自组织临界性、分形及灾变理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕着沙堆模型实验,开展了工程领域的散粒体系统呈现自组织临界性的判据的研究;然后基于自组织临界性的判据对两个典型灾害系统——地震系统和斜坡松散堆积物系统的组构特征和自组织临界性动力学行为之间的关系进行了探讨;最后主要针对影响公路和铁路的斜坡重力作用灾害,在自组织临界性概念的框架下,分别对灾害的形成机理、运动过程、预测预报和防治对策进行了专题研究。研究的主要工作及结论如下:
     1、在课题组先前实验的基础上,开展了各种粒径级配的沙堆实验。在大尺度下,粒径均匀的沙堆和粒径级配曲线斜率不连续的非均匀沙堆表现为序列的准周期行为或规模的正态分布,而粒径级配曲线斜率连续的非均匀沙堆呈现出SOC特征。
     2、提出用信息熵来描述自组织临界性系统中幂次分布所包含的信息。首次定义了真实沙堆演化中沙崩大小分布的信息熵,并对沙崩信息熵进行了分析。随着沙堆演化的向前推进沙崩信息熵增大,并在临界态基本趋于稳定,达到最大值。沙崩信息熵体现了系统的无序度,表现了沙堆系统演化的复杂性,这对于理解复杂系统的潜在作用机制有着十分重要的意义。同时沙崩信息熵也表明临界态的趋近可以通过熵的变化来体现,沙崩信息熵大小表明了沙堆当前状态与临界态之间的距离,沙崩信息熵越小表明沙堆当前状态距离临界态越远,沙崩信息熵越大表明沙堆当前状态距离临界态越近,当沙崩信息熵达到最大时表明沙堆系统的临界态已经达到。
     3、利用筛下沙粒数量构造了关联维数,推导出了关联维数的具体计算公式,计算了单面坡沙堆实验各种粒径级配的分维数。结合沙堆实验得出具有自组织临界性的沙堆系统,其颗粒粒径具有分形分布,提出了具有自组织临界性的系统其组构具有分形特点和系统组构的分形结构可以作为自组织临界现象发生的判据的假说,并利用颗粒空间排列具有分形特点的元胞自动机沙堆模型验证了这一假说。
     4、依据G—R定律,分析了中国大陆地区的地震活动性,发现地震活动在空间和能量分布上,当考虑其整体行为时具自组织临界性。利用分形理论中的粗视化网格法,深入研究了中国大陆地区断层系的分形特点和分形结构的跨尺度特征。建立了分形断裂力学简化模型,给出了地震活动性的b值与断层系的分维数D以及断层面的分维数d之间的定量关系,探讨了b的物理机制,以及b和D之间的正相关关系,从理论上和实践上证明了地震的自组织临界现象源于分形几何断层系的自组织临界性的动力学过程,明确了系统组构分形和地震活动性之间的因果关系。
     5、研究了国道317都江堰至汶川K74+775~K75+740段7处斜坡松散堆积物颗粒粒度分布的分维规律,研究表明:斜坡松散堆积物颗粒分布具有良好的分形结构,分维数随着斜坡高度的增加而增大,分维数越小,斜坡松散堆积物中粗颗粒成分越多,分维数越大,细颗粒成分越多,分维数在2到3之间。
     以实测资料为依据,从颗粒流理论出发,结合大型相对密度仪和直接剪切仪实验,探讨了材料性质相同的颗粒物质其宏观力学性质与颗粒粒径分形分布之间的关系。推导了剪切应力系数、正应力系数、内摩擦角和颗粒浓度与粒径分维数之间的关系。结果表明:粒径分维数D小的斜坡松散堆积物,流动性能差,崩塌流动过程中,斜坡松散堆积物系统与干扰相互作用的效应使松散物沿坡面下落阻碍增强,从而限制了系统各部分敏感性递增的趋势,使得扰动强度不至于总是超过自稳能力,该斜坡松散堆积物系统仍具有自组织临界性动力学特征,进而得出斜坡松散堆积物系统对干扰传播制约的能力是由组构的分形特征所决定的系统自身的性质决定的。
     6、分析了岩石破坏过程的自组织临界特征。为了研究这种临界问题,提出了一种利用自组织程度参数α刻画单元之间的应力转移和局部单元上的应力集中的方法,并以单元的破坏强度服从二次Weibull分布为基础,运用重整化群理论建立了计算力学模型,推导了岩石破坏的临界破坏概率p_c。结果表明,当单元的破坏概率p小于临界破坏概率p_c时,单元的破坏是独立的和随机的,系统向稳定态演化;当单元的破坏概率p大于临界破坏概率p_c时,单元的破坏向宏观贯通的张裂面这一吸引域集中;临界破坏概率p_c以及单元承受外载F的能力均与初始条件有关,p_c和F/F_0随自组织程度参数α增大而减小,且F/F_0<1,表明由于应力的转移使得单元破坏应力降低。
     7、通过对区域滑坡的空间规模分布,以及单个滑坡演化过程的位移时间序列分析,证明了滑坡灾害具有自组织临界性。
     滑坡一般发生在众多不连续面中强度效应最弱的主滑面上。滑面在演化过程中是一种远离平衡态的自组织临界现象。运用图型动力学模型从图型演化角度分析了滑动面损伤破坏方式的“多米诺效应”和损伤破坏的“链式反应”过程。以确定性的、不可逆的、非线性、非局域和没有特征尺度的动力学规则,描述损伤单元之间的一种自动放大的非局域相互作用的连接过程,引入分布函数φ(p)和ζ(p)刻画断裂态吸引域在相空间的分布。探讨了不同损伤率下,滑面破坏的可能模式。
     8、分析了自组织临界性系统的可预测性,以及自组织临界性理论对灾害预测预报和灾害防治工程的启示。
     在自组织临界性的概念框架下,将改进的重标极差分析方法即RSH分析方法引入泥石流灾害前兆观测资料的处理和分析中,并在计算赫斯特指数H时,定义一个涵盖序列历史和序列长时记忆信息的时间窗,应用该方法对泥石流灾害进行了预测预报。
     基于自组织临界性的频率—规模的幂律分布关系,从可靠性设计角度出发,建立了斜坡防护系统的可靠性分析模型,并应用于实例的计算。
Based on the sand-pile model test,this article did deep research on the criterion of self-organized criticality(SOC)about granular system in civil engineering field.The relationship between the fabric characteristics and dynamic behavior of two typical disaster system,earthquake system and loose deposits system,was discussed based on the criterion of SOC.Finally,aiming at the earthquake disaster and slope gravitational disaster in highway and railway engineering,this article carries out the special research on the formative mechanism,the process of movement and forecast,prevention measures of disasters in the frame of idea of SOC.In details,the main jobs and conclusions of this dissertation are as follows.
     1.On the basis of previous sand-pile model test,a series of sand-pile model tests of different grain size distribution were carried out.Under the large-scale conditions,the avalanches of uniform sand and non-uniform sand,which grain size distribution curve were discontinuity,exhibited quasi-period distribution or normal distribution,however,the avalanches of non-uniform sand which grain size distribution curve were continuity presented the characteristics of self-organized criticality.
     2.The concept of information entropy was provided to describe the information contained by the power-law distribution of SOC system.The information entropy of avalanches was defined and analyzed in the sand-pile slopes evolvement for the first time.The information entropy gradually increases with the evolving of sand-pile,and reaches a maximum to stabilization in the critical state.The information entropy of avalanches indicates the disorder degree of systems and represents the complex of sand-pile systems evolvement,which is important to understand the potential action mechanism of complex system. Meanwhile,the information entropy of avalanches indicate also to obtain the critical state by changing the information entropy,the value of entropy show the distance between current state and critical state,and the value is more smaller to show more further critical state,but more greater to more nearer its,when information entropy reach the greatest value,it shows the sand-pile system attach the critical state.
     3.Correlation dimension was constructed by using the amount of sands under riddle,and the concrete calculating formula was deduced,therefore,we obtained dimensions of sand-pile with one-side and different grain size distribution,and gained the grain size distribution of sand-pile system bearing SOC present fractal distribution combined with sand-pile test,so we put forward the configuration of SOC system have fractal characteristics and the fractal configuration of system can be considered a hypothesis of SOC,and proved the hypothesis by means of cellular automata sand-pile model,which grains array in space have fractal characteristics.
     4.According as the laws of G-R,the earthquake activities were analyzed in the tectonic regions of the Chinese mainland,we found the earthquake activities in space and energies distribution show SOC as a whole.The fractal characteristics and trans-scale features of fractal structural of faults in Chinese mainland and tectonic regions were researched comprehensively with the macroscopic grid method in fractal theory.A fractal fracture mechanics simple model was established,the quantitative relationship between earthquake the activities value,b, the dimensions of faults,D and the dimensions of fault-face,d was presented, furthermore,the physical mechanism of the b and the positive correlation between the b and the D were discussed.From the theory and practice,these simple models proved the SOC phenomenon of earthquake have its origin in the process of dynamics of SOC and its fractal faults;made clear the consequence between the configuration fractal and earthquake activities.
     5.The dimensions law of grain size distribution of loose deposits along the national road 317 from Doujiangyan to Wenchuan(7-site in road section K74+775~K75+740)were studied,the results showed that the grain size distribution of loose deposits have fractal structure,and the dimensions increase with slope height,when the value of dimensions was littler,the more components of coarse grain to loose deposits on slope,but the value was greater,the more components of smaller grain,in a word,the value of dimensions varied from two to three.
     From the theory of particle flow,combined with the test results of large-scale relative density meter and direct shear apparatus,the relation between macroscopically mechanical character of the identical particles and the fractals distribution of grain size was discussed based on the data of experiments. Furthermore,we also deduced the relation between coefficients of stress,φ,and grains density of loose deposits and dimensions of grain size distribution.From these results,we found the fluidness of loose deposits was not flowing,when the value of dimension D of grains was little,during the landslip process,the effect of disturbances upon the systems of loose deposits on a slope strengthened the loose deposits fall,accordingly,it limited the increasing trend of systems sensitivity,and the intensities of disturbances does not always exceed the capability of self-stability,ultimately,the system of loose slope had the character of SOC.So we deduced the capability of a system of loose slope restriction against disturbances spreading was decided by the fractal character of system itself.
     6.This article analyzed a characteristic of Self-organized criticality of rock failure process.A method which use Self-organized extent parameterαto express stress transfer among units and stress concentration in local units was put forward. Based on the theory that the failure strength of rock units obey second power Weibull distribution,a mechanical model was established with renormalization group theory,and the critical probability of rock failure,pc,was derived.Results indicate that the failure of units is independent and stochastic,and the system evolves to a stable state when the failure probability of unit,p,is less than the critical failure probability pc.When p is higher than pc,the failure of units focus on the macroscopic-transfixion tension split plane,which is a dynamic attractor of Self-organized criticality.The critical failure probability pc and the unit capacity of bearing extemal load F is related to initial condition,pc as well as F/F_0,decrease with the increase of Self-organized extent parameterα,and furthermore,F/F_0<1. The failure stress of units decreases due to stress transfer.
     7.We testified the disaster of landslips have the character of SOC using the space distribution of landslips in a region,and analysis on sequence of velocity and time to a single landslip evolvement process.
     Landslides generally occur on the main slide surface whose strength is the lowest among multitudinous discontinuities.Traditional stability analysis methods for slide surface are mostly a kind of deterministic analysis based on the limit equilibrium theory of rigid body or improved limit equilibrium theory.Actually, slide surface is a kind of extended dissipative dynamical complex systems which vary in the time and space dimension,it exchanges substance,energy and information with outside environment.The evolvement process of slide surface is a self-organized criticality phenomenon which is far away from the equilibrium state.SOC is the dynamical attractor in the course of slide surface running through. By using pattern dynamic model,the "domino-effect" mode and the "chain reaction" process of slide surface failure was analyzed in this paper.A sort of auto-amplifying interactional joining process among damage units was described with deterministic,irreversible,non-linear,non-local and non-characteristic scale dynamic regulation.Distribution functions ofφ(p)andξ(p)were introduced to depict the distribution of rupture attractable area in phase space.At length,the possible destruction patterns of slide surfaces with different damage ratio were also discussed.
     8.Finally,this article analyzed the predictability of SOC and the apocalypse of the theory of SOC to forecast and prevention of disasters.
     Under the frame of theory of SOC,The precursor monitoring data of the debris flow disaster was processed and analyzed with a method of improved rescaled range analysis(RSH algorithm).And,a time window which contains sequences history and longtime memory information was defined when calculating Hurst index H.The method can predict debris flow disaster.
     From the angle of dependable design,we built a model of dependable analysis of the system of safeguard to a loose slope,and the model was applied to practice engineering.
引文
[1]P Bak.大自然如何工作[M].李炜,蔡勖.华中师范大学出版社,2001:12-18
    [2]於崇文.地质系统的复杂性(上)[M].地质出版社,2003:545-555
    [3]D.L.特科特.分形与混沌——在地质学和地球物理学中的应用[M].陈颙,郑捷,季颖.地震出版社,1993:36-53
    [4]王恩元,何学秋,刘贞堂.煤岩变形及破裂电磁辐射信号的R/S统计规律[J].中国矿业大学学报,1998,27(4):349-351
    [5]文志英,范爱华,文志雄,等.分形几何理论与应用[M].浙江科学技术出版社,1998:1-20
    [6]孙霞,吴自勤,黄昀.分形原理及应用[M].中国科学技术大学出版社,2003:216-235
    [7]张济忠.分形[M].清华大学出版社,1995:203-355
    [8]刘式达,刘式适.非线性动力学复杂现象[M].气象出版社,1989:1-15
    [9]伊.普里戈金.从存在到演化——自然科学中的时间及复杂性[M].曾庆宏,严士健.上海科学技术出版社,1987:1-30
    [10]黄润生.混沌及其应用[M].第2版.武汉大学出版社,2006:21-56
    [11]伯努瓦·B·曼德布罗特.大自然的分形几何学[M].陈守吉.上海远东出版社,1998:1-35
    [12]Per Bak,Chao Tang,Kurt Wiesenfeld.Self-organized Criticality[J].Physical Review A,1988,1(1):1364-1374
    [13]Per Bak,Kan Chen,Creutz M.Self-organized criticality in the 'Game of Life'[J].Nature,1989,342(6251):780-782
    [14]Per Bak,Kan Chen.Self-organized Criticality[J].Scientific American,1991,264(1):26-33
    [15]Per Bak,Chao Tang,Kurt Wiesenfeld.Self-Organized Criticality:An Explanation of 1/f Noise[J].Physical Review Letters,1987,59(4):381-384
    [16]Carmen P.C.Prado,Zeev Olami.Inertia and break of self-organizd criticality in sandpile cellular-automata models[J].Physical Review A,1992,45(2):665-669
    [17]D.A.Head,G.J.Rodgers.Crossover to self-organized criticality in an inertial sandpile model[J].Physical Review E,1997,55(3):2573-2579
    [18]Anita Mehta,G.C.Barker,J.M.Luck,R.J.Needs.The dynamics of sandpiles:The competing roles of grains and clusters[J].Physical A,1996,(224):48-67
    [19]Stefan Boettcher.Aging exponents in self-organized criticality[J].Physical Review E,1997,56(6):6466-6474
    [20]Maxim Vergetes.Self-organization at nonzero temperatures[J].Physical Review Letters,1995,75(10):1969-1972
    [21]Maxim Vergeles.Mean-field theory of hot sandpiles[J].Physical Review E,1997,55(5):6264-6265
    [22]Luis A.Nunes Amaral,Kent B(?)kgaard Lauritsen.Energy avalanches in a rice-pile model[J].Physica A,1996,(231):608-614
    [23]M.Bengrine,A.Benyoussef,F.Mhirech,S.D.Zhang.Disorder-induced phase transition in a one-dimensional model of rice pile[J].Physica A,1999,(272):1-11
    [24]S.Lubeck,K.D.Usadel.Numeric determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model[J].Physical Review E,1997,55(4):4095-4099
    [25]Shu-Dong Zhang.On the universality of a one-dimensional model of rice pile[J].Physics Letter A,1997,(233):317-322
    [26]S.S.Manna.Critical exponents of the sand pile models in two dimensions[J].Physica A,1991,(179):249-268
    [27]L.Pietronero,A.Vespignani,S.Zapperi.Renormalization scheme for self-organized criticality in sandpile models[J].Physical Review Letters,1994,72(11):1690-1693
    [28]Chao Tang,Per Bak.Critical exponents and scaling relations for self-organized critical phenomena[J].Physical Review Letters,1988,60(23):2347-2350
    [29]Yi-Cheng Zhang.Scaling theory of self-organized criticality[J].Physical Review Letters,1989,63(5):470-473
    [30]Asa Ben-Hur,Ofer Biham.Universality in sandpile models[J].Physical Review E,1996,53(2):R1317-R1320
    [31]Alessandro Vespignani,Stefano Zapperi,Luciano Pietronero.Renormalization approach to the self-organized critical behavior of sandpile models[J].Physical Review E,1995,51(3):1711-1724
    [32]Sergei Maslov,Maya Paczuski.Scaling theory of depinning in the Sneppen model[J].Physical Review E,1994,50(2):R643-R646
    [33]S.D.Edney,P.A.Robinson,D.Chisholm.Scaling exponents of sandpile-type models of self-organized criticality[J].Physical Review E,1998,58(5):5395-5402
    [34]Luis A.Nunes,Kent B(?)kgaard Lauritsen.Universality classes for rice-pile models[J].Physical Review E,1997,56(1):231-234
    [35]Maria de Sousa Vieira.Simple deterministic self-organized critical system[J].Physical Review E,2000,61(6):R6056-R6059
    [36]Maria Markosova.Universality classes for the ricepile model with absorbing properties[J].
    Physical Review E,2000,61(1):253-260
    
    [37]Stefan Hergarten,Horst J.Neugebauer.Self-organized criticality in two-variable models[J].Physical Review E,2000,61(3):2382-2385
    [38]S.N.Dorogovtsev,J.F.F.Mendes,Yu.g.Pogorelov.Bak-Sneppen model near zero dimension [J].Physical Review E,2000,62(1):295-298
    [39]Terence Hwa,Mehran Kardar.Dissipative transport in open system:an investigation of self-organized criticality[J].Physical Review Letters,1989,62(16):1813-1816
    [40]Alexei Vazquez,Oscar Sotolongo-Costa.Universality classes in the random-storage sandpile model[J].Physical Review E,2000,61(1):944-947
    [41]S.Lubeck.Large-scale simulations of the Zhang sandpile model[J].Physical Review E,1997,56(2):1590-1594
    [42]Hiizu Nakanishi,Kim Sneppen.Universal versus drive-dependent exponents for sandpile models[J].Physical Review E,1997,55(4):4012-4016
    [43]S.S.Manna.Critical exponents of the sand pile models in two dimensions[J].Physica A,1991,(179):249-268
    [44]Stefano Lise,Maya Paczuski.Self-organized.criticality and universality in a noncomservative earthquake model[J].Physical Review E,2001,63(3):036111-036115
    [45]Albert Diaz-Guilera.Noise,dynamics of self-organized criticality phenomena[J].Physical Review A,1992,45(12):8551-8558
    [46]Chao Tang,Per Bak.Mean-field theory of self-organized critical phenomena[J].Jounal of Statistical Physics,1988,51(5/6):797-802
    [47]Kim Christensen,Zeev Olami.Sandpile models with and without an underlying spatial stmcture[J].Physical Review E,1993,48(5):3361-3372
    [48]Henrik Flyvbjerg,Kim Sneppen,Per Bak.Mean field theory for a simple model of evolution[J].Physical Review Letters,1993,71(24):4087-4090
    [49]Stefano Zapperi,Kent B(?)kgaard Lauritssen,Eugene Stanley.Self-organizedbranching processes:mean-field theory for avalanches[J].Physical Review Letters,1995,75(22):4071-4074
    [50]Makoto Katori,Hirotsugu Kobayashi.Mean-field theory of avalanches in self-organized critical states[J].Physica A,1996,(229):461-477
    [51]Maxim Vergeles,Amos Maritan,Jayanth R.Banavar.Mean-field theory of sandpile[J].Physical Review E,1997,55(2):1998-2000
    [52]J.M.Carlson,J.T.Chayes,E.R.Grannan,G.H.Swindle.Self-organized criticality in sandpiles:
    nature of critical phenomenon[J].Physical Review A,1990,42(4):2467-2470
    
    [53]S.T.R.Pinho,C.P.C.Prado,S.R.Salinas.Complex behavior in one-dimensional sandpile models[J].Physical Review E,1997,55(3):2159-2165
    [54]Leo P.Kadanoff,Sidney R.Nagel,Lei Wu,Su-min Zhou.Scaling and universality in avalanehes[J].Physical Review A,1989,39(12):6524-6537
    [55]M.De Menech,A.L.Stella,C.Tebaldi.Rare events and breakdown of simple scaling in the Abelian sandpile model[J].Physical Review E,1998,58(3):R2677-R2680
    [56]Kim Christensen,Zeev Olami,Per Bak.Deterministic 1/f noise in nonconservative models of self-organized criticality[J].Physical Review Letters,1992,68(16):2417-2420
    [57]Albert Diaz-Guilera.Noise and dynamics of serf-organized criticality phenomena[J].Physical Review A,1992,45(12):8551-8558
    [58]Henrik Jeldtoft Jensen.Lattice gas as a model of 1/f noise[J].Physical Review Letters,1990,64(26)..3103-3106
    [59]B.Kaulakys,T.Meskauskas.Modeling 1/f noise[J].Physical Review E,1998,58(6):7013-7019
    [60]G.Grinstein,D.H.Lee,Subir Sachdev.Conservation laws,Anisotropy,and' serf-organized criticality' in noisy nonequilibrium systems[J].Physical Review Letters,1990,64(16):1927-1930
    [61]V.N.Skokov,A.V.Reshetnikov,V.P.Koverda,A.V.Vinogradov.Self-rganized criticality and 1/f noise at interacting nonequilibrium phase transitions[J].Physica A,2000,(293):1-12
    [62]Henrik Flyvbjerg.Simplest possible self-organized critical system[J].Physical Review Letters,1996,76(6):940-943
    [63]Hans-Henrik Stφlum.Flutuations at the self-organized critical states[J].Physical Review E,1997,56(6):6710-6718
    [64]Kurt Wiesenfeld,James Theiler,Bruce McNamara.Self-organized criticality in a deter -ministic automaton[J].Physical Review Letters,1990,65(8):949-952
    [65]A.Alan Middleton,Chao Tang.Self-organized criticality in nonconserved systems[J].Physical Review Letters,1995,74(5):742-745
    [66]Per Bak,Stefan Boettcher.Self-organized criticality and Punctuated equilibria[J].Physica D,1997,(107):143-150
    [67]Per Bak,Kim Sneppen.Punctuated equilibrium and criticality in a simple model of evolution[J].Physical Review Letters,1993,71(24):4083-4086
    [68]Emma Montevecchi,Attilio L.Stella.Boundary spatiotemporal correlations in a self -organized critical model of punctuated equilibrium[J].Physical Review E,2000,61(1):293-297
    [69]C.Adami.Selff-organized criticality in living systems[J].Physics Letters A,1995,(203):29-32
    [70]Tomoko Tsuchhiya,Makoto Katori.Proof of breaking of self-organized criticahty in a nonconservative Abelian sandpile model[J].Physical Review E.2000,61(2):1183-1188
    [71]Per Bak.Self-organized criticality in non-conservative models[J].Physica A,1992,(191):41-46
    [72]Peyman Ghaffari,Stefano Lise,Henrik Jeldtoft Jensen.Nonconservative sandpile models[J].Physical Review E,1997,56(6):6702-6709
    [73]E.N.Miranda,H.J.Hermann.Self-organized criticality with disorder and frustration [J].Physica A,1991,175:339-344
    [74]Sergei Maslov,Yi-Cheng Zhang.Self-organized critical directed percolation[J].Physica A,1996,(223):1-6
    [75]Horacio Ceva,Roberto P.J.Perazzo.From self-organized criticality to first-order-like behavior:A new type of percolation transition[J].Physical Review E,1993,48(1):157-160
    [76]A.M.Alencar,J.S.Andrade,L.S.Lucena.Self-organized percolation[J].Physical Review E,1997,56(3):R2379-R2382
    [77]S.Clar,B.Drossel,K.Schenk,F.Schwabl.Self-organized criticality in forest-ftre models[J].Physica A,1999,(266):153-159
    [78]Barbara Dmssel,Siegfried Clar,Franz Schwabl.Cmssover from percolation to selforganized criticality[J].Physical Review E,1994,50(4):R2399-R2402
    [79]Kim Christensen,Henrik Flyvbjerg,Zeev Olami.Self-organized critical forest-fire model:mean-field theory and simulation results m 1 to 6 dimensions[J].Physical Review Letters,1993,71(17):2737-2740
    [80]C.Vanderzande,F.Daerden.Dissipative Abelian sandpiles and random walks[J].Physical Review E,2001,63(3):030301-030304
    [81]K.I.Hopcraft,E.Jakeman,R.M.Tanner.Characterization of structural reorganization in rice piles[J].Physical Review E,2001,64(1):016116-016125
    [82]Eric Bonabeau.Scale-Free Networks[J].Journal of the Physical Society of Japan,64(1):327-328
    [83]R.R.shcherbakov,V.I.V.Papoyan,A.Mpovolotsky.Critical dynamics of self-organizing Eulerian walkers[J].Physical Review E,1997,55(3):3686-3688
    [84]R.Vilela Mendes.Characterizing self-organization and coevolution by ergodic invariants [J].Physica A,2000,276:550-571
    [85]Maya Paczuski,Sergei Maslov,Per Bak.Avalanche dynamics in evolution,growth,and depinning models[J].Physical Review E,1996,53(1):414-443
    [86]E.M.Blanter,M.G.Shnirman.Simple hierachical systems:Stability,self-organized criticality,and catastrophic behavior[J].Physical Review E,1997,55(6):6397-6403
    [87]J.Rosendahl.M.Vekic,J.E.Rutledge.Predictability of large avalanches on a sandpile[J].Physical Review Letters,1994,73(4):537-540
    [88]Peter Bantay and Imre M.Janosi.Avalanche Dynamics from anomalous diffusion.Physical Review Letters,1992,68(13):2058-2061
    [89]J.E.S,Socolar,G.Grinstein.On self-organized criticality in nonconserving systems[J].Physical Review E,1993,47(4):2366-2376
    [90]N.Vandewalle,H.Puyvelde,M.Ausloos.Self-organized criticality can emerge even if the range of interactions is infinite[J].Physical Review E,1998,57(1):1167-1170
    [91]L.Pietronero,P.Tartaglia,Y.C.Zhang.Theoretical studies of self-organized criticality[J].Physical A,1991,(173):22-44
    [92]Sergei Maslov,Maya Paczuski,Per Bak.Avalanches and 1/f noise in evolution and growth models[J].Physical Review Letters,1994,73(16):2162-2165
    [93]Alvaro Corral,Albert Diaz-Guilera.Symmetries and fixed point stability of stochastic differential equations modeling serf-organized self-organized criticality[J].Physical Review E,1997,55(3):2434-2445
    [94]J.M.Carlson,J.T.Chayes.E.R.Grannan,G.H.Swindle.Self-organized criticality and singular diffusion[J].Physical Review Letters,1990,65(20):2547-2550
    [95]S.P.Obukhov.Self-organized criticality:goldstone modes and their interactions[J].Physical Review Letters,1990,65(12):1395-1398
    [96]Maria de Sousa Vieia.Are avalanches in sandpiles a chaotic phenomenon?[J].Physica A,2004,340:559-565
    [97]B.Gaveau,Moreau,J.T.oth.Scenarios for self-Organized Criticality in Dynamical Systems [J].Open Sys.& Information Dyn,2000,(7):297-308
    [98]Bak P,Tang C.Earthquakcs as a self-organized critical phenomenon[J].J.G.R,1989,94(B11):15635-15637
    [99]Christopher Cramer Barton,P.R.La Pointe.Fractals in the Earth Sciences[M].Kluwer Academic Publishers,1995:110-210
    [100]S.Hainzl,G.Zoller,J.Kurths,J.Zschau.Seismic quiescence as an indicator for earthquakes in a system of self-organized criticality[J].Geophys Res Lett,2000,27(5):597-600
    [101]Z.Olami,H.J.S Feder,K Christensen.Self-organized criticaliy in a continious,norr conservative cellular alltomaton modelling earthquakes[J].Phy.Rhys.Rev.Lett,1992,(68):1244-1247
    [102]J.M.Carlson,J.T.Chayes.E.R.Grannan,G.H.Swindle.Self-organized criticality and singular diffusion[J].Physical Review Letters,1990,65(20):2547-2550
    [103]S.P.Obukhov.Self-organized criticality:goldstone modes and their interactions[J].Physical Review Letters,1990,65(12):1395-1398
    [104]D.D'Ambrosio,S.Di.Gregorio,S.Gabriele,et al.A Cellular Automata Model for Soil Erosion by Water[J].Phys.Chem.Earth,2001,26(1):33-39
    [105]Brace D,Malamud,Gleb Morein,Donald L,Turcotte.Forest Fires:An Example of Self-Organized Critical Behavior[J].Science,1998,(281):1840-1841
    [106]Donald L Turcotte.Self-Organized Criticality[J].Rep.Prog.Phys.1999,(62):1377-1429
    [107]Johansen A.Spatio-temporal self-organization in a model of disease spreading[J].Physica D,1994,(78):186-193
    [108]Rhodes C J,Anderson RM.Power laws governing epidemics in isolated populations[J].Nature,1996,381(6583):600-602
    [109]Schenk K,Drossel B,Clar S,Schwabl F.Finite-size effects in the self-organized critical forest-fire model[J].J Eur Phys,2000,(15):177-185
    [110]Clar S,Drossel B,Schwabl F.Scaling laws and simulation results for the self-organized critical forest-fire model[J].Phys Rev E,1994,(50):1009-1018
    [111]Drossel B,et al.Self-Organized Critical Forest Fire Model[J].Phys Rev Lett,1992,69(11):1629-1992
    [112]Drossel B,Schwalb F.Forest-fire model with immune trees[J].Physica A,1993,199(2):183-197
    [113]Albano E.V.Spreading analysis and finite-size scaling study of the critical behavior of a forest fire model with immune trees[J].Physica A,1995,(216):213-226
    [114]Biham O,Middleton A A,Levine D.Self-organization and dynamical transition in traffic-flow models[J].Phys Rev,1992,(A46):6124-6127
    [115]Hard J,Pomeau.Y,de.Pazzis.O.Time Evolution of a Two dimension Model System[J]. Jounal of Mathematic Physics,I973,(14):1746-1759
    [116]Scheidegger A E.On prediction of the reach and veiocity of catastrophic landslides[J].Rock Mechancis,1973,(5):231-236
    [117]Donald L Turcotte,Bruce D Malamud.Landslides forest fires,and earthquakes examples of self-organized critical behavior[J].Physica A,2004,(340):580-589
    [118]Giusebbe Consolini.Paola De Michelis.A revised forest-fire cellular automaton for the nonlinear dynamics of the Earth's magnetotail[J].Journal of Atmospheric and Solar-Terrestrial Physics,2001,(63):1371-1377
    [119]L.da Silva,A.R.R.Papa.A.M.C.de Souza[J].Phys.Lett.A,1998,(242):343
    [120]Crosby N,Vilmer N,Lund N,Sunyaev R.Astron[J].Astrophys.1998,(334):299
    [121]A.Bershadskii,K.R.powerful.X-ray flares,Sreenivasan.Multiscale self-organized criticality and Eur[J].Phys.J.B,2003,3(5):513-515
    [122]L.de Arcangelisa,H.J.Herrmannb.Self-organized criticality on small world networks[J].PhysicaA,2002,(308):545-549
    [123]J.C.Sprott.Competition with evolution in ecology and finance[J].Physics Letters A,2004,(325):329-333
    [124]Per Bak,Kan Chen,Jose Scheinkman and Michael Woodford.Aggregate Fluctuations from Independent Sectoral Shocks:Self-Organized Criticality in a Model of Production and Inventory Dynamics[D].working paper,1992:21-111
    [125]陈嵘,艾南山,李后强.地貌发育与汇流的自组织临型性[J].水土保持学报,1993,7(4):9-12
    [126]罗德军,艾南山,李后强.泥石流暴发的自组织临界现象[J].山地研究,1995,13(4):213-218
    [127]王裕宜,詹钱登,陈晓清,等.泥石流体的应力应变自组织临界特性[J].科学通报,2003,48(9):976-980.
    [128]安镇文.地震孕育过程的物理学研究展望[J].国际地震动态,1999,(5):12-15
    [129]张书东,黄祖洽.地震和地震预报理论研究中的几个问题[J].物理,1997,26(7):416-422
    [130]宋卫国,汪秉宏,舒立福.自组织临界性与森林火灾系统的宏观规律性[J].中国科学院研究生院学报,2003,20(2):205-211
    [131]宋卫国,范维澄,汪秉宏.整数型森林火灾模型及其自组织临界性[J].火灾科学,2001,10(1):53-56
    [132]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[M].电网技术,2005, 29(15).1-5
    [133]鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化,2005,29(12):93-97
    [134]于群,郭剑波.电网停电事故的自组织临界性及其极值分析[J].电力系统自动化,2007,31(3):1-3,90
    [135]夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析[J].电力系统自动化,2007,31(12):12-18,91
    [136]邱秀梅,王连国.断层采动型突水自组织临界特性研究[J].山东科技大学学报(自然科学版),2002,21(1):59-61
    [137]许强,黄润秋.岩石破裂过程的自组织临界特征初探[J].地质灾害与环境保护,1996,7(1):25-30
    [138]尹光志,代高飞,万玲,等.岩石微裂纹演化的分岔混沌与自组织特征[J].岩石力学与工程学报,2002,21(5):635-639
    [139]张玉海,郭治安.客运模型自组织临界性的研究[J].西北建筑工程学院学报,1996,(3):12-17
    [140]汪秉宏,毛丹,王雷,等.交通流中的自组织临界性研究[J].广西师范大学学报(自然科学版),2002,20(1):45-51
    [141]於崇文.固体地球系统的复杂性与自组织临界性[J].地学前缘,1998,5(3):159-182
    [142]史玲娜,王宗笠.自组织现象的热力学分析[J].四川大学学报(自然科学版),2004,41(6):1197-1200
    [143]韩瑛,佟天波,刘天华.自组织临界性一维砂堆模型中微观态的等几率假设[J].辽宁大学学报,1997,24(3):69-74.
    [144]童培庆.自组织临界现象的计算机模拟[J].南京师大学报(自然科学版),1994,17(2):26-29
    [145]周海平,蔡绍洪,王春香.含崩塌概率的一维沙堆模型的自组织临界性[J].物理学报,2006,55(7):3356-3359
    [146]中国灾害防御协会铁道分会,中国铁道学会水工水文专业委员会.中国铁路自然灾害及其防治[M].中国铁道出版社,2000:5-27
    [147]Yao Lingkan,Huang Yuan,Lu Yang.Self-organized criticality and its application in the slope disasters under gravity[J].Science in China Ser.E Technological Sciences,2004,46(1):10-21
    [148]何振宁.区域工程地质与铁路选线[M].中国铁道出版社,2004.3-37
    [149]刘传正.南昆铁路八渡滑坡成因机理新认识[J].水文地质工程地质,2007,(5):1-5
    [150]崔鹏,林勇明,蒋忠信山区道路泥石流滑坡活动特征与分布规律[J].公路,2007,(6):77-82
    [151]Glenn A.Held,Experimental Study of Critical-Mass Fluctuations in an Evolving Sandpile[J].Physical Review Letters,1990,65(9):1120-1123
    [152]Frette V,Malthe-Soressen K C A.Jφssang J F T et al.Avalanche dynamics in a pile of rice [J].Nature,1996,379(27):49-52
    [153]Bretz M,Cunningham J B,Kurczvnski P L,etal.Imaging of avalanches in Granular materials[J].Physical Review Letters,1992,69(16):2431-2434.
    [154]P.Evesque,D.Fargeix,P.Habib,M.P.Luong and P.Porion.Pile density is a control parameter of sand avalanches[J].Physical Review E,1993,7(4):2326-2332
    [155]E.Morales-Gamboa,J.Lomnitz-adler and V.Romero-Rochin,R.Chicharro-Serra and R.Peralta-Fabi.Two-dimensional avalanches as stochastic Markov processes[J].Physical Review E,1993,47(4):2229-2232
    [156]J.Rosendahl,M.Vekic,J.Kelley.Persistent self-organization of sandpiles[J].Physical Review E,1993,47(2):1401-1404
    [157]刘信安,周佩雯,陈双扣.沙堆实验的自组织临界性与水华暴发行为的关系研究[J].自然科学进展,2006,16(3):338-343
    [158]刘信安,陈双扣,谢昭明,等.沙堆实验研究三峡库区典型水域环境的水华污染行为[J].生态环境,2005,14(4):530-535
    [159]刘信安,马艳娥,陈双扣,等.用准真实沙堆模型的自组织临界特性研究流域水华暴发行为[J].自然科学进展,2005,15(12):1441-1446
    [160]刘信安,梁剑锋.用胞映射方法研究乌江流域水华爆发的演变行为[J].自然科学进展,2004,14(3):288-293
    [161]YAO Lingkan,FANG Duo.On the Self-organized criticality of non-uniform sands[J].International Journal of Sediment Research,1998,13(3):19-24
    [162]姚令侃,方铎.非均匀沙自组织临界性及其应用研究[J].水利学报,1997,(3):26-32
    [163]李远富,姚令侃,邓域才.单面坡沙堆模型自组织临界性实验研究[J].西南交通大学学报,2000,35(2):121-125
    [164]蒋良潍,姚令侃,李仕雄.非均匀散粒体自组织临界性机制初探[J].岩石力学与工程学报.2004,23(18):3178-3184
    [165]李仕雄,姚令侃,蒋良潍.影响沙堆自组织临界性的内因与外因[J].科技通报,2003,19(4):278-281
    [166]姚令侃,黄渊,陆阳.自组织临界性及其在斜坡重力作用灾害研究中的应用[J].中国 科学(E辑),2003,增刊,17-27
    [167]李仕雄,姚令侃,蒋良潍.灾害研究中的自组织临界性与判据[J].自然灾害学报,2003,12(4):82-87
    [168]李仕雄,姚令侃,蒋良潍凇散边坡演化特征及其应用[J].四川大学学报(工程科学版)2004,(2):7-11
    [169]蒋良潍,姚令侃,李仕雄.溜砂坡防治工程安全系数实验探索[J].中国地质灾害与防治学报,2004,5(2):74-77
    [170]李仕雄,姚令侃,蒋良潍.临界状态下沙堆大规模坍塌机制分析[J].西南交通大学学报,2004,39(3):366-370
    [171]姚令侃,李仕雄,蒋良潍.自组织临界性及其在散粒体研究中的应用[J].四川大学学报,2003,35(1):8-14
    [172]何越磊,姚令侃,苏凤环.斜坡灾害自组织临界性及极值分析[J].中国铁道科学,2005,26(2):15-19
    [173]何越磊,姚令侃,苏凤环.沙堆模型动力学特性与灾害系统演化预测研究[J].自然灾害学报,2005,14(4):44-50
    [174]李炜.演化中的标度行为和雪崩动力学[D].华中师范大学博士学位论文.2001,100-108
    [175]仪垂祥.非线性科学及其在地学中的应用[J].气象出版社,1995,53-60
    [176]艾南山.侵蚀流域系统的信息熵[J].水土保持学报,1987,1(2):1-7
    [177]王晓朋,潘懋,任群智.基于流域系统地貌信息熵的泥石流危险性定量评价[J].北京大学学报(自然科学版),2007,43(2):211-215
    [178]周成虎,张健挺.基于信息熵的地学空间数据挖掘模型[J].中国图象图形学报,1999,4(A版)(11):946-951
    [179]张继国,刘新仁.降水时空分布不均匀性的信息熵分—(Ⅰ)基本概念与数据分析[J].水科学进展,2000,11(2):133-137
    [180]何宗海.陕西省地震活动信息熵值的动态分布[J].西安矿业学院学报,1995,15(3):246-248,255
    [181]苏凤环,姚令侃,何越磊散粒体的自组织临界性与非均匀介质的元胞自动机模型[J].岩石力学与工程学报,2005,24(23):4239-4246
    [182]高召宁,姚令侃,苏凤环,等.大尺度散体组构分维和SOC判据研究[J].水土保持通报,2007,27(1):86-91
    [183]杨更社,刘增荣.岩石爆破块度分布的分形结构[J].西安矿业学院学报,1994,(2):120-124
    [184]Tureotte D L.Fractals and Fragmentation[J].Journal of Geophysical Research,1986,91(B2):1921-1926
    [185]谢和平,D.J.Sanderson.断层分形分布之间的相关关系[J].煤炭学报,1994,19(5):445-449
    [186]苏凤环,姚令侃,高召宁.分形元胞自动机在自组织临界性中的应用[J].西南交通大学学报,2006,41(6):675-679
    [187]陈颐,陈凌.分行几何学[M].第二版.地震出版社,2005,163-165
    [188]Gutenberg,B.Richter,C.F.Seismicity of the Earth and Associated Phenomena[J].2~(nd)ed.Princeton.NJ:Princeton Univ.Press,1954:23-121
    [189]Grasso J.R,Somette D.Testing self-oraganized criticality by induced seismicity[J].J.Geophys.Res,1998,(103):29965-29987
    [190]Main.I.Statitical physics,seismogenesis and seismic hazard[J].Rev.Geophys,1996,(34):433-462
    [191]中国地震学会地震地质专业委员会.中国活动断层研究[M].地震出版社,1994,1-15
    [192]Ito K.Towards a new view of earthquake phenomena[J].Pageoph,1992,138:531-548
    [193]Ito K,Matsuzaki M.Earthquake as self-organized critical phenomena[J].J.Geophys.Res,1990,95:6853-6860
    [194]K.Ito.地震现象的新观点[J].世界地震译丛,1995,(3):28-36
    [195]Kagan Y Y,Knopoff L.Spatial distribution of earthquakes:the two-point correlation function[J].Geophys.J.R.astr.Soc,1980,(62):303-320
    [196]Kagan Y Y.Spatial distribution of earthquakes:the three-point moment function[J].Geophys.J.R.astr.Soc,1981,(67):697-717
    [197]汤超.地震作为一种复杂现象[J].世界地震译丛,1993,(1):46-50
    [198]Kagan Y Y,Knopoff L.stochastic synthesis of earthquake catalogs[J].J.Geophys.Res,1981,(86):2853-2862
    [199]Hirabayashi T,et al.Multifractal analysis of earthquake[J].Pageoph,1992,(138):591-610
    [200]Hirata T.Multifractal analysis of spatial distribution of microearthquakes in the Kanto region[J].Geophys.J.Int,1991,(107):155-162
    [201]顾功叙.中国地震目录[M].科学出版社,1983:665-856
    [202]楼宝裳.中国古今地震灾情总汇[M].地震出版社,1996:1-272
    [203]中国地震局监测预报司.1996~2000中国大陆地震灾害损失资料汇编[M].地震出版社,2001:1-386
    [204]傅征祥,刘桂萍,邵辉成,等.中国大陆百年(1901~2001年)浅源强震活动及生命损失回顾与分析[J].地震学报,2005,27(4):367-376
    [205]傅征祥,邵辉成,丁香.中国大陆浅源强震分布与地球自转速率变化的关系[J].地震,2004,24(3):15-20
    [206]姚立殉,虞雪君.地震断裂系统的分形和在地震预报中的应用[J].西北地震学报,1993,15(3):25-32
    [207]国家地震局地质研究所,国家地震局地震研究所.中国卫星影象地震构造判读图[M].中国地图出版社,1980:21-48
    [208]国家地震局地质研究所.郯庐断裂[M].地震出版社,1987:198-199
    [209]丁国瑜.活断层分段——原则、方法及应用[M].地震出版社,1993:55-57
    [210]卢春生,白以龙.材料损伤断裂中的分形行为[J].力学进展,1990,20(4):468-477
    [211]Pende C S,et al.Fractal characterization of fracture surfaces[J].Acta Metaii,1987,35(7):1633-1637
    [212]Underwood E E,Banerji K.Invited review fractals in fractography[J].Material Sci.&Engng,1986,(80):1-14
    [213]谢和平,陈至达.分形几何与岩石断裂[J].力学学报,1988,20(3):264-275
    [214]穆在勤,龙期威.金属断裂表面的分形与断裂韧性[J].金属学报,1988,24(2),142-145
    [215]谢和平.分形—岩石力学[J].第二版.科学出版社,2005:200
    [216]丁遂栋.断裂力学[M].机械工业出版社,1997:103
    [217]Suyehiro S,Asada T,Ohtake M.Foreshocks and aftershocks accompanying a perceptible earthquake in central Japan[J].Pap,Met,Geophys,1964,(15):71-88
    [218]Vinogradov S D.On the distribution of the number of fracture independence on the energy librated by the destruction of rocks[J].Bull,Acad,Sci,USSR,Geoph,Scr,1959,1292-1293
    [219]Mogi K.Study of elastic shocks caused by the fracture of heterogeneous materials and it's relations to earthquake phenomena[J].Bull,Earthq,Res;Inst,1962,(40):125-173
    [220]Scholz C H.The frequency-magnitude relation of microfracturing in rock and it's relation to earthquake[J].Bull.Seismol.Soc.Am,1968,58:399-415
    [221]尹样础,李世愚,李红,等.从断裂力学观点探讨b值的物理实质[J].地震学报,1987,9(4):364-374
    [222]Rudnicki J W,H.Kanarnori.Effects of fault interaction on moment,stress drop and strain energy release[J].J.Geophys.Res,1981,86(B3):1785-1793
    [223]Rice J R.An examination of the fracture mechanics energy balance from the point of view of continuum mechanics,Proceeding of the 1-st international conference of fracture,ed.T.Yokobori,Japanese Soc.for Strength and Fracture,Sendai,Japan,1966:283-308
    [224]Mogi K.Regional variations in magnitude-frequency relation of earthquake[J].Bull.Earthquake Res.Inst,1976,(45):313-325
    [225]李纪汉.b值影响因素的初步研究[J].地震学刊,1987,(2):49-53
    [226]Scholz C.H.The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes[J].Bull.Scismol.Soc.Am,1968,(58):399-415
    [227]梁劳,李纪汉,耿乃光.用高震级b值与低震级b值之比预报地震的可能性[J].地震学刊,1989,(1):36-44
    [228]Aki K.A probabilistic synthesis of precursory phenomena,Earthquake Prediction,An International Review[J].ed.D.W.Simpson and P.G.Richards,A.G.U.Washington,D.C,1981:344-355
    [229]Aki K.The use of a physical model of fault mechanics for earthquake prediction,On Continental Seismicity and Earthquake Prediction[J].Seismological Press,1982,(32):34-35
    [230]Fonseka G M,S A F Murrell,P.Barnes.Scanning electron microscope and acoustic emission studies of crack development in rocks,Int.J.Rock Mech.Min.Sci.and Geomech.Abstr,1985,(22):273-289
    [231]Geller R,Jackson D,Kagan Y,Mulargia F.Earthquakes cannot be predicted[J].Scienee,1997,(275):1616-1617
    [232]Wyss M.Cannot Earthquakes be predicted?[J].Science,1997,(278):487-0488.
    [233]Ito K,Matsuzaki M.Earthquake as Self organized critical phenornena[J].J.Geophys.Res,1990,(95):6853-6860
    [234]Sornette D,Davy P,Somette A.1 Structuration of the lithosphere in plate tectonics as self organized critical phenomenon[J].J.Geophys.Res,1990,(95):17353-17361
    [235]Sornette D,Somette A.Self organized criticality and Earthquakes Europhys[J].Lett,1989,(9):197-202
    [236]Olami Z,Feder H J.S,Christensen K.Self organized criticality in a continious,non-conservative cellular automaton modeling Earthquakes[J].Phys.Rev.Lett,1992,(68):1244-1247
    [237]吴忠良.自组织临界性与地震预测——对目前地震预测问题争论的评述(之一)[J].中国地震,1998,14(4):1-10
    [238]王军,倪晋仁,杨小毛.重力地貌过程研究的理论与方法[J].应用基础与工程科学学 报,1999,7(3):240-251
    [239]Richard Hogg.Science and Technology of Granular System[J].Earth and mineral science,1989,58(1):1-5
    [240]Campbell C S.Rapid Granular Flows[J].Ann Rev Mech,1990,(22):57-92
    [241]Bagnold R A.Experiments on a gravity-free dispersion of large solid particles in a Newtonian fluid under shear[J].Proc R Soc Lond A,1954,(225):49-63
    [242]Ogawa S.Multitempreture theory of granular materials.In:Gukujutsu,Bunken,Fukyukai eds.Proc US-Jpn Semin Contm Mech and Stat Approaches Mech.Granular Meter.Tokyo:Gukujutsu Bunken Fukyukai,1978:208-217
    [243]Spencer A J M.Deformation of ideal granular materials.In:Hopkins H G ed.Rodney Hill Anniversary Volume.Oxford:Pergamon,1982:607-652
    [244]孟庆国.力学学科现状与展望[R].国家自然科学基金委员会,2005:32-81
    [245]Savage S B,Jeffery D J.the stress tensor in a granular flow at high shear rates[J].J Fluid Mech,1981,(110):255-272
    [246]陆坤权,刘寄星.颗粒物质(上)[J].物理,2004,33(9):629-635
    [247]P G de Gennes.Granular Mattera tentative view[J].Rev.Mod.Phys.1999,71(1):435
    [248]吴清松,胡茂彬.颗粒流的动力学模型和实验研究进展[J].力学进展,2002,32(2):250-258
    [249]Spencer A J M.A theory of the kinematics of ideal soils under plane strain conditions[J].J Mech Phys Solids,1964,(12):337-351
    [250]Spencer A J M.Plastic Flow past a smooth cone[J].Acta Mechanica.1984,(54):63-74
    [251]Spencer A J M.Axially symmetric flow of granular materials[J].Solid Mech Arch.1986,(11):185-198
    [252]Harris D.A unified formulation for plasticity models of granular and other materials[J].Proc R Soc Lond A,1995,(450):37-49
    [253]王光谦,倪晋仁.颗粒流研究评述[J].力学与实践,1992,14(1):7-18
    [254]王光谦,熊刚,方红卫.颗粒流动的一般本构关系[J].中国科学(E辑),1998,28(3):282-288
    [255]郭庆国.粗粒土的工程特性及应用[M].黄河水利出版社,1998:11-16
    [256]中华人民共和国行业标准.土工试验规程(SL237-1999)[M].中国水利水电出版社,1999:418-453
    [257]夏蒙棼,韩闻生,柯孚久,等.统计细观损伤力学和损伤演化诱致突变[J].力学进展,1995,25(1):1-23
    [258]Xie H P.Studies on fractal models of the micro-fracture of marble[J].Chinese Sci.Bulletin,1989,34(15):1292-1296
    [259]孙均.岩土材料流变及其工程应用[M].中国建筑工业出版社,1999:22-62
    [260]袁龙蔚.论裂纹扩展过程中的流变与耗散现象[J].力学进展,1989,19(1):1-63
    [261]宋德彰.岩质材料非线性流变属性及其力学模型[J].同济大学学报,1991,19(4):395-401
    [262]许强,黄润秋.岩石破裂过程的自组织临界性初探[J].地质灾害与环境保护,1996,7(1):25-30
    [263]Smalley R F,Turcotte D L,Sola S A.Arenormalization group approach to the stick-slip behavior of faults[J].J.Geophys.Res,1985,(90):1884-1900
    [264]王连国,宋扬.煤层底板突水自组织临界特性研究[J].岩石力学与工程学报,2002,21(8):1205-1208
    [265]郑文衡,郭大庆,石特临.自组织临界现象和重整化群方法在中期地震预报中的应用研究[J].西北地震学报,1994,16(2):1-11
    [266]特科特D L.分形与混沌—在地质学和地球物理学中的运用[M].陈颐,郑捷,季颖.地震出版社,1993:185-190
    [267]Krajcinovic D,Silva M A G.Statisticai aspects of the continuous damage theory[J].Int.J.Solids Structures,1982,18(7):551-562
    [268]黄润秋,许强.工程地质广义系统科学分析原理及应用[M].地质出版社,1997:121-241
    [269]马胜利,雷兴林,刘力强.标本非均匀性对岩石变形声发射时空分布的影响及其地震学意义[J].地球物理学报,2004,47(1):127-131
    [270]艾南山,朱治军,李后强.外营力地貌作用随机特性和分形布朗地貌的稳定性[J].地理研究,1998,17(1):23-30
    [271]Howard A D.Geomorphological systems,Equilibrium and Dynamics[J].Am J Sci,1965,(263):302-312
    [272]Hergarten S,Neugebauer H.J.Self-organized criticality in landslides[J].Geophysical Rese arch Letters,1998,25(6):801-804
    [273]CzriokA,Somfai E,Vicesk T.Fractal scaling and power-law landslide distribution in a micromodel of geomor-phological evolution[J].Geologisehe Rundschau,1997,86(3):525-530
    [274]Hovius N,Stark C P,Allen PA.Sediment flux from a mountain belt derived by landslide mapping[J].Geology,1997,25(3):231-234
    [275]陈志新,倪万魁.延安滑坡及其灾害防治[M].西安地图出版社,2002:43-176
    [276]刘开云,乔春生,滕文彦.边坡位移非线性时间序列采用支持向量机算法的智能建模与预测研究[J].岩土工程学报,2004,24(1):57-61
    [277]夏蒙棼,白以龙,柯孚久.损伤断裂图型演化的统计描述[J].中国科学,1994,24(1):38-43
    [278]Lemaitre J.How to use damage mechartics[J].nuclear Engineering and Design.1984,(80):233-245
    [279]王裕宜,詹钱登,韩文亮,等.泥石流暴发的应力自组织临界特性[J].自然灾害学报,2002,11(3):39-43
    [280]罗德军,李后强,艾南山.泥石流暴发的自组织临界现象[J].山地研究,1995,13(4):213-218
    [281]WANG Biquan,HUANG Hanming,FAN Hongshun,et al.Research on Nonlinear R/S Method and its Application in Earthquake Prediction[J].Acta Seismologica Sinica,1995,8(4):653-558
    [282]CHEN Peiyan.Application of the value of nonlinear parameters H and △ H in strong earthquake prediction[J].Acta Seismologica Sinica,1997,19(2):145-153
    [283]付昱华,付安捷.改进的R/S方法与中国火灾数据的分析预测[J].中国工程科学,2004,6(5):39-44.
    [284]蒋忠信,姚令侃,艾南山,等.铁路泥石流非线性研究与防治新技术[M].四川科学技术出版社,1999:243-431
    [285]宋保维.系统可靠性设计与分析[M].西北工业大学出版社,2000.111-142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700