用户名: 密码: 验证码:
计算流体动力学数值模拟在发酵工业典型搅拌设备中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作基于计算流体力学数值模拟对典型搅拌工业设备中的通气发酵罐和谷氨酸结晶罐进行研究,以期为相关的研究和生产提供数据和技术支持。
     论文第一部分以用于实验室聚赖氨酸发酵的5L通气搅拌生物反应器为研究对象,采用FLUENT(V6.3, Fluent Inc., USA)作为计算平台,首先考察了单桨叶在不同转速下和不同气速下的传质、混合、溶氧特征以及功率消耗。结果表明:单桨叶发酵罐难以满足实验室聚赖氨酸微生物发酵的需要。
     根据上述实验结果,对该罐进行了优化,增加桨叶数目和桨叶类型。研究由3种不同桨叶构成的4种组合方式(1、上下档位均为六叶直桨;2、上档位螺旋桨,下档位六叶直桨;3、上档位三折叶桨,下档位六叶直桨;4、上档位三折叶桨,下档位螺旋桨)对流场、剪切力、气含率和功率等的影响,并进行发酵实验验证。结果发现,2号罐有着最好发酵表现。这和CFD数值模拟得出2号罐综合表现最佳的结果相一致,证实了CFD数值模拟方法指导、优化微生物发酵的适用性。
     论文的第二部分对50m3谷氨酸结晶罐的结构进行优化。在保证混合效果的前提下,降低剪切力和功率,并节省能耗和保证产品高质。结果表明:
     (1)液面的高度,是否安放导流筒和其安放的位置,桨叶的不同以及桨径的变化都对标准浓度差σ有很重要的影响。
     (2)满足均匀悬浮状态,且剪切力最小,功率消耗最少的方案为D=350mm,N=240r·min-1。
On the basis of Computational Fluid Dynamics (CFD) simulation, fermentation tank ventilation and glutamic acid crystallizer out of typical stirred industrial equipments are investigated to provide related researches and production with data and technical support.
     In the first section, using FLUENT (V6.3, Fluent Inc., USA) as computational tool, mass transfer, mixing, features of dissolved oxygen and power consumption of single blade were studied under the condition of different rotation speed and gas speed. Results showed that single blade tank was difficult to meet the need ofε-poly-L-lysine fermentation at laboratory.
     According to above results, the tank was optimized by increasing the number of impeller and changing the type of impeller. The effect that 4 kinds of combination were studied (1. the up and down were both six-straight-blade-turbine,2. the up was propeller and the down was six-straight-blade-turbine,3. the up was triple bladed paddler and the down was six-straight-blade-turbine,4. the up was triple bladed paddler and the down was propeller) of 3 different paddles gave to flow distribution, shear force and power consumption, which confirmed with fermentation. It indicated that No.2 tank showed the best fermentation result, which complied with the CFD simulation result. Therefore, the CFD simulation was available to guide and optimize fermentation of filamentous microorganism and other types of fermentation.
     In the second section, the structure of 50m3 crystallizing tank was optimized. On condition of ensuring the mixing effect, reducing shear force and power consumption resulted in high production quality and low energy consumption. It showed that:
     (1) The height of liquid level, whether the aid of draft tube was present or not, and wherever the draft tube was placed, the differences of paddles and the modification of diameter of paddles all affected standard concentration deviation (σ).
     (2) Whileσ<0.2 the uniform suspension status was realized, on the condition that D=350mm and N=240r·min-1, and the minimum average shear force and the minimum power.
引文
1. Alves S, Maia C, Vasconcelos J, Experimental and modelling study of gas dispersion in a double turbine stirred tank. Chemical Engineering Science[J],2002:57(3):487-496.
    2. Bang W, Nikov I, Delmas H, et al, Gas-liquid mass transfer in a new three-phase stirred airlift reactor. Journal of Chemical Technology & Biotechnology [J],1998:72(2):137-142.
    3. Jahoda M, Mostk M, Kukukova A, et al, CFD modelling of liquid homogenization in stirred tanks with one and two impellers using large eddy simulation. Chemical Engineering Research and Design[J],2007:85(5):616-625.
    4. Kerdouss F, Bannari A, Proulx P, et al, Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model. Computers & Chemical Engineering[J],2008:32(8): 1943-1955.
    5. Lane G, Schwarz M, Evans G, Numerical modelling of gas-liquid flow in stirred tanks. Chemical Engineering Science[J],2005:60(8-9):2203-2214.
    6.郭武辉,潘家祯,计算流体力学用于搅拌器流场研究及结构设计.化学工程[J],2009:37(9):20-23.
    7.黄志坚,苏杨,孟绳续,发酵罐搅拌装置的优化设计.化学工程[J],2001:37(9):24-27.
    8. Garcia-Ochoa F, Gomez E, Bioreactor scale-up and oxygen transfer rate in microbial processes:an overview. Biotechnology advances[J],2009:27(2):153-176.
    9. Hristov H, Mann R, Lossev V, et al, A simplified CFD for three-dimensional analysis of fluid mixing, mass transfer and bioreaction in a fermenter equipped with triple novel geometry impellers. Food and Bioproducts Processing[J],2004:82(1):21-34.
    10. Xia J, Wang S, Zhang S, et al, Computational investigation of fluid dynamics in a recently developed centrifugal impeller bioreactor. Biochemical Engineering Journal[J],2004: 38(3):406-413.
    11. Xia J, Wang Y, Zhang S, et al, Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochemical Engineering Journal[J],2009:43(3):252-260.
    12.蒋啸靖,夏建业,赵劫,生物搅拌反应器内混合情况的CFD模拟及在发酵中的应用.化学与生物工程[J],2008:25(7):54-57.
    13.宁建根,叶旭初,张林进,柠檬酸发酵罐内气泡流的数值模拟分析.南京工业大学学报[J],2007:29(5):70-73.
    14.徐健,刘孝光,潘培道,机械搅拌通风发酵罐内气液两相流的仿真模拟.包装与食品机械[J],2006:24(6):10-13.
    15.赵卫宁,潘家祯,陈双喜,生物搅拌反应器的CFD模拟及在肌苷发酵中的应用.华东理工大学学报(自然科学版)[J],2001:32(5):548-551.
    16. Wang S, Zhong J, A novel centrifugal impeller bioreactor. I. Fluid circulation, mixing, and liquid velocity profiles. Biotechnology and bioengineering[J],1996:51(5):511-519.
    17. Micale G, Grisafi F, Rizzuti L, et al, CFD simulation of particle suspension height in stirred vessels. Chemical Engineering Research and Design[J],2004:82(9):1204-1213.
    18. Murthy Shekhar S, Jayanti S, CFD study of power and mixing time for paddle mixing in unbaffled vessels. Chemical Engineering Research and Design[J],2002:80(5):482-498.
    19. Wang T, Wang J, Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled model. Chemical Engineering Science[J],2007:62(24): 7107-7118.
    20.唐江伟,吴振强,新型生物反应器结构研究进展.中国生物工程杂志[J],2007:27(5):146-152.
    21. Nurtono T, Setyawan H, Altway A, et al, Macro-instability characteristic in agitated tank based on flow visualization experiment and large eddy simulation. Chemical Engineering Research & Design[J],2009:87(7A):923-942.
    22. Alves S, Maia C, Vasconcelos J, et al, Bubble size in aerated stirred tanks. Chemical Engineering Journal[J],2002:89(1-3):109-117.
    23. Fayolle Y, Cockx A, Gillot S, et al, Oxygen transfer prediction in aeration tanks using CFD. Chemical Engineering Science[J],2007:62(24):7163-7171.
    24. Michele V, Hempel D, Liquid flow and phase holdup--measurement and CFD modeling for two-and three-phase bubble columns. Chemical Engineering Science[J],2002:57(11): 1899-1908.
    25.李波,张庆文,洪厚胜,搅拌反应器中计算流体力学数值模拟的影响因素研究进展.化工进展[J],2009:28(1):7-12.
    26.刘孝光,潘培道,徐健,基于CFD技术的机械搅拌通风发酵罐溶氧性能预测.轻工机械[J],2008:26(2):21-24.
    27. Chahed J, Roig V, Masbernat L, Eulerian-Eulerian two-fluid model for turbulent gas-liquid bubbly flows. International Journal of Multiphase Flow[J],2003:29(1):23-49.
    28. Fradette L, Tanguy P, Bertrand F, et al, CFD phenomenological model of solid-liquid mixing in stirred vessels. Computers & Chemical Engineering[J],2007:31(4):334-345.
    29. Garcia-Ochoa F, Castro E, Santos V, Oxygen transfer and uptake rates during xanthan gum production. Enzyme and microbial technology[J],2000:27(9):680-690.
    30. Kasat G, Khopkar A, Ranade V, et al, CFD simulation of liquid-phase mixing in solid-liquid stirred reactor. Chemical Engineering Science[J],2008:63(15):3877-3885.
    31. Kumaresan T, Joshi J, Effect of impeller design on the flow pattern and mixing in stirred tanks. Chemical Engineering Journal[J],2006:115(3):173-193.
    32. Amanullah A, Tuttiett B, Nienow A, Agitator speed and dissolved oxygen effects in xanthan fermentations. Biotechnology and bioengineering[J],1998:57(2):198-210.
    33. Buscaglia G, Bombardelli F, Garcia M, Numerical modeling of large-scale bubble plumes accounting for mass transfer effects. International Journal of Multiphase Flow[J],2002: 28(11):1763-1785.
    34. Choi B, Wan B, Philyaw S, et al, Residence time distributions in a stirred tank: comparison of CFD predictions with experiment. Ind. Eng. Chem. Res[J],2004:43(20): 6548-6556.
    35. Dhanasekharan K, Sanyal J, Jain A, et al, A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics. Chemical Engineering Science[J],2005:60(1):213-218.
    36. Gentric C, Mignon D, Bousquet J, et al, Comparison of mixing in two industrial gas-liquid reactors using CFD simulations. Chemical Engineering Science[J].2005:60(8-9): 2253-2272.
    37. Guozhong Z, Yingchen W, Litian S, CFD STUDY OF MIXING PROCESS IN STIRRED TANK. Journal of Chemical Industry and Engineering (China)[J].2005:54(7):886-890.
    38. Hartmann H, Derksen J, Van den Akker H, Numerical simulation of a dissolution process in a stirred tank reactor. Chemical Engineering Science[J],2006:61(9):3025-3032.
    39. Hosseini S, Patel D, Ein-Mozaffari F, et al, Study of solid-liquid mixing in agitated tanks through electrical resistance tomography. Chemical Engineering Science[J],2010:65(4): 1374-1384.
    40. Zhang H, Williams-Dalson W, Keshavarz-Moore E, et al, Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Biotechnology and applied biochemistry [J],2005:41(Pt 1):1-8.
    41. Le Thanh K C, Parzani C,Vignal M H, A volume of fluid method for a two-dimensional plasma expansion problem. Journal of Computational Physics[J],2007:225(2): 1937-1960.
    42. Li X W, Fan J F, A stencil-like volume of fluid (VOF) method for tracking free interface. Applied Mathematics and Mechanics-English Edition[J],2008:29(7):881-888.
    43. Yuan M H, Yang Y H, Li T S, et al, Numerical simulation of film boiling on a sphere with a volume of fluid interface tracking method. International Journal of Heat and Mass Transfer [J],2008:51(7-8):1646-1657.
    44. Spicka P, Dias M, Lopes J, Gas-liquid flow in a 2D column:Comparison between experimental data and CFD modelling. Chemical Engineering Science[J],2001:56(21-22): 6367-6383.
    45. Zhang L, Pan Q, Rempel G, Residence time distribution in a multistage agitated contactor with newtonian fluids:CFD prediction and experimental validation. Ind. Eng. Chem. Res[J],2007:46(11):3538-3546.
    46. Murthy B, Ghadge R, Joshi J, CFD simulations of gas-liquid-solid stirred reactor: Prediction of critical impeller speed for solid suspension. Chemical Engineering Science[J],2007:62(24):7184-7195.
    47. Kerdouss F, Bannari A, Proulx P, (2006) CFD modeling of gas dispersion and bubble size in a double turbine stirred tank. Chemical Engineering Science[J],2006:61(10): 3313-3322.
    48. Vakili M, Esfahany M, CFD analysis of turbulence in a baffled stirred tank, a three-compartment model. Chemical Engineering Science[J],2009:64(2):351-362.
    49.朱振兴,硫酸铵结晶过程的研究及其固—液多相流的计算流体力学研究[D].硕士学位论文:天津大学.2008:63-175.
    50. Guha D, Ramachandran P A, Dudukovic M P, et al, Evaluation of large eddy simulation and Euler-Euler CFD models for solids flow dynamics in a stirred tank reactor. Aiche Journal[J],2008:54(3):766-778.
    51. Liiri M, Enqvist Y, Kallas J, et al, CFD modelling of single crystal growth of potassium dihydrogen phosphate (KDP) from binary water solution at 30℃. Journal of Crystal Growth[J],2006:286(2):413-423.
    52. Liiri M, Koiranen T, Aittamaa J, Secondary nucleation due to crystal-impeller and crystal-vessel collisions by population balances in CFD-modelling. Journal of Crystal Growth[J],2002:237(Pt 3):2188-2193.
    53. Jahoda M, Tomaskova L, Mostek M, CFD prediction of liquid homogenisation in a gas-liquid stirred tank. Chemical Engineering Research and Design[J],2009:87(4): 460-467.
    54. Rammohan A, Dudukovi M, Ranade V, Eulerian flow field estimation from particle trajectories:numerical experiments for stirred tank type flows. Ind. Eng. Chem. Res[J], 2003:42(12):2589-2601.
    55. Wang F, Mao Z, Wang Y, et al, Measurement of phase holdups in liquid-liquid-solid three-phase stirred tanks and CFD simulation. Chemical Engineering Science[J],2006: 61(22):7535-7550.
    56. Yoon H, Hill D, Balachandar S, et al, Reynolds number scaling of flow in a Rushton turbine stirred tank. Part I--Mean flow, circular jet and tip vortex scaling. Chemical Engineering Science[J],2006:60(12):3169-3183.
    57. Gorii M, Bozorgmehry B R, Kazemeini M, CFD Modeling of gas-liquid hydrodynamics in a stirred tank reactor. Iranian Journal of Chemistry & Chemical Engineering-International English Edition[J],2007:26(2):85-96.
    58. Jahoda M, Tomaskova L, Mostek M, CFD prediction of liquid homogenisation in a gas-liquid stirred tank. Chemical Engineering Research & Design[J],2009:87(4A): 460-467.
    59. Kasat G R, Pandit A B, Ranade V V, CFD simulation of gas-liquid flows in a reactor stirred by dual Rushton turbines. International Journal of Chemical Reactor Engineering[J],2008:6(60A):1-23.
    60. Khopkar A R, Kasat G R, Pandit A B, et al, CFD simulation of mixing in tall gas-liquid stirred vessel:Role of local flow patterns. Chemical Engineering Science[J],2006:61(9): 2921-2929.
    61. Khopkar A R, Rammohan A R, Ranade V V, et al, Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations. Chemical Engineering Science[J],2005:60(8-9):2215-2229.
    62. Khopkar A R, Ranade V V, CFD simulation of gas-liquid stirred vessel:VC, S33, and L33 flow regimes. Aiche Journal[J],2005:52(5):1654-1672.
    63. Khopkar A R, Tanguy P A, CFD simulation of gas-liquid flows in stirred vessel equipped with dual Rushton turbines:influence of parallel, merging and diverging flow configurations. Chemical Engineering Science[J],2008:63(14):3810-3820.
    64. Murthy B N, Ghadge R S, Joshi J B, CFD simulations of gas-liquid-solid stirred reactor: Prediction of critical impeller speed for solid suspension. Chemical Engineering Science[J],2007:62(24):7184-7195.
    65. Ekambara K, Nandakumar K, Joshi J, CFD simulation of bubble column reactor using population balance. Industrial & Engineering Chemistry Research[J],2008:47(21): 8505-8516.
    66. Kahar P, Iwata T, Hiraki J, et al, Enhancement of epsilon-polylysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng[J],2001:91(2): 190-194.
    67. Josten P, Paul G, Nienow A, et al, Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnology and bioengineering[J],1996:52(6):672-684.
    68. Linek V, Moucha T, Sinkule J, Gas-liquid mass transfer in vessels stirred with multiple impellers--I. Gas-liquid mass transfer characteristics in individual stages. Chemical Engineering Science[J],1996:51(12):3203-3212.
    69. Gimbun J, Rielly C, Nagy Z, Modelling of Mass Transfer in Gas-Liquid Stirred Tanks Agitated by Rushton Turbine and CD-6 Impeller.2009:87(4):437-451.
    70. Min J, Bao Y, Chen L, et al, Numerical simulation of gas dispersion in an aerated stirred reactor with multiple impellers. Industrial & Engineering Chemistry Research[J],2008: 47(18):7112-7117.
    71. Shewale S, Pandit A, Studies in multiple impeller agitated gas-liquid contactors. Chemical Engineering Science[J],2006:61(2):489-504.
    72. Jajuee BM, Argaritis AK, Aramanev DB, et al. Measurements and CFD simulations of gas holdup and liquid velocity in novel aircraft membrane contactor. Aiche Journal[J],2006: 52(12):4079-4089.
    73. Lu C X, Qi NN, Zhang K, et al, Experiment and CFD Simulation on Gas Holdup Characteristics in an Internal Loop Reactor with External Liquid Circulation. International Journal of Chemical Reactor Engineering [J].2009:7(A3):1-22.
    74. Gaucher C, Devaux C, Boura C,et al, In vitro impact of physiological shear stress on endothelial cells gene expression profile. Clinical Hemorheology and Microcirculation[J], 2007:37(1-2):99-107.
    75. Khopkar A, Kasat G, Pandit A, et al, CFD simulation of mixing in tall gas-liquid stirred vessel:Role of local flow patterns. Chemical Engineering Science[J],2006:61(9): 2921-2929.
    76. Spidla M, Mostek M, Sinevic V, et al, Experimental assessment and CFD simulations of local solid concentration profiles in a pilot-scale stirred tank. Chemical Papers[J],2005: 59(6A):386-393.
    77. Karmonik C, Yen C, Diaz O, et al, Temporal variations of wall shear stress parameters in intracranial aneurysms-importance of patient-specific inflow waveforms for CFD calculations. Acta Neurochirurgica[J],2010:152(8):1391-1398.
    78. El Zahab Z, Divo E, Kassab A, Minimisation of the wall shear stress gradients in bypass grafts anastomoses using meshless CFD and genetic algorithms optimisation. Computer Methods in Biomechanics and Biomedical Engineering[J],2010:13(1):35-47.
    79. Grecov D, Rey A D, Impact of texture on stress growth in thermotropic liquid crystalline polymers subjected to step-shear. Rheologica Acta[J],2004:44(2):135-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700