取代氟苯及其三明治配合物结构、键能及芳香性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟化物是一类重要的化合物,其数目庞大、种类繁多,一直是化学界令人感兴趣的研究课题之一。氟代苯等作为有机氟的基本原料越来越普遍地应用在染料、感光材料、航天等尖端技术,聚合材料以及农药和医药等方面,关于含氟化合物结构和性质的研究引起了人们极大的兴趣。但是关于氟代苯C6FmH6-m(m=1-6)的研究较少,C6Fm-H6-m(m=1-6)与过渡金属形成的半三明治、三明治的系统性理论研究未见报道。
     本文运用Gaussian03量子化学程序,采用密度泛函理论(DFT)的B3LYP/6-31 G(d,p)计算方法对氟代苯C6FmH6-m(m=1-6)及其铬半三明治和三明治配合物进行了几何结构优化、频率分析及键能分析。采用B3LYP-GIAO/6-31 ++ G(d,p)计算方法计算了所研究体系优化几何结构的NICS,并用NBO计算程序对不同空间点处各种化学键、各原子核对总NICS贡献进行了分解。
     对氟取代苯C6FmH6-m(m=1-6)进行结构和芳香性研究结果表明:所研究的氟代苯的基态均呈平面几何结构,其芳香性都较苯的大,且随取代F数目的增加而增大。用NBO对分子总NICS及各键对NICS的贡献进行了分解,结果显示,氟的pz孤对电子参与六元环π键的形成,是使氟代苯分子芳香性变大的主要原因。
     对半三明治配合物(η6-1,4-C6F2H4)Cr和(η6-C6F6)Cr研究结果表明:所研究的两个半三明治的基态稳定结构分别为C2v和C6v构型,均具有较强的中心芳香性、内芳香性及外芳香性,且其芳香性大于对应单环。半三明治芳香性的顺序是(η6-C6F6)Cr < (η6-1,4-C6F2H4)Cr<(η6-C6H6)Cr。芳香性主要来源于金属与配体间σ、π和δ三种相互作用。
     对三明治配合物(η6-C6F6)2Cr和(η6-1,4-C6F2H4)2Cr研究表明:两种三明治配合物的基态结构分别呈D6d和D2对称性,均为分步解离。同样有较强的中心芳香性、内芳香性及外芳香性。其芳香性大于对应的配体,小于对应的半三明治配合物。其芳香性的顺序为(η6-C6F6)2Cr<(η6-1,4-C6F2H4)2Cr<(η6-C6H6)2Cr,芳香性主要来源于金属与配体间σ、π和δ三种相互作用。
     对异层三明治配合物(η6-C6H6)Cr(η6-C6F6).(η6-C6H6)Cr(η6-1,4-C6F2H4)、和(η6-C6F6)Cr(η6-1,4-C6F2H4)的研究表明:三个三明治配合物的基态结构分别呈C6v(交错)、C1和C2v(交错)对称性,所研究的三明治均为分步解离,其中(η6-C6H6)Cr(η6-C6F6)C6v交错构型最稳定。配合物都具有较强的中心芳香性、内芳香性和较弱的外芳香性,且芳香性均比三种对应自由配体大,比对应半三明治配合物小。金属与配体间存在的σ、π和δ三种相互作用是芳香性变大的主要原因。
Fluoro-compounds is a kind of important compounds. It is always one of the attractive research topics, because of its huge numbers and various kinds.With the developments of dyes, photographic materials, spaceflight technologies, polymer materials, pesticides and medicine, etc, fluorobenz-ene and other fluorinated benzenes as the basic raw materials of organic fluorine are widely used, so people are interested in the nature of the fluorine-containing compounds. However, the systemic study of C6FmH6-m and its sandwich complexes (C6FmH6-m)2Cr(m=1-6) are few.
     These are calculated for the geometries, frequencies, bonding energies and NICS of C6FmH6-m and (C6FmH6-m)2Cr (m=1-6). All calculations are performed with Gaussian 03 program using DFT/B3LYP method. The geometries and frequencies are calculated with 6-31 G(d,p) basis set.The NICS are calculated with 6-31 ++ G(d,p) basis set. In order to study the total NICS distribution in ligand plane and the various bond NICS contributions, the total NICS has been dissected into NICS contributions of various bonds, cores, and lone pair electronics by NBO.
     The results, calculated the eguilibrium geometries, frequencies, bonding energies and aromaticities of C6FmH6-m(m=1-6), indicate that all fluorinated benzenes are more aromatic than benzene, and the aromaticity increases with the number of F in C6FmH6-m(m=1-6). The various dissected bond NICSs reveal that the pz lone pair electrons of F atoms play a dominant role in the aromaticity of C6FmH6-m(m=1-6), and participate in formation ofπcurrent of the hexagon.
     The results, studied the eguilibrium geometries, frequencies, bonding energies and aromaticities of (η6-C6F6)Cr, (η6-1,4-C6F2H4)Cr, indicate that the ground states of them are C6v, C2v symmetries, respectively. The complexes have central, inner, outer aromaticities which are more aromatic than C6F6, 1,4-C6F2H4, respectively. There are three types of interactions asσ,πandδbetween the ligands and metal. The aromatic order of the half-sandwiches is (η6-C6F6)Cr< (η6-1,4-C6F2H4)Cr< (η6-C6H6)Cr.
     The results, analyzed the eguilibrium geometries, frequencies, bonding energies and aromaticities of sandwiches (η6-C6F6)2Cr, (η6-1,4-C6F2H4)2Cr, indicate that the ground states of them are D6d, D2 symmetries, respectively. The complexes have central, inner, outer aromaticities which are more aromatic than C6F6,1,4-C6F2H4 and less than (η6-C6F6)Cr, (η6-1,4-C6F2H4)Cr respectively. There are three types of interactions asσ,πandδbetween the ligands and metal. The aromatic order of the sandwiches is (η6-C6F6)2Cr (η6-1,4-C6F2H4)2Cr< (η6-C6H6)2Cr.
     The eguilibrium geometries, frequencies, bonding energies and aromaticities of sandwiches (η6-C6H6)Cr(η6-C6F6), (η6-C6H6)Cr(η6-1,4C6F2H4) and (η6-C6F6)Cr(η6-1,4-C6F2H4) are analyzed. The results indicate that the ground states of them are C6v(staggered), C1, C2v(staggered) symmetries, respectively. (η6-C6H6)Cr(η6-C6F6) C6v (staggered) is the most stable. The complexes have central, inner, outer aromaticities which are more aromatic than the responding ligand, and less aromatic than the responding half sandwich compound. The aromaticity increases due to three types of interactions asσ,πandδbetween the ligands and metal.
引文
[1]刘子忠.单双核三明治配合物的结构、键能及芳香性的密度泛函研究[D].长春:吉林大学,2007.
    [2]封继康.什么是“芳香性”? 芳香性的定义、判据和无机芳香性化合物[J].分子科学学报,2005,21(4):1-11.
    [3]王文清.芳香性和非苯芳香化合物[M].北京:高等教育出版社,1985:135.
    [4]Iijima, S. Helical microtubules of graphitic carbon [J]. Nature.,1991,354:56.
    [5]Dewar, M. J. S.; Gleicher, G. J. Ground states of conjugated molecules. II. allowance for molecular geometry [J]. J. Am. Chem. Soc.,1965,87:685 and 692.
    [6]Sommerfeld, T. A Fresh Look at aromatic dianions [J]. J. Am. Chem. Soc.,2002,124:1119.
    [7]Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. Nucleus-independent chemical shifts:a simple and efficient aromaticity probe [J]. J. Am. Chem. Soc.,1996,118:6317.
    [8](a) Wannerev, C. S.; Corminboeuf, C.; Wang, Z. X.; Wodrich, M. D.; King, R. B.; Schleyer, P. v. R. Evidence for d orbital aromaticity in square planar coinage metal clusters [J]. J. Am. Chem. Soc. 2005,127:5701. (b) Corminboeuf, C.; Wannere, C. S.; Roy, D.; King, R. B.; Schleyer, P. v. R. Octahedral and tetrahedral coinage metal clusters:Is three-dimensional d-orbital aromaticity viable? [J]. J. Inorg. Chem.,2006,45:214.
    [9]周能.芳香性判据[J].玉林师范高等专科学校学报(自然科学),·2000,21(3):65-67.
    [10]Richard, V. W. Homoaromaticity [J]. Chem. Rev.2001,101:1185-1204.
    [11]Nancy, S. M.; Michelle, B. The aromaticity/antiaromaticity continuum [J]. J. Org. Chem.,2006,71: 2207-2213.
    [12]Ernesto, E.; Yaquelin, G. Modeling diamagnetic and magnetooptic properties of organic compounds with the TOSS-MODE approach [J]. J.Chem. Inf. Comput. Sci.,2000,40:1386-1399.
    [13]Schleyer, P. v. R.; Manoharan, M.; Wang, Z. X.; Kiran, B.; Jiao, H.; Puchta, R.; Hommes, N. J. R. v. Dissected nucleus-independent chemical shift analysis of π-aromaticity and antiaromaticity [J]. Org. Lett.2001,3:2465.
    [14]Poater, J.; Fradera, X.; Duran, M.; Sola, M. The delocalization index as an electronic aromaticity criterion. Application to a series of planar polycyclic aromatic hydrocarbons [J]. Chem. Eur. J 2003,9:400.
    [15]Corminboeuf, C.; Heine, T.; Schleyer, P. v. R.; Corminboeuf, C.; Seifert, G.; Reviakine, R.; Weber, J. In aromaticity, pseudoaromaticity, anti- aromaticity. Jerusalem:Israel academy of sciences and humanities [J]. J. Phys. Chem. A.,2003,107:6470.
    [16]Merino, G.; Heine, T.; Seifert, G. The induced magnetic field in cyclic molecules [J]. Chem. Eur. J.,2004,10:4367.
    [17]Johansson, M. P.; Juselius, J.; Sundholm, D. Sphere currents of buckminsterfullerene [J]. Angew. Chem., Int. Ed.,2005,44:1843-1846.
    [18]Cotton, F. A.; Curtis, N. F.; Harris, C. B. Mononuclear and polynuclear chemistry of rhenium (Ⅲ): Its pronounced homophilicity [J]. Science.,1964,145:1305-1307.
    [19]Cotton, F. A.; Murillo, C. A.; Walton, R. A. Multiple bonds between metal atoms,3rd ed [M]. New York:Springer,2005.
    [20]Nguyen, T.; Sutton, A. D.; Brynda, M. Synthesis of a stable compound with fivefold bonding between two chromium (Ⅰ) centers [J]. Science.,2005,310:844-847.
    [21]Zhai, H. J.; Averkiev, B. B.; Zubarev, D. Y.8 Aromaticity in [Ta3O3]- [J]. Angew Chem Int Ed., 2007,46:4277-4280.
    [22]Sommerfeld, T. A Fresh Look at aromatic dianions [J]. Am. Chem. Soc.,2002,124:1119.
    [23]Kroto, H. W.; Heath, J. R. C60:Buckminsterfullerene [J]. Nature.,1985,31:162.
    [24]Buhl, M.; Hirsch A. Spherical aromaticity of fullerenes [J]. Chem. Rev.,2001,101:53.
    [25]陈克潛.芳香性化学的现状[J].化学通报,1964(5):21.
    [26]唐海忠.芳香性的本质[J].大学化学,1991(6):23.
    [27]Schleyer, P. v. R. Introduction aromaticity [J]. Chem. Rev.,2001,101:1115.
    [28]Katritzky, A. R.; Karelson, M. S. Aromaticity as a quantitative concept. Aromaticity as a multidimensional characteristic [J]. Org. Chem.,1998,63:5228.
    [29]Cyranski, M.K.; Schleyer, P. V. R.; Krygowski, T. M. Facts and Artifacts about Aromatic Stability Estimation [J]. Tetrahedron.,2003,59:1657.
    [30]Schleyer, P. V. R.; Najafian, K.; Kiran, B. Nuclear magnetic resonance shielding tensors calculated with a sum-over-states density functional perturbation theory [J]. Org. Chem.,2000,65:426.
    [31]梁诚.芳香族含氟中间体合成技术进展[J].有机氟工业,2007(1):26-34.
    [32]徐国耀.特殊的化学领域-有机氟化学[J].化工生产与技术;1994(3):1-6.
    [33]Laali, K. K.; Gettwert, V. J. Electrophilic nitration of aromatics in ionic liquid solvents [J]. J. Fluo rine. Chem.,2001,107:31-34
    [34]朱利民,宁斌科,王列平,闫潇敏.芳香族氟化物的合成方法研究进展[J].化学与合成,2008(4):58-61.
    [35]张一宾,钱跃言.含氟农药的结构、特性及研究开发概况[J].江苏化工,2002(3): 5-10.
    [36]李汝麟,付立民,白家兴.芳香族氟化物中间体的发展动态[J].辽宁化工,1992(2): 1-7.
    [37]江镇海.含氟农药及其中间体市场发展前景[J].有机氟工业,2010(4):46-49.
    [38]李大志.我国氟化工现状及发展方向[J].有机氟工业,2009(1):28-32.
    [39]Fowler, P. W.; Steiner, E. Ring Currents and Aromaticity of monocyclic π-electron systems C6H6, B3N3H6, B3O3H3, C3N3H3, C5H5-, C7H7+, C3N3F3, C6H3F3, and C6F6 [J]. J. Phys. Chem. A.,1997, 101:1409.
    [40]Okazaki, T.; Laali, K. K. Intermediates of halogen addition to phenylethynes and protonation of phenylethynyl halides. Open halovinyl cations, bridged halonium, or phenyl-bridged ions:A substituent effect study by DFT and GIAO-DFT [J]. Org. Biomol. Chem.,2006,4:3085.
    [41]Judy, I. Wu.; Frank, G. The effect of perfluorination on the aromaticity of benzene and heterocyclic six-membered rings [J]. J. Phys. Chem. A.,2009,113:6789.
    [42]Middleton, R.; Hull, J. R.; Simpson, S. R.; Tomlinson, C. H.; Timms, P. L. Organometallic deriva-tives of the transition elements. Ⅰ. Carbon-13 nuclear magnetic resonance studies of bis(arene)chr omium(O) compounds [J]. J. Chem. Soc. Dalton Trans.,1973,120:115.
    [43]Graves, V.; Lagowski, J. Organometallic derivatives of the transition elements. Ⅰ. carbon-13 nuclea-r magnetic resonance studies of bis(arene)chromium(O) compounds [J]. J. Inorg. Chem.,1976,15. 577.
    [44]Muetterties, E. L.; Bleeke, J. R.; Wucherer, E. J.; Albright, T. A. Structural, stereochemical and electronic features of arene-metal complexes [J]. Chem. Rev.,1982,82:499.
    [45]Doina, C.; Gregory, K.; Koyanagi.; Diethard, K. Gas-Phase reactions of transition-Metal ions with hexafluorobenzene:Room-Temperature kinetics and periodicities in reactivity [J]. J. Phys. Chem. A.,2004,108:978-986.
    [46]Steed, J. M.; Dixon, T. A.; Klemperer, W. Determination of the structure of ArCO2 by radio freque-ncy and microwave spectroscopy [J]. J. Chem. Phys.,1979,70:4940.
    [47]Bartsch, E.; Bertagnolli, H.; Chieux, P. A neutron and x-ray diffraction study of the binary liquid aromatic system benzene-hexafluorobenzene [J]. Ber. Bunsen-Ges. Phys. Chem.,1986,90:34.
    [48]Lorenzo, S.; Lewis, G. R.; Dance, I. Supramolecular potentials and embraces for fluorous aromatic molecules [J]. New J. Chem.,2000,24:295.
    [49]Hernandez-Trujillo, J.; Colmenares, F.; Cuevas, G.; Costas, M. MP2 ab initio calculations of the he-xafluorobenzene-benzene and -monofluorobenzene complexes [J]. Chem. Phys. Lett.,1997,265: 503.
    [50]Ibon, A.; David, Q.; Carolina, G.; Antonio, F.; Jose, E.; Pere, M. D. Cation-π and anion-π interacti-ons [J]. J. Phys. Chem. A.,2007,111:3137-3142
    [51]Mukhopadhyay, S.; Bhattacharyya, K,; Pathak, R. K. Wilson-Sommerfeld quantization rule revisited [J]. International Journal of Quantum Chemistry.,2001,82:113-125
    [52]王志中.计算方法[M].长春:吉林大学出版社,1998,32.
    [53]Jones, R. O.; Gunnarsson, O. The density functional formalism. [J]. Rev Mod Phys.,1989,12:689.
    [54]时圣刚.二元过渡金属团簇的结构、键能及芳香性的理论研究[D].长春:吉林大学,2007.
    [55]Frisch, A.; Michael, J.; Frisch, G. W. Gaussian03用户手册 [M].2004.32-37.
    [56]Liu, P.; Goddard, J. D.; Arsenault, G.; Gu, J.; McAlees, A.; McCrindle, R.; Robertson, V. Theoreti-cal studies of the conformations and 19F NMR spectra of linear and a branched perfluorooctanesulf-onamide (PFOSAmide) [J]. Chemosphere.,2007,69:1213-1217.
    [57]Liu, Z. Z; Goddard, J. D. Predictions of the Fluorine NMR Chemical Shifts of Perfluorinated Car-boxylic Acids, CnF2n+1COOH (n=6-8) [J]. J. Phys, Chem. A.,2009,113:13921-13931.
    [58]Duane, E; Williams, M. B.; Wang, B; Kenneth, M. MNDO parameters for the prediction of 19F NMR chemical shifts in biologically relevant compounds [J]. J. Phys. Chem. A.,2008,112:8829-8838.
    [59]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B.,1992,46:6671.
    [60]Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. QCPE. Bull.1990,10:58.
    [61]Gaussian03, RevisionB.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; lyengar, S. S.; Tomasi, J.; Barone, V.; Cossi; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakat suji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; H-onda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Ad-amo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Po-melli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannen- berg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Ra buck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Cliffo -rd, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L. Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc., Wallingford CT,2004.
    [62]翁兴媛,董庆国.氟苯的合成与应用[J].辽宁工程技术大学学报,2003,(22):138.
    [63]Michael, E. H.; Michaael, L.; Alexander, A. A. Quantitative prediction of gas-phase 19F nuclear magnetic shielding ciostants [J]. J. Chem. Phys.,2008,244111:1-10.
    [64]Lori, K. S.; Eric, O. Theoretical investigation of 19F NMR chemical shielding tensors in fluorobenzenes [J]. J. Phys. Chem. A.,2001,105:8098-8104.
    [65]Jelena, M. J.; Mangala, S.; Deepak, K. K. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection[J]. J. Am. Chem. Soc.,2008,130:2832-2841.
    [66]Hector, C. K.; Toby, J. A.; Olaf, B. Heteronuclear 19F-1H statistical total correlation spectroscopy as a tool in drug metabolism:Study of flucloxacillin biotransformation [J]. Anal Chem.,2008,80: 1073-1079.
    [67]Johnathan, P. M.; Jerry, A. B.; Michael, G. Synthesis, NMR and vibrational spectroscopic charact-erization, and computational study of the cis-IO2F32- anion [J]. J. Inorg. Chem.,2008,47:3243-3247.
    [68]Otto, D.; Nicola, S.; Joel, L.; ect. Protonation sites of isolated fluorobenzene revealed by IR spectro-scopy in the fingerprint range [J]. J. Phys, Chem. A.,2005,109:7881-7887.
    [69]Domenicano, A.; Schultz, G.; Hargittai, I. Molecular structure and ring distortions of P-di-fluorobenzene as determined by electron diffraction original research article [J]. J. Mol. Struct., 1982,78:97.
    [70]Nielsen, K. B.; Toft, K. C.; Mishra, F.; Santosh, K.; Mishra, K. J.; Duff, T. P. Nuclear quadrupole interaction of excited nuclear state (19F*, I=5/2) of fluorine in fluorobenzenes [J]. J. Am. Chem. Soc.,1983,105:1734.
    [71]Schlupf, J.; Weber, A. The rotational spectra of 1,3,5-trijluorobenzene and hexa fluorobenzene [J]. J. Raman. Spectrosc.,1973,1:3.
    [72]Almenningen, A.; Bastiansen, O.; Seip, R.; Seip, H. M. The molecular structure of hexafluorobenz-ene [J]. Acta Chem. Scand.,1964,18:2115.
    [73]Doraiswamy, S.; Sharma, S. D. Microwave spectrum and dipole moment of.pentafluorobenzene [J]. J. Mol. Struct.,1983,102:81.
    [74]Schei, S.H.; Almenningen, A.; Almlof, J.1,2,4,5-Tetrafluorobenzene:molecular structure as determined by gas-phase electron diffraction and by ab initio calculations [J]. J. Mol. Struct.,1984, 112:301.
    [75]Wolschendorf, U.; Kretschmer, U.; Sutter, D. H. Z. Distortion of the benzene ring in 1,2,3-trifluorobenzene. A high-resolution molecular beam Fourier transform microwave study [J]. Naturforsch. A.,1996,51:46.
    [76]Ramondo, F.; Portalone, G.; Domenicano, A.; Schultz, G.; Hargittai, I. Molecular structure of 1,3,5-trifluorobenzene:comparison of the results of two electron diffraction studies [J]. J. Mol. Struct.,1992,269:367.
    [77]Almenningen, A.; Hargittai, I.; Brunvoll, J.; Domenicano, A.; Samdal, S. The molecular Structures of 1,3,5- trifluorobenzene and 1,3,5- trifluorobenzene from election diffraction [J]. J. Mol. Struct., 1984,116:199.
    [78]Domenicano, A.; Schultz, G.; Hargittai, I. Molecular structure and ring distortions of p-difluobe-nzene as determined by electron diffraction [J]. J. Mol. Struct.,1982,78:97.
    [79]Nygaard, L.; Bojesen, I.; Pedersen, T.; Rastrup-Andersen, J. Structure of fluorobenzene [J]. J. Mol. Struct.,1968,2:209.
    [80]Schleyer, P. v. R.; Puhlhofer, F. Recommendations for the evaluation of aromatic stabilization energies [J]. Org. Lett.,2002,17:2873.
    [81]Note:CF4→ CF3·+F·(when calculated CF3·energy, the geometry CF3·came from the geometry CF3X which one of F atoms in freezen optimized CF4 was substituted by Imaginary X atom)
    [82]Pauling, L. The nature of the chemical bond [M]. Cornell University:1960,74.
    [83]Liu, Z. Z.; Tian, W. Q.; Feng, J. K.; Zhang, G.; Li, W. Q. The electronic structures and aromaticities for zinc sandwich, half-sandwich and zinc-zinc sandwich complexes within density functional theo-ry [J]. J. Mol. Struct., THEOCHEM.,2006,758:127.
    [84]Liu, Z. Z.; Tian, W. Q.; Feng, J. K.; Zhang, G.; Li, W. Q.; Cui Y. H.; Sun, C. C. A theoretical study on structures, bonding energies and aromaticity of two new series of bi-nuclear phosphametalloce-nes:(η5-P5)MN(η5-P5) and (η5-C5H5)MN(η5-P5) [J]. Eur. J. Inorg. Chem.,2006,2808.
    [85]Liu, Z. Z.; Tian, W. Q.; Feng, J. K.; Zhang, G.; Li, W. Q. Cui, Y. H. Theoretical study on structures and aromaticities of a new series of sandwich complexes:[M2(η5-P5)2] and [M(η5-P5)2] (M=Be,Mg and Ca) [J]. J. Mol. Struct., THEOCHEM.,2007,809:171.
    [86]Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Activation of carbon-fluorine bonds by metal complexes [J]. Chem. ReV.,1994,94:373-431.
    [87]Langseth, A.; Stoicheff, B. P. High resolution raman spectroscopy of gases:VI. Rotational spectrum of symmetric benzene-d3 [J]. Can. J. Phys.,1956,34:350-353.
    [88]Schlupf, J.; Weber, A. High resolution raman spectroscopy of gases with laser sources. Ⅵ. The rotaitional spectra of 1,3,5-trifluorobenzene and hexafluorobenzene [J]. J. Raman. Spectrosc., 1973.1:3.
    [89]Jemmis, E. D.; Schleyer, P. v. R. Overlap control and stability of polyhedral molecules. Closo-Carboranes [J]. J. Am. Chem. Soc.,1982,104(25):4781.
    [90]Janiak, C. A Critical Account on π-π stacking in metal complexes with aromatic nitrogen-contain-ing ligands [J]. J. Chem. Soc. Dalton Trans.,2000,3885.
    [91]Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J. Aromatic interactions christopher [J]. J. Che m. Soc. Perkin Trans.,2001,2:651.
    [92]Meyer, E. A.; Castellano, R. K.; Diederich, F. Interactions with aromatic rings in chemical and boilogical recognition [J]. Angew. Chem., Int. Ed.,2003,42:1210.
    [93]Aravinda, S.; Shamala, N.; Das, C.; Sriranjini, A.; Karle, I. L.; Balaram, P. Aromatic-aromatic interactions in crystal structures of helical peptide scaffolds containing projecting phenylalanine residues [J].J. Am. Chem. Soc.,2003,125:5308-5311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700