桥梁桩基高性能混凝土的抗氯离子侵入性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋锈蚀是引起混凝土破坏的最主要因素,是混凝土结构面临的最主要问题之一。大多数高性能混凝土结构的破坏是由于氯离子侵入到混凝土钢筋表面,并达到一定临界浓度时引起的钢筋锈蚀所致。本文对三类高性能混凝土进行了试验研究,采用试验测试与理论分析相结合的研究方法,重点研究混凝土的氯离子渗透性,配制抗氯盐高性能混凝土。
     为提高混凝土的抗氯离子渗透性,本文所用混凝土均掺加矿物掺合料和化学外加剂。试验调试的三类高性能混凝土为双掺矿物混凝土、C35单一矿物防腐混凝土、C35两种矿物防腐混凝土。分别对三类混凝土进行了标准养护后力学性能和氯离子渗透性能的测试和分析,讨论其强度与渗透性的线性相关性。试验结果显示双掺矿物混凝土的力学性能和抗氯离子渗透性能均良好。C35单一矿物防腐混凝土的强度与C35双掺矿物混凝土差别不大,但抗氯离子渗透性(尤其是28d)比C35双掺矿物混凝土差,56d的抗氯离子渗透性稍好,但除粉煤灰固体防腐混凝土外,其他3种混凝土与C35、C50双掺矿物混凝土相比抗氯离子渗透性较差,不满足抗氯盐高性能混凝土的要求。C35两种矿物防腐混凝土中粉煤灰和矿渣微粉固体防腐混凝土的力学性能和抗氯离子渗透性均好于液体防腐剂混凝土和C35双掺矿物混凝土,并与C50双掺矿物混凝土接近,满足抗氯盐高性能混凝土的基本性能要求,具有较强的工程可用性。
     对双掺矿物混凝土进行盐溶液长期浸泡试验,分析显示双掺矿物混凝土溶液浸泡后的质量变化微小,强度抗蚀系数较高,氯离子渗透性很低,双掺矿物混凝土的抗氯盐、抗氯盐与硫酸盐复合侵蚀的性能较好。
     对C35、C50双掺矿物混凝土以及C35两种矿物防腐混凝土进行冻融循环的测试,混凝土冻融循环评定指标表明其抗冻性能较好,冻融循环后的氯离子渗透性很低,4种混凝土的耐冻融破坏性能和抗氯离子渗透性能均较好。
     本文C50双掺矿物混凝土以及C35两种矿物固体防腐混凝土的基本性能和盐溶液长期浸泡性能及冻融循环性能均良好,为抗氯盐高性能混凝土。
     另外本文还对氯离子腐蚀的影响因素和钢筋防腐措施进行了理论分析,提出了抗氯盐高性能混凝土的技术要求,提出京沪高铁桥梁桩基混凝土抗氯离子侵蚀的防护措施,并采用合理的现场检测和监测技术对桩基混凝土耐久性进行长期监控和研究,以保证工程质量可靠。
Corrosion is the most important factor that causes the damage of reinforced concrete. And it is also one of the most important issues of concrete structure. Most destructions of the high-performance concrete structure are caused by steel corrosion due to chloride ion's incursion into steel of concrete and its reach of certain critical concentration. In this paper, three types of high-performance concrete are studied using combination research methods of theoretical analysis and experimental study, focusing on the chloride ion penetration of concrete, to preparate the high-performance concrete that resistant chloride salts.
     To improve concrete's resistance to chloride ion permeability, mineral and chemical admixtures are admixed into concrete in this paper. Three types of high performance concrete are for dual-doped mineral concrete, C35 single mineral and preservative double-doped concrete, C35 two minerals and preservative composition concrete. Test and analysis of mechanical properties and chloride ion permeability of concrete after standard conservation are carried out, and also the discussion of linear relationship of its strength and permeability. The results showed that mechanical properties and resistance to chloride ion permeability of dual-doped mineral concrete are in good condition. The strength of C35 single mineral and preservative double-doped concrete is not significant different from C35 dual-doped mineral concrete, but its resistance to chloride ion penetration (in particular,28d) is worse than that. Resistance to chloride ion penetration in 56d of C35 single mineral and preservative double-doped concrete is slightly better than 28d's. But except fly ash and solid preservative dual-doped concrete, resistance to chloride ion penetration of other three kinds concrete are worse than C35 and C50 dual-doped mineral concrete. They don't meet the requirements of high performance concrete resistance to chloride salts. In C35 two minerals and preservative composition concrete, mechanical properties and resistance to chloride ion penetration of the solid preservative concrete are better than the liquid preservative concrete, and so the C35 dual-doped mineral concrete, and near the C50. So it meets the basic performance requirements of high-performance concrete which resistant chloride salt, and has a strong engineering usability.
     In this paper, the salt solution long-term immersion test of dual-doped mineral concrete are carried out. The analysis shows that its quality changes very small, and it has the intensity factor of higher corrosion resistance, especially the chloride permeability is very low. So dual-doped mineral concrete has the high performance of resistance to chloride salts、anti-chloride and sulfate compound erosion.
     The freeze-thaw cycle test of three kinds are carried out.The kinds of concrete are C35, C50 dual-doped mineral concrete and C35 two minerals and preservative composition concrete.The freeze-thaw cycle assessment indicates that they have good frost, and the chloride ion penetration after freeze-thaw cycles is very low, four kinds of concrete have the high performace of resistance to freeze-thaw damage and chloride ion penetration.
     C50 dual-doped mineral concrete、C35 two kinds minerals and solid preservative composition concrete have good basic performance and underlying performance and long-term salt solution immersion properties and freeze-thaw cycle performance. They are the high-performance concrete which resistant chloride salts.
     In addition, the theoretical analysis of influence factors of chloride ion corrosion and reinforced anti-corrosion measures are made. And the technical requirements of high-performance concrete are also put forward. The protective measures on resistance to chloride ion penetration of the Beijing-Shanghai high-speed railway bridge pile of concrete are proposed. And the reasonable on-site inspection and monitoring technologies on the pile of concrete durability are used for long-term monitoring and research to ensure the project quality and reliable.
引文
[1]MEHTA P K, AITCIN P C. Principles underlying production of high-performance concrete[J]. Cement, Concrete and Aggregate,1990
    [2]杨钱荣,黄士元.对混凝土耐久性模型的思考——兼与《评价高性能混凝土耐久性综合指标》作者商榷和讨论.混凝土,2008
    [3]金伟良,赵羽习.混凝土结构耐久性.科学出版社,2002.9
    [4]潘德强.我国海岸工程混凝土结构耐久性现状及对策.土建结构工程的安全性与耐久性,1999
    [5]吴中伟,廉慧珍.高性能混凝土,北京:中国铁道出版社,1999
    [6]冯乃谦.高性能混凝土,北京:中国建筑工业出版社,1996
    [7]罗福午.建筑结构缺陷事故的分析及防止.北京:清华大学出版社,1996.1-5
    [8]洪定海.混凝土中钢筋的腐蚀与保护.北京:中国铁道出版社,1998.1-3
    [9]周履.桥梁耐久性发展的历史与现状.桥梁建设,2000,4:58-61
    [10]Nobuaki Otsuki, Shin-ichi Miyazato, Nathaniel B. Diola and hirotaka Suzuki. Influences of Bending Crack and Water-Cement Ratio on Chloride Induced Corrosion of Main Reinforcing Bars and Stirrups[J]. ACI Materials Journal. v.97, No.6, July-Aug.200,454-464
    [11]Corina-Maria Aldea, Surendra P. Shah, Member, ASCE, and Alan Karr, EFFECT OF CRACKING ON WATER AND CHLORIDE PERMEABILITY OF CONCRETE. Journal of Materials in Civil En-gineering,1999,11(3):181-187
    [12]巴恒静,张武满,邓宏卫.评价高性能混凝土耐久性综合指标——抗氯离子渗透性及其研究现状.混凝土,2006
    [13]洪乃丰.混凝土中钢筋腐蚀与防护技术(3)——氯盐与钢筋锈蚀破坏.工业建筑,1999,29:60-63
    [14]刘志勇.基于环境的海工混凝土耐久性试验与寿命预测方法研究[博士学位论文].南京:东南大学,2006
    [15]王增忠,吴广珊.混凝土中钢筋锈蚀及其可靠性分析.上海应用技术学院学报,2003(3)
    [16]PualChess, etal., Portectionofsteelinconcrete[R], RILEMRePort1ZE&FN, SPON, London,1998:165-184
    [17]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望.浙江大学学报(工学版),2002
    [18]孙伟,余洪发.混凝土结构工程的耐久性与寿命研究进展[博士学位论文].大连:大连理工大学,2001
    [19]洪定海.混凝土中钢筋的腐蚀与保护.北京:中国铁道出版社,1998
    [20]ACI201-Guide to Durable Concrete.1998
    [21]杨建森.氯盐对混凝土中钢筋的腐蚀机理与防腐技术.混凝土,2001
    [22]杨医博,梁松,莫海鸿,陈尤雯.抗氯盐高性能混凝土技术手册.北京:中 国水利水电出版社、知识产权出版社.2006
    [23]Neals. Berke. Protection Against Chloride Induced Comosion[J]. Concrete International,1998(12)
    [24]铁路混凝土结构耐久性设计暂行规定.2005
    [26]叶建雄,李晓筝等.矿物掺合料对混凝土氯离子渗透扩散性研究.重庆建筑大学学报,2005
    [25]陈伟,莫海鸿,杨医博等.抗氯盐高性能混凝土的技术途径.超高层混凝土泵送与超高性能混凝土技术的研究与应用国际研讨会论文集(中文版),2008
    [27]W·F. Price.'High performance Concrete in practice'. Presented at the 22nd Annual Convention of the Instinlte of concrete Technology,1994.
    [28]刘秉京.混凝土结构耐久性设计.北京:人民交通出版社,2007
    [29]LONG A E, HENDERSON G D, MONTGOMERY F R. Why assess the properties of near-surface concrete[J]. Construction and Building Materials,2001,15(2): 65-79
    [30]董必钦,徐建芝.混凝土渗透性试验方法进展研究.混凝土,2008
    [31]赵铁军.如何评定高性能混凝土的渗透性.混凝土.1995
    [32]吴中伟,廉慧珍,高性能混凝土.北京:中国铁道出版社,1999:220~231
    [33]祝永年,沈威,陈志源译.混凝土的结构、性能与材料.上海:同济大学出版社,1991:75~77
    [34]"Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration" (T259-80), American Association of State Highway and Transportation Officials, WashingtonD. C., U. S. A.,1904
    [35]"Standard Method for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials", (T260-94), American Association of State Highway and Transportation Officials, WashingtonD. C., U. S. A,1994
    [36]"Electrical Indication of Concrete's Ability to Resist Chloride" (T277-93), American Association of State Highway and Transportation Officials, Washington, D. C., U. S. A.,1983
    [37]Nordtest Method:Accelerated Chloride Penetration into Hardened Concrete, Nordtest, Espoo, Finland, Proj.11,1995:54~94
    [38]赵铁军.混凝土渗透性.北京:科学出版社,2006
    [39]史美伦.微粒矿渣微粉掺合料对混凝土中钢筋锈蚀影响的电化学研究.硅酸盐学报,1998.12
    [40]D. Whiting. "Rapid Measurement of the Chloride Permeability of Concrete", Public Roads,1981,45(3)
    [41]路新瀛,王晓睿,张华新.ASTM C1202实验方法浅析.工业建筑,2004
    [42]Delagrave, A., Marchaud, J., and Samson, E. "Prediction of Diffusion Coefficients in Cement-Based Materials on The Basis of Migration Experiments ", Cement and Concrete Research, Vol26, No.12, pp.1831-1842,1996
    [43]Zhang, T., and Gjorv. O. E., "An Electrochemical Method for Accelerated Testing of Chloride Diffusion", Cement and Concrete Research, Vol.24, No.8, pp.1534-1548,1994,29
    [44]McGrath. P. and Hooton, R. D., "Influence of Voltage on Chloride Diffusion Coefficients From Chloride Migration Tests", Cement and Concrete Research, Vol.26, No.8, pp.1239-1244,1996
    [45]Tang, L. and Nilsson, L.2O.,"Chloride Diffusivity in High Strength Concrete", Nordic Concrete Research, Vol.11, pp.162-170,1992
    [46]Otsuki, N., Nagataki, S., and Nakashita, K., "Evaluation of AgNO3 Solution Spray Method for Measurement of Chloride Penetration into Hardened Cementitious Matrix Materials", ACI Materials Journal, Vol.89, No.6, pp.587-592,1992
    [47]Kyi, A. A., and Batchelor, B., "An Electrical Conductivity Method for Measuring the effects of Additives on Effective Diffusivities in Port2 land Cement Pastes", Cement and Concrete Research, Vol.24, No.4, pp.752-764,1994
    [48]Morris, W., Moreno, E. I. and Sagues, A. A., " Practical Evaluation of Resistivity of Concrete in Test Cylinders using a Wenner Array Probe", Cement and Concrete Research, Vol.26, No.12, pp.1779-1787,1996
    [49]Halamickova, P., Detwiler, R. J., Bentz, D. P., and Garbockzi, E. J. "Water Permeability and Chloride Ion Diffusion in portland Cement Mortars:Relationship to Sand Content and Critical Pore Diameter", Cement and Concrete Research, Vol.25, No.4, pp.790-802,1995
    [50]刘斯凤.氯离子扩散测试方法演变和理论研究背景.混凝土,2002
    [51]苏勉曾编者.固体化学导论.北京大学出版社.
    [52]Lu, X. "Application of the Nernst2Einstein Equation to Concrete", Cement and Concrete Research, Vol.27, No,2, PP.293-302,1997
    [53]赵铁军,李淑进.混凝土的强度与渗透性.建筑技术,2002
    [54]赵铁军.高性能混凝土的渗透性研究[博士学位论文].清华大学,1997
    [55]李淑进.混凝土的渗透性与耐久性研究[硕士学位论文].青岛建筑工程学院,2002
    [56]杨钱荣.掺粉煤灰和引气剂混凝土渗透性与强度的关系.建筑材料学报,2004
    [57]赵铁军.混凝土渗透性.北京:科学出版社,2006
    [58]钱觉时.粉煤灰特性与粉煤灰混凝土.北京:科学出版社,2002
    [59]李淑进,赵铁军.混凝土的渗透性与耐久性.海岸工程,2001
    [60]Shilstone J M. Proceedings on concrete technology:Past, present and future[R]. USA. ACI, sp-144,1994
    [61]王兆利.混凝土抗冻性与其渗透性关系[硕士学位论文].青岛建筑工程学院,2003
    [62]M Achintya. M. M. Prasad, M, Behabiour of concrete in freeze-thaw environment of sea water. Journal of Civil Engineering, The Institute of Engineering(India),2003
    [63]何世钦,贡金鑫,赵国藩.冻融循环下混凝土中氯离子的扩散性.水利水运工程学报,2004
    [64]路新瀛,王晓睿,张华新.ASTM C1202实验方法浅析.工业建筑,2004
    [65]NEVILLE A. The confused world of sulfate attack on concrete[J]. Cem Concr Res,2004,34(8):1275-1296
    [66]余红发,孙伟,鄢良慧等.混凝土使用寿命预测方法的研究Ⅰ、Ⅱ、Ⅲ.硅酸盐学报,2002,30(6):686-701
    [67]BROWN P W, BADGER S. The distributions of bound sulfates and chlorides in concrete subjected to mixed NaCl, MgSO4, Na2SO4 attack[J]. Cem Concr Res,2000, 30(10):1535-1542
    [68]OMAR Saeed Baghabra Al-Amoudi, MOHAMMED Masiehuddin, YASER A B Abdui-Al. Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments[J]. Constr Build Mater,1995,9(1):25-33
    [69]FELDMAN R F, BEAUDOIO J J, PHILIPOSE K E. Effect of cement blends on chloride and sulfate ion diffusion in concrete[J]. Ⅱ Cemento,1991,8(8):3-18
    [70]TUMIDAJSKE P J, CHAN G W. Effect of sulfate and carbon dioxideon chloride diffusivity[J]. Cem Concr Res,1996,26(4):551-556
    [71]DEHWAH H A F, MASLEHUDDIN M, AUSTIN S A. Long-term effect of sulfate ions and associated cation type on chloride-induced reinfor-cement corrosion in Portland cement concretes[J]. Cem Concr Compos,2002,24(1):17-25
    [72]龚洛书,刘春圃.混凝土的耐久性及其防护修补.北京,中国建筑工业出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700