕捉系统,获得仿真运动输入数据。利用颌面咀嚼三维运动学仿真和肌力优化算法验证,确定了有限元力学计算的边界条件。在咀嚼周期6个运动相下,对自然颅骨进行了有限元分析,并在该有限元力学系统模型基础上,对颌面骨缺损三种不同类型的修复方法(骨瓣移植修复、种植体修复和赝复体修复)进行了生物力学性能方面的分析和评价。本文的主要工作可以归纳为以下几点:
     1.基于CT和冷冻切片解剖图像数据的颅骨骨骼肌肉几何形态建模。为了更好的提取人体颅骨的轮廓线信息,采用图像分割和曲线逼近的方法,精确获取骨骼和肌肉轮廓信息(该轮廓线提取和建模方法已在SCI源期刊发表论文一篇),避免了轮廓信息的丢失,同时,缩短了建模时间。建立了根据解剖结构模块化的颅骨几何模型和10束肌肉几何模型。
     2.咀嚼运动中的运动力学仿真。采用肌力与肌小节长度和速度的关系方程,完成了咀嚼功能相关的10束肌肉的18束力学直线肌小节模型的构建问题。采用NDI运动捕捉系统测试获得仿真输入,构建下颌骨、颞下颌关节、18束肌肉和食物粒的运动学仿真系统模型。利用三维运动学仿真和基于咀嚼运动仿真的肌力优化算法确定了咀嚼周期状态下有限元计算的力学边界条件(肌力、关节力和牙合
Due to the variability, diversity of human musculoskeletal system and limitation of experiment condition in vivo, it is very difficult to develop researches on human body mechanical characteristics. At the same time, with improvement of medical condition, different clinical surgical methods occur, how to evaluate postoperative effect of these methods, becomes to an important task for relative medical scholars.
     This paper is based on the key project“mechanical virtual human of China”supported by National Natural Science Foundation, and three projects cooperated with Ninth People's Hospital. Firstly, the 3D geometrical model and mechanical model of skull system were built. Then, cooperated with clinical cases, it was applied into maxillofacial surgical fields, to study and evaluate the different repair methods bio-mechanically.
     In this paper, to research the biomechanical characteristics of human skull under the boundary conditions, the muscle force, bite force and joint force in the physiological status during masticatory period, a skull system are built. With the NDI motion capture system, motion data were obtained, inputted into the motion simulation. With 3D motion simulation and muscle force prediction algorithm, boundary conditions were defined. FEA of the natural maxillofacial bones under these boundary conditions at 6 phases during masticatory period, was calculated. Furthermore, under the same boundary conditions, three types of maxillofacial repair methods(bone graft, zygamic implant and prosthesis repair)were remodel and the stress states of which were also calculated.
引文
[1]Pesce Delfino V, De Marzo C, Prete A,et al. Biomechanical simulation model of the developmental morphology of the human skull. Further observations on the model construction. Boll Soc Ital Biol Sper, 1981, 57(20): 2011-7.
    [2]焦大宾, 吴文周, 杨桂通. 人头颅受撞击作用的力学分析. 中国生物医学工程学报, 1992, 11:141-149.
    [3]Ruan J S, Khalil T, King A L. Dynamic response of the human head to impact by three-dimensional finite element analysis. J Biomech Eng,1994, 116(1): 44-50.
    [4]宋锦良, 姜燕平, 王正国等. 颅脑受撞击时的动态光弹性应力分析. 实验力学, 1998, 13 :277-282.
    [5]Bandak FA, Vander Vorst MJ, Stuhmiller LM, et al. An imaging-based computational and experimental study of skull fracture: finite element model development. J Neurotrauma. 1995, 12(4): 679-88.
    [6]Krabbel G, Appel H. Development of a finite element model of the human skull. J Neurotrauma.1995,12(4): 735-42.
    [7]Jinushi H, Suzuki T, Naruse T, et al. A dynamic study of the effect on the maxillofacial complex of the face bow: analysis by a three-dimensional finite element method. Bull Tokyo Dent Coll. 1997,38(1): 33-41.
    [8]Remmler D, Olson L, Ekstrom R, et al. Pre-surgical CT/FEA for craniofacial distraction: I. Methodology, development, and validation of the cranial finite element model. Med Eng Phys. 1998,20(8): 607-19.
    [9]薄斌, 周树夏, 白西刚等. 用模态分析法建立人颅颌面骨骼系统动力学模型. 中华创伤杂志, 2000,16(12):716-719.
    [10]张彤, 刘洪臣, 王延荣等. 上颌骨复合体三维有限元模型的建立. 中华口腔医学杂志. 2000,35(5):374-376.
    [11] Gross MD, Arbel G, Hershkovitz I. Three-dimensional finite element analysis of the facial skeleton on simulated occlusal loading. J Oral Rehabil, 2001,28(7):684-34.
    [12] Lapeer RJ, Prager RW. Fetal head moulding: finite element analysis of a fetal skull subjected to uterine pressures during the first stage of labour. J Biomech. 2001, 34(9): 1125-33.
    [13]蒲放,樊瑜波,多田幸生. 基于体素的牙种植体及颌骨的有限元建模. 航天医学与医学工程. 2004,17(3):210-213.
    [14]何黎民,卢亦成,吴建国. 国人头颅三维有限元模型有效性检验. 生物医学工程与临床. 2005,9(6):320-324.
    [15]石白柱. 无牙上颌骨缺损种植修复优化设计的三维有限元分析[D]. 博士学位论文. 第四军医大学. 2004.
    [16] 张少锋 . 有限元法及其在 口腔 医 学 研究中 的 应用 . 国 外 医学 口腔 医学分册 . 1990,17(2):92-94.
    [17]宋文植, 毕文翔, 尹万忠. 全下颌种植覆盖义齿三维有限元模型的建立. 白求恩医科大学学报. 1998,24(4):389-389.
    [18]Carter R. The elastic properties of cortical mandibular bone. Doctoral dissertation, 1989:5-11.
    [19]Ashman RB, Van Buskirk WC. The elastic properties of a human mandible. Adv Dent Res, 1987,1(2):64-67.
    [20]Hart R T, Hennebel V V, Thongreda N, et al. Modeling the biomechanics of the mandible : A three-dimensional finite element study. J Biomech,1992,25(3):261-286.
    [21]夏荣, 赵云凤, 陈安玉. 全下颌种植固定义齿三维各向异性有限元模型的建立. 中国口腔种植学杂志. 1996,1(1):10-13.
    [22]周学军, 赵志河, 赵美英等. 下颌骨三维有限元模型的边界约束设计. 华西口腔医学杂志. 1999, 17(l):29-32.
    [23]夏荣. 有限元法及其进展(一). 中国口腔种植学杂志. 1997, 17: 96-100.
    [24]张少锋, 马轩祥, 欧阳官等. 种植全口义齿的应力分布特点. 实用口腔医学杂志. 1997,13(3):194-196.
    [25]骆小平, 欧阳官, 董研等. CT 扫描及 CAD 技术在建立无牙下颌骨及其全口义齿三维有限元模型中的应用研究. 实用口腔医学杂志. 1996,12(4):243-245.
    [26]骆小平, 欧阳官, 马轩祥等. 种植牙支持式下颌全口覆盖义齿的三维有限元分析. 生物医学工程学杂. 1998, 15(2):167-171.
    [27]刘路平, 由敬舜, 徐剑青等. 五种咬合情况下颞下颌关节负荷的三维有限元分析. 中华口腔医学杂志. 1994,29(6):368-371.
    [28]Hata Y, Watanable F, Fukuda, et al. Stress analysis of intramobile element by three-dimensional finite element. J Dent Res. 1992,71(3):117-125.
    [29]Meijier HJA, Staimans FJM, Steen MHA, et al. Location of implants in the interforminal region of the mandible and the consequences for the design of the superstructure. J Oral Rehabil. 1994,21(1):47-56.
    [30]Korioth TMP, Hannam AG. Deformation of the human mandible during simulated tooth clenching. J Dent Res. 1994,73(1):56-66.
    [31]Cattaneo PM, Dalstra M, Melsen B. The transfer of occlusal forces through the maxillary molars: a finite element study. Am J Orthod Dentofacial Orthop. 2003,123(4):367-73.
    [32] 赵志河 , 房兵 , 赵美英 . 颅面骨三维有限元模型的建立 . 华西口腔医学杂志 .1994,12(4):298-300.
    [33]熊亚茸, 陈新, 刘洪臣等. 种植体在上颌骨复合体应力的三维有限元分析.口腔颌面修复学杂志. 2002,3(1):8-11.
    [34]Koolstra JH, van Eijden TM. Three-dimensional dynamical capabilities of the human masticatory muscles. J Biomech.1999, 32(2): 145-52.
    [35]Andrews JG, Hay JG. Biomechanical considerations in the modeling of muscle function. Acta Morphol Neerl Scand.1983,21(3): 199-223.
    [36]Blanksma NG, van Eijden TM, van Ruijven LJ, et al. Electromyographic heterogeneity in the human temporalis and masseter muscles during dynamic tasks guided by visual feedback. J Dent Res. 1997,76(1): 542-51.
    [37]van der Helm FC, Veenbaas R. Modelling the mechanical effect of muscles with large attachment sites: application to the shoulder mechanism. J Biomech. 1991, 24(12): 1151-63.
    [38] Koolstra JH, van Eijden TM. Biomechanical analysis of jaw-closing movements. J Dent Res.1995,74(9): 1564-4.
    [39]Zajac FE. Understanding muscle coordination of the human leg with dynamical simulations. J Biomech. 2002,35(8): 1011-8.
    [40]Pigeon P, Yahia L, Feldman AG. Moment arms and lengths of human upper limb muscles as functions of joint angles. J Biomech. 1996, 29(10): 1365-70.
    [41]邱蔚六. 口腔颌面外科学(第三版). 北京:人民卫生出版社 1980,11.
    [42]Spiro RH, Strong EW, Shah JP. Maxillectomy and its classification. Head Neck. 1997, 19(4): 309-14.
    [43]Brown JS, Rogers SN, McNally DN, et al. A modified classification for the maxillectomy defect. Head Neck. 2000, 22(1): 17-26.
    [44]徐君伍. 口腔修复学. 北京:人民卫生出版社. 2000.
    [45]Taher AA. Reconstruction of gunshot wounds of the mandible. 128 cases treated by autogenous iliac crest bone grafts. J Craniomaxillofac Surg. 1990, 18(7): 310-4.
    [46]Hidalgo DA, Rekow A. A review of 60 consecutive fibula free flap mandible reconstructions. Plast Reconstr Surg. 1995, 96(3): 585-96.
    [47]Bassett CAL. Clinical implications of cell function in bone grafting. Clin Orthop. 1972,87:49-178.
    [48]Yonehara Y, Takato T, Harii K. Secondary lengthening of the reconstructed mandible using a gradual distraction technique--two case reports. Br J Plast Surg. 1998, 51(5): 356-8.
    [49]梁立民,柳春明. 牵张成骨技术在唇腭裂治疗中的应用. 中华口腔医学杂志, 2002, 37(6):478-479.
    [50]Tavakoli K, Stewart KJ, Poole MD. Distraction osteogenesis in craniofacial surgery: a review. Ann Plast Surg. 1998, 40(1): 88-99.
    [51]Zou S, Hu J, Wang D. Changes in the temporomandibular joint after mandibular lengthening with different rates of distraction. Int J Adult Orthodon Orthognath Surg. 2001, 16(3): 221-5.
    [52]Hromat KA. A problem concerning the partial maxillary prosthesis made of acrylic resin and their temporary solutions. Osterr Z Stomatol. 1953, 50(1): 44-50.
    [53]Tinel P, Patricot JM, Jars G. Obturating prosthesis after maxillary resection. Rev Odontostomatol Midi Fr. 1966, 24(4): 279-83.
    [54]Lorant JA, Roumanas E, Nishimura R. Restoration of oral function after maxillectomy with osseous integrated implant retained maxillary obturators. Am J Surg, 1994, 168(5): 412-4.
    [55]Tideman H, Samman N, Cheung LK. Immediate reconstruction following maxillectomy: a new method. Int J Oral Maxillofac Surg. 1993, 22(4): 221-5.
    [56]Roumanas ED, Nishimura RD, Davis BK. Clinical evaluation of implants retaining edentulous maxillary obturator prostheses. J Prosthet Dent. 1997,77(2): 184-30.
    [57]Watzinger F, Birkfellner W, Wanschitz F,et al. Placement of endosteal implants in the zygoma after maxillectomy: a cadaver study using surgical navigation. Plast Reconstr Surg. 2001,107(3): 659-67.
    [58]Weischer T, Schettler D, Mohr C. Titanium implants in the zygoma as retaining elements after hemimaxillectomy. Int J Oral Maxillofac Implants. 1997,12(2): 211-4.
    [59]赵铱民, 刘宝林, 赵军等. 种植杆卡式固位体在无牙颌上颌骨缺损修复中的应用. 实用口腔医学杂志, 1996, 12(1):44-47.
    [60]赵铱民, 刘宝林, 余绍明等. 应用种植体和磁性固位体修复全上颌骨缺失.中华口腔医学杂志. 1994,29(6):381.
    [61]Devlin H, Barker GR. Prosthetic rehabilitation of the edentulous patient requiring a partial maxillectomy. J Prosthet Dent.1992, 67(2): 223-7
    [62] Boyes-Varley JG, Howes DG, Lownie JF,et al. Surgical modifications to the Br?nemark zygomaticus protocol in the treatment of the severely resorbed maxilla: a clinical report. Int J Oral Maxillofac Implants. 2003, 18(2): 232-7
    [63] Malevez C, Daelemans P,Adriaenssens P,et al. Use of zygomatic implants to deal with resorbed posterior maxillae. Periodontol 2000. 2003; 33: 82-9
    [64]吴轶群,张志愿,张志勇. 颧种植体在上颌骨缺损重建中的应用探讨. 上海口腔医学. 2005,14(3):210-214.
    [65]陶凯, 毛天球, 陈富林等. 骨髓基质成骨细胞-松质骨基质复合人工骨皮下移植成骨作用的实验研究. 中华口腔医学杂志. 2002, 37(1):18-21.
    [66]熊建义,肖建德. 人工骨的研究进展. 中国矫形外科杂志. 2001, 8(5):488-491.
    [67]凌翔, 陶学金, 陈卫民等. 胶原与纳米磷酸三钙复合人工骨修复骨缺损的实验研究. 临床口腔医学杂志, 2003, 19(2):74-16.
    [68]何黎升, 戴毅敏, 毛天球等. 复合人工骨双重机制修复骨质缺损的实验研究.口腔颌面外科杂志. 2002, 12(3):220-222.
    [69]王大章. 正颌外科手术的并发症及其防治. 中华口腔医学杂志. 2005,40(1):16-18
    [70]Tepper G, Haas R, Zechner W, et al. Three-dimensional finite element analysis of implant stability in the atrophic posterior maxilla: a mathematical study of the sinus floor augmentation. Clin Oral Implants Res. 2002,13(6): 657-65.
    [71]Waite PD, Sastravaha P, Lemons JE. Biologic mechanical advantages of 3 different cranial bone grafting techniques for implant reconstruction of the atrophic maxilla. J Oral Maxillofac Surg. 2005,63(1): 63-7.
    [72]Nagasao T, Nakajima T, Kimura A, et al. The dynamic role of buttress reconstruction after maxillectomy. Plast Reconstr Surg. 2005,115(5):1328-40.
    [73]Davenport JC. Clinical and laboratory procedures for the production of a retentive silicone rubber obturator for the maxillectomy patient. Br J Oral Maxillofac Surg. 1984,22(5): 378-86.
    [74]赵铱民, 高元, 欧阳官. 硅橡胶阻塞器与新型磁性固位体用于伴有上颌骨缺损的无牙颌患者的修复. 实用口腔医学杂志. 1989, 5(4):199.
    [75]Matsumura H, Kawasaki K. Magnetically connected removable sectional denture for a maxillary defect with severe undercut: a clinical report. J Prosthet Dent. 2000, 84(1): 22-6.
    [76]周继林, 洪民. 颧区承力的发现及其应用. 中华口腔科杂志. 1982,12(4):209.
    [77]Reitemeier G, Eckstein H. Prosthodontic treatment after bilateral maxillary resection. Dtsch Stomatol. 1970, 20(6): 435-9.
    [78]Kirchner JA. Prosthetic replacement of bilateral maxillectomy. Otolaryngol Head Neck Surg.1980, 88(1): 37-9.
    [79]Shaker KT. A simplified technique for construction of an interim obturator for a bilateral total maxillectomy defect. Int J Prosthodont. 2000,13(2): 166-8.
    [80]Wood RH, Carl W. Hollow silicone abturators for patients after total maxillectomy. J Prosthet Dent.1977,38(6): 643-51.
    [81]周继林, 洪民, 刘洪臣. 颧颊翼咽鼻突义颌修复上颌骨大型缺损. 中华口腔医学杂志. 1986, 21:223-225.
    [82]Desjardins RP. Obturator prosthesis design for acquired maxillary defects. J Prosthet Dent, 1978,39(4):424-435.
    [83]Myers RE, Mitchell DL. A photoelastic study of stress induced by framework design in amaxillary resection. J Prosthet Dent, 1989,61(5):590-594.
    [84]Lyons KM, Beumer J 3rd. Caputo AA. Abutment load transfer by removable partial denture obturator frameworks in different acquired maxillary defects. J Prosthet Dent. 2005,94(3): 281-288.
    [85]Aramany MA, Drane JB. Effect of nasal extension sections on the voice quality of acquired cleft palate patients. J Prosthet Dent. 1972,27(2): 194-202.
    [86]Sharry J. Prospects for prosthodontics. J Prosthet Dent .1970, 23(2): 232-238.
    [87]Hammond J. Dental care of endentulous patients after resection of maxilla. Br Dent J, 1966,120:591-594.
    [88]Eskitascioglu G, Usumez A, Sevimay M, et al. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J Prosthet Dent. 2004,91(2): 144-50.
    [89]Koca OL, Eskitascioglu G, Usumez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent.2005, 93(1): 38-44.
    [90]庄天戈.CT 原理与算法.上海:上海交通大学出版社,1992.
    [91]章毓晋. 图像处理和分析. 北京:清华大学出版社,1999.
    [92]Adams R, Bischof L. Seeded region growing. IEEE Trans. on Pattern Anal. Mach. Intell. 1994, 16(6): 641-647.
    [93]Hyungjun P, Kwangsoo K. Smooth Surface Approximation to Serial Cross-Sections. J Comput Aided Des. 1996, 28(12): 995-1005.
    [94]Paul D. Curve and Surface Fitting with Splines. Oxford: Clarendon Press, 1993.
    [95]Faux I, Pratt M. Computational Geometry for Design and Manufacture. Ellis Horwood, Chichester, 1979.
    [96]胡瑞安. 计算机辅助几何设计.华中理工大学出版社.1989, 武汉.
    [97]Morris CB. The measurement of the strength of muscle relative to the cross-section. Res.Q. Am.Ass.Hlth phys. Educ.1988.19,295-333.
    [98]Ikai M, FukunagaTR. Calculation of muscle strength per unit cross-section area of human muscle by means of ultrasonic measurement. Int.Z.angew.Physical.1968.26,26-32.
    [99] 杨义勇 , 华超 , 王人成等 . 负重深蹲过程中下肢冗余肌肉力分析 . 清华大学学报,2004,44(11):1493-1496.
    [100]van Eijden TMG, Korfage JAM, Brugman P. Architecture of the human jaw-closing and jaw-opening muscles. The anatomical record. 1997,248:464-474.
    [101]van Eijden TM, Koolstra JH, Brugman P. Three-dimensional structure of the human temporalis muscle. Anat Rec.1996, 246(4): 565-72.
    [102]An KN, Kaufman KR, Chao EY. Physiological considerations of muscle force through the elbow joint. J Biomech. 1989, 22(11-12): 1249-56.
    [103]Seireg A, Arvikar RJ. A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. J Biomech. 1973,6(3): 313-26.
    [104]Jensen RH, Davy DT. An investigation of muscle lines of action about the hip: a centroid line approach vs the straight line approach. J Biomech. 1975, 8(2):103-10.
    [105]Hoek van Dijke GA, Snijders CJ, Stoeckart R,et al. A biomechanical model on muscle forces in the transfer of spinal load to the pelvis and legs. J Biomech. 1999, 32(9): 927-33.
    [106]Koolstra JH, van Eijden TM. A method to predict muscle control in the kinematically and mechanically indeterminate human masticatory system. J Biomech. 2001, 34(9): 1179-88.
    [107]Langenbach GE, Hannam AG. The role of passive muscle tensions in a three-dimensional dynamic model of the human jaw. Arch Oral Biol. 1999,44(7):557-73.
    [108]Dong F, Clapworthy G, Krokos M, et al. An anatomy based approach to human muscle modeling and deformation. IEEE Trans Visual Computer Graph. 2002, 154-170.
    [109]Stansfield BW, Nicol AC, Paul JP, et al. Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb. J Biomech. 2003, 36(7): 929-36.
    [110]Fernandez JW, Mithraratne P, Thrupp SF, et al. Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech Model Mechanobiol. 2004,2(3): 139-55.
    [111]Weijs WA, Hillen B. Relationship between the physiological cross-section of the human jaw muscles and their cross-sectional area in computer tomograms. Acta Anat .1984,118(3): 129-38.
    [112]van Eijden TM, Klok EM, Weijs WA, et al. Mechanical capabilities of the human jaw muscles studied with a mathematical model. Arch Oral Biol,1988, 33(11): 819-26.
    [113]Throckmorton GS, Finn RA, Bell WH. Biomechanics of differences in lower facial height. Am J Orthod. 1980,77(4): 410-20.
    [114]Finn RA, Throckmorton GS, Bell WH, et al. Biomechanical considerations in the surgical correction of mandibular deficiency. J Oral Surg.1980, 38(4): 257-64.
    [115]Carlsoo S. Nervous coordination and mechanical function of the mandibular elevators, and electromyographic study of the activity, and an anatomic analysis of the mechanics of the muscles. Acta Odontol Scand Suppl.1952,10(11): 1-132.
    [116]Gaspard M, Laison F, Mailland M. Architectural organization and texture of the masseter muscle in primates and man. J Biol Buccale.1973,1(1): 7-20.
    [117]Gaspard M, Laison F, Mailland M. Architectural organization and texture of the pterygoid muscles in man. J Biol Buccale. 1973, 1(4): 353-66.
    [118]Baron P, Debussy T. A biomechanical functional analysis of the masticatory muscles in man. Arch Oral Biol.1979,24(7): 547-53.
    [119]Van Eijden TM, Brugman P, Weijs WA, et al. Coactivation of jaw muscles: recruitment order and level as a function of bite force direction and magnitude. J Biomech.1990,23(5): 475-85.
    [120]Osborn JW, Baragar FA. Predicted pattern of human muscle activity during clenching derived from a computer assisted model: symmetric vertical bite forces. J Biomech.1985,18(8): 599-612.
    [121]Sellers WI, Crompton RH. Using sensitivity analysis to validate the predictions of a biomechanical model of bite forces. Ann Anat. 2004,186(1): 89-95.
    [122]Crowninshield RD. A physiologically based criterion for muscle force predictions on locomotion. Bull Hosp Jt Dis Orthop Inst. 1983, 43(2): 164-4.
    [123]May B, Saha S, Saltzman M. A three-dimensional mathematical model of temporomandibular joint loading. Clin Biomech. 2001,16(6): 489-95.
    [124]de Groot JH, Rozendaal LA, Meskers CG. Isometric shoulder muscle activation patterns for 3-D planar forces: A methodology for musculo-skeletal model validation Clin Biomech. 2004,19(8): 790-800.
    [125]李国珍,韩科.下颌运动轨迹描记仪对健康人各类下颌运动范围的定研究。中华口腔医学杂志,1993, 28( 3):140- 142.
    [126]武仲科,冯海兰. 计算机辅助口腔下颌运动的显示与处理系统.中国图像图形学报. 1998, 3(11): 941- 944.
    [127]Ogawa T, Koiano K, Scdtscgc T. Correlation between inclination of occlusal plane and masticatory movement. J Dent, 1998, 26( 2):105-112.
    [128]皮昕.口腔解剖生理学[M]. 北京:人民卫生出版社,1998.64.
    [129]Soudan K, Van Audekercke R, Martens M. Methods, difficulties and inaccuracies in the study of human joint kinematics and pathokinematics by the instant axis concept. Example: the knee joint. J Biomech. 1979,12(1): 27-33.
    [130]Blankevoort L, Huiskes R, de Lange A. Helical axes of passive knee joint motions. J Biomech. 1990, 23(12): 1219-29.
    [131]Bennett NG. A contribution to the study of the movements of the mandible. Journal of Prosthetic Dentistry. 1958, 8:41-54.
    [132]Gallo LM, Airoldi GB, Airoldi RL, et al. Description of mandibular finite helical axis pathways in asymptomatic subjects. J Dent Res. 1997,76(2): 704-7.
    [133]Koolstra JH, van Eijden TM. Influence of the dynamical properties of the human masticatory muscles on jaw closing movements. Eur J Morphol. 1996, 34(1): 11-8.
    [134]Koolstra JH, van Eijden TM. The jaw open-close movements predicted by biomechanicalmodeling. J Biomech.1997, 30(9): 943-50.
    [135]van Eijden TM, Koolstra JH, Brugman P. Architecture of the human pterygoid muscles. J Dent Res. 1995,74(8): 1489-95.
    [136]van Ruijven LJ, Weijs WA. A new model for calculating muscle forces from electromyograms. Eur J Appl Physiol Occup Physiol. 1990, 61(5-6): 479-85.
    [137]Winters, J.M., Stark, L., Muscle models: what is gained and what is lost by varying model complexity. Biol Cybern. 1987,55(6): 403-20.
    [138]Koolstra JH, van Eijden TM, Weijs WA, et al. A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J Biomech. 1988, 21(7): 563-76.
    [139]Flash T. The coordination of human movements: an experimentally confirmed mathematical model. J.Neuroscience, 1989, 5:1688.
    [140]Davy DT, Audu ML. A dynamic optimization technique for predicting muscle forces in the swing phase of gait. J Biomech. 1987, 20(2): 187-201.
    [141]Pedotti A, Krishnan V, et al. Optimization of muscle-force sequencing in human locomotion. Math Biosci. 1978,38:57-76.
    [142]杨福生. 高上凯. 生物医学信号处理. 高等教育出版社. 1989,5.
    [143]Loeb GE, Levine WS. Linking musculoskeletal mechanics to sensorimotor neurophysiology. In J.M,1990.
    [144]Winters SLY. Multiple muscle systems. NewYork: Springer-Verlag.165-181.
    [145]Loeb GE, Gans C. Electromyography for experimentalists. Chicago: University of Chicago Press.1986.
    [146]赵芳, 周兴龙. 人体材料力学. 北京: 北京体育大学出版社,1998,11.
    [147]Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am.1977,59(7): 954-62.
    [148]Dempster WT, Liddicoat RT. Compact bone as a non-isotropic material. Am J Anat.1952,91(3): 331-62.
    [149]Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech.1985, 18(5): 317-28.
    [150]Zannoni C, Mantovani R, Viceconti M. Material properties assignment to finite element models of bone structures: a new method. Med Eng Phys. 1998,20(10): 735-40.
    [151]van Reitbergen B. Mechanical behaviour and adaption of trabecular bone in relation to bone morphology. Wageningen:Ponsen and Looijen,1996.
    [152]Yomoda S, Hisano M, Amemiya K. The interrelationship between bolus breakdown, mandibular first molar displacement and jaw movement during mastication. J Oral Rehabil. 2004Feb; 31(2): 99-109.
    [153]Nagasao T, Kobayashi M, Tsuchiya Y, et al. Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models. J Craniomaxillofac Surg 2002, 30(3): 170-77.
    [154]Menicucci G, Lorenzetti M, Pera P, et al, Mandibular implant-retained overdenture: finite element analysis of two anchorage systems. Int J Oral Maxillofac Implants. 1998: 13(3): 369-76.
    [155]蒋友谅.非线性有限元法[M].北京:北京工业学院出版社,1988.
    [156]Bathe KJ. Finite element formulations for large deformation dynamic analysis .International Journal for Numerical Methods in Engineering. 1975,(9):353-386.
    [157]Lam WF, Morley CT. Arc-length method for passing limit points in structural calculation. Journal of structural engineering. 1992,118(1):169-185.
    [158]王杭,陈孟诗,田卫东.不同加载方式及咬合部位对下颌骨应力分布的影响. 四川大学学报(医学版). 2004,35(4):516-519.
    [159]Korioth TW; Romilly DP; Hannam AG.Three-dimensional finite element stress analysis of the dentate human mandible. Am J Phys Anthropol.1992, 88(1): 69-96.
    [160]Standlee JP, Caputo AA, Ralph JP. Stress trajectories within the mandible under occlusal loads. J Dent Res. 1977,56(11): 1297-1302.
    [161]Bajaj C. Tracing surface intersections. Computer Aided Geometric Design, 1988, 4(1):3-16.
    [162]Patrikalakis NM. Surface-to-surface intersections. IEEE Computer Graphics and Applications, 1993,13(1):21-32
    [163]Lerner T. An analysis of quality of life for the maxillectory patients. Papers collection of 1st International congress on maxillofacial Prosthetics. Los Angeles: America Maxillofacial Prosthetic Association. 1994: 6.
    [164]Farah JW, Craig RG, Sikarskie DL. Photoelastic and finite element stress analysis of a restored axisymmetric first molar. J Biomech. 1973, 6(5):511-20.
    [165]Thresher RW, Saito GE. The stress analysis of human teeth. J. Biomech. 1973 6(5):443-9.
    [166]徐秉业,罗学富译.接触力学.高等教育出版社.
    [167]何君毅,林祥都.工程技结构非线性问题的数值解法.国防工业出版社.1994.8.
    [168]Smetana, Z. The solution of contact problems with the aid of contact integral equations. Computers and Structures. 2000, 78(3) 63-72.
    [169]Falk H, Laurell L, Lundgren D. Occlusal force pattern in dentitions with mandibular implant-supported fixed cantilever prostheses occluded with complete dentures. Int J Oral Maxillofac Implants. 1989, 4(1): 55-62.
    [170]Haraldson T. Carlsson GE. Bite force and oral function in patients with osseointegrated oralimplants. Scand J Dent Res. 1977, 85(3): 200-8.
    [171] 赵 铱 民 , 刘 宝 林 , 安 燕 等 . 全 上 颌 骨 缺 失 的 功 能 性 修 复 . 华 西 口 腔 医 学 杂志,1995,13(4):251-254
    [172]洪流,周继林,洪民. 用力学原理分析义颌用颧区承力及颧区口内种植的作用. 口腔颌面修复学杂志, 2002,3(4):143-146.
    [173]Skalak R. Osseointegrated implants in clinical practice. J Oral Implantol. 1986, 12(3): 357-364.
    [174]陈勇,赵铱民,王一兵等. 无牙颌上颌骨一侧缺损不同种植修复设计的三维有限元应力分析. 实用口腔医学杂志. 2000,16(4):308-310.
    [175]Adell R, Eriksson B, Lekholm U, et al. Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants.1990,5(4): 347-59.
    [176]Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Branemark implants affecting interfacial bone modelling and remodelling. Int J Oral Maxillofac Implants. 1994,9:345–360.
    [177]Jones LC, Frondoza C, Hungerford DS. Effect of PMMA particles and movement on an implant interface in a canine model. J Bone Joint Surg Br 2001, 83(3): 448-58.
    [178]Wijaya SK, Oka H, Saratani K, et al. Development of implant movement checker for determining dental implant stability. Med Eng Phys. 2004, 26(6): 513-22.
    [179]Sato Y, Tsuga K, Abe Y. Dimensional measurement and finite clement analysis of 1- bar clasps in clinical use. J OraI Rchabi1. 2000, 27 (11): 935-939.
    [180]Pan S, Yin Y, Feng H. Three- dimensional finite element analysis and comparison of stress distribution in over-dentures supported with bar attachments and telescopic crowns. Chin J Dent Res. 1999, 2 (1): 21-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700