新型杂萘联苯聚芳醚光波导材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的无机光波导材料及相关光子集成器件虽具有光损耗低和光学性能稳定等优点,但其制备工艺过程复杂、成本高,这在某种程度上制约了其应用的普及,这一点在特别关注器件和系统成本的各种局域光通信网的应用中显得尤为突出。而有机聚合物材料以其成本低、成膜性好、材料的光学性能易调控、器件制备工艺简单且易集成等优点,使之在实现低成本、高性能光子器件中成为国际前沿研究的热点,并在新一代全光网络等领域展现出广阔的市场应用前景。然而,虽然有机聚合物光波导材料的研究得到了极大重视,采用不同聚合物材料制备的相关光子学功能器件已显示了在器件制作工艺和成本方面的显著优势,但目前研究仍处于初期阶段,实现折射率的精确调控、低光损耗、低双折射并具备良好的热稳定性是人们极为关注并正在致力解决的关键问题。本论文将二氮杂萘酮联苯结构引入聚芳醚主链中,合成了一系列新型含二氮杂萘酮联苯结构(氟代)聚芳醚,系统研究了聚合物分子结构与性能的内在关系,以期满足光波导器件对材料性能的要求,并为发展高性能光子学器件提供一类新型聚合物基光波导基础材料。
     本文首先以二氮杂萘酮联苯酚单体(DHPZ)与二氯二苯砜(DCS)、二氟酮(DFK)/双酚S(BPS)为原料,合成了一系列含杂萘联苯结构的聚芳醚(酮)砜共聚物PPEKS和PPESs;所合成的聚合物均具有优异的耐热性能(玻璃化转变温度T_gs:224~289℃,氮气保护下1%的热失重温度T_(d1%)s:446~494℃)以及良好的溶解性能;对所合成材料的旋涂成膜工艺进行了系统研究,通过优化工艺,成功制备了性能良好的波导薄膜,并对薄膜的光学特性进行了测试和表征。结果表明,PPEKS在光纤通信波段具有较高的折射率(TE模,1310nm:1.656;1550nm:1.653)、较大的热光系数(dn/dT)(TE模,1310nm:-1.21×10~(-4)/℃;1550nm:-1.22×10~(-4)/℃)以及较低的光损耗(1310nm:0.24dB/cm;1550nm:0.52dB/cm);通过控制单体的投料比,聚合物在波长为1310nm和1550nm处的折射率(TE模)可以分别在1.622~1.656以及1.619~1.653之间进行有效调控。
     将可交联基团四氟苯乙烯成功引入到了含二氮杂萘酮联苯结构聚芳醚酮砜主链中,制得了含四氟苯乙烯和二氮杂萘酮联苯结构单元的新型可交联聚芳醚酮砜(FSt-PPEKS);通过旋涂法制备了用于光波导制作的高性能聚合物薄膜,研究了薄膜的固化工艺,结果表明,FSt-PPEKS在1wt%过氧化二异丙苯(DCP)的引发作用下,在真空烘箱中于160℃下处理4hr可以取得较好的固化效果;固化后,其T_g和T_(d1%)分别由261℃、494℃进一步提高至292℃和508℃;双折射系数则由0.02降至0.007。
     以二氮杂萘酮联苯酚单体(DHPZ)与六氟双酚A(6F-BPA)和十氟联苯(DFBP)为原料,利用KF与CaH_2作催化剂,合成了一系列新型含二氮杂萘酮联苯结构氟代聚芳醚(FPPEs);所合成的FPPEs均有良好的耐热性(T_gs:185~269℃,T_(d1%)s:487~510℃)及溶解性;对材料光学性能的测试结果表明,该类材料具有较低的光损耗(1550nm:<0.24dB/cm)、较大的热光系数(dn/dT)(TE模,1310nm:-0.96×10~(-4)~-1.25×10~(-4)/℃;1550nm:-0.96×10~(-4)~-1.29×10~(-4)/℃),此外,通过控制单体的投料比,FPPEs在波长为1310nm和1550nm处的折射率(TE模)可以分别在1.499~1.575和1.498~1.575之间进行有效调控。
     合成了含四氟苯乙烯和二氮杂萘酮联苯结构单元的氟代可交联聚芳醚(FSt-FPPE);DSC和TGA的测试结果表明,FSt-FPPE具有良好的耐热性能,其T_g及T_(d1%)分别为237℃和486℃,固化后可分别进一步提高至253℃和497℃;通过热固化,其双折射从0.022降至0.005。
Although the inorganic optical materials have the advantages of low optical loss and high optical stability,the high cost of manufacturing technology restricted their further application in optical waveguide,especially in the application of local area network.Polymeric optical materials,with easy and rapid processability,good compatibility with semiconductor materials and facile controllability of optical properties,have addressed the demand for photonic components that meet economic criteria as well as technical requirements in telecom and datacom industries.Although a wide range of optical waveguide devices based on different polymeric materials have been demonstrated,the important material properties, precise controllability of refractive index,low optical loss,low birefringence,and sufficient thermal stability,are still required for successful design and fabrication of photonic devices. In this work,a series of novel(fluorinated) poly(aryl ether)s containing phthalazinone moieties were synthesized,and the relationship of the properties with the composition of the polymers were also investigated.And our efforts focused on investigating the potential of the synthesized polymers in optical waveguide applications.
     A series of novel poly(phthalazinone ether(ketone) sulfone)(PPEKS and PPESs) have been prepared by the nucelophilic reaction of 4-(4-hydroxyphenyl)-phthlazin-1(2H)-one (DHPZ),4,4'-bis(4-chlorophenyl)sulfone(DCS),and 4,4'-difluorobenzophenone (DFK)/bisphenol S(BPS).The obtained polymers exhibited excellent thermal stabilities (glass transition temperatures T_gs:224~289℃,the temperatures of 1%weight loss T_(d1%)s: 446-494℃) and good solubility in polar organic solvents.The PPEKS thin films exhibited high refractive index(TE mode,1310 nm:1.656,1550 nm:1.653),high thermo-optic coefficient value(dn/dT)(TE mode,1310 nm:-1.21×10~(-4)/℃,1550 nm:-1.22×10~(-4)/℃) and relatively low optical loss(1310 nm:0.24 dB/cm,1550 nm:0.52 dB/cm).By adjusting the feed ratio of the reactants,the polymers' refractive indices of 1310 nm and 1550 nm(TE mode) could be well controlled in the range of 1.622~1.656 and 1.619~1.653,respectively.
     A kind of novel cross-linkable poly(phthalazinone ether ketone sulfone) bearing tetrafluorostyrene and phthalazinone groups(FSt-PPEKS) has been prepared by copolycondensation reaction.And the films could be cured at 160℃in the presence of 1 wt%dicumyl peroxide as an initiator for 4 hr under vacuum to yield stable cross-linked films.
     The glass transition temperature(T_g) and the temperature of 1%weight loss(T_(d1%)) were 261℃and 494℃,respectively,which could be further increased by 31℃and 14℃upon thermal cross-linking.And the birefringence of cross-linked polymer thin film was reduced from 0.02 to 0.007 after thermal cross-linking.
     A series of novel fluorinated poly(aryl ether)s containing phthalazinone moieties(FPPEs) have been prepared by a modified synthetic procedure in order to reduced the optical loss. The obtained polymers exhibited excellent solubility in polar organic solvents and high thermal stabilities(T_gs:185~269℃,T_(d1%)s:487~510℃).The FPPEs exhibited relatively low optical loss(less than 0.24 dB/cm at 1550 nm) and high thermo-optic coefficient value(dn/dT) (TE mode,1310 nm:-0.96×10~(-4)~-1.25×10~(-4)/℃,1550 nm:-0.96×10~(-4)~-1.29×10~(-4)/℃).By adjusting the feed ratio of the reactants,the polymers' refractive indices of 1310 nm and 1550 nm(TE mode) could be well controlled in the range of 1.499~1.575 and 1.498~1.575, respectively.
     A kind of novel cross-linkable fluorinated poly(phthalazinone ether) bearing tetrafluorostyrene and phthalazinone groups(FSt-FPPE) has been prepared by copolycondensation reaction.The T_g and T_(d1%) were 237℃and 486℃,respectively,which could be further increased by 16℃and 11℃upon thermal cross-linking.And the birefringence of cross-linked polymer thin film was reduced from 0.022 to 0.005 after thermal cross-linking.
引文
[1]Eldada L,Shacklette LW.Advances in polymer integrated optics.IEEE J Select Top Quant Electron,2000,6(1):54-68.
    [2]Zhou M.Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication.Optical Enginee ring,2002,41(7):1631-1643.
    [3]Wong WH,Liu KK,Chan KS et al.Polymer devices for photonic applications.Journal of Crystal Growth,2006,288(1):100-104.
    [4]Ma H,Jen AKY,Dalton LR.Polymer-based optical waveguides:materials,processing,and devices.Adv Mater,2002,14(19):1339-1365.
    [5]韩一石,强则煊,许国良.现代光纤通信技术.北京:科学出版社,2005.
    [6]丁么明,宋立新,于华清等.光波导与光纤通信基础.北京:高等教育出版社,2005.
    [7]赵禹.聚合物光波导和阵列波导光栅的基础研究:(博士学位论文).长春:吉林大学,2004.
    [8]Norwood R A,Gao R,Sharma J et al.Sources of loss in single-mode polymer optical waveguides.Proc SPIE,2001,4439:19-28.
    [9]Skumanich A,Moylan CR.The vibrational overtone spectrum of a thin polymer film.Chem Phys Lett,1990,174(2):139-144.
    [10]Groh W.Overtone absorption in macromolecules for polymer optical fibers.Makromol Chem,1988,189(12):2861-2874.
    [11]Kim JK,Sub DK.Estimation on the optic loss for acrylic polymers by theoretical modification.Journal of Fluorine Chemistry,2004,125(3):369-375.
    [12]Boutevin B,Rousseau A,Bosc D.Accessible new acrylic monomers and polymers as highly transparent organic materials.J Polym Sci Part A Polym Chem,1992,30(7):1279-1286.
    [13]禹忠,汪敏强,姚熹.光通讯波段聚合物光波导材料的研究进展.化学通报,2001,(1):5-10.
    [14]S.格克勒.光波导及光纤通信.冯锡钰译.大连:大连理工大学出版社,1991.
    [15]干福熹.光学玻璃.北京:科学出版社,1982.
    [16]安智珠.聚合物分子设计原理.湖南:湖南科学技术出版社,1985.
    [17]杨柏,高长有,沈家骢.聚合物光学树脂的分子设计与新型光学塑料.高分子通报,1995,(2):92-98.
    [18]D.W.范克雷维伦.聚合物的性质.许元泽,赵得禄,吴大诚译.北京:科学出版社,1981.
    [19]黎新章,李一龙.眼镜光学技术的新进展.光学技术,1991,(3):16-23
    [20] Herminghaus S, Boese D, Yoon DY et al. Large anisotropy in optical properties of thin polyimide films of poly(p-phenylene biphenyltetracarboximide). Appl Phys Lett, 1991, 59(9): 1043-1045.
    [21] Boese D, Lee H, Yoon DY et al. Chain orientation and anisotropies in optical and dielectric properties in thin films of stiff polyimides. J Polym Sci Polym Phys, 1992, 30(12): 1321-1327.
    [22] Yoshimura R, Hikita M, Tomaru S et al. Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate. J Lightwave Technol, 1998, 16(6): 1030-1037.
    [23] Pitois C, Vukmirovic S, Hult A et al. Low-loss passive optical waveguides based on photosensitive poly(pentafluorostyrene-co-glycidyl methacrylate). Macromolecules, 1999, 32(9): 2903-2909.
    [24] Song BJ, Park JK, Kim HK. Novel photocurable multifunctional acrylate monomers containing perfluorinated aromatic units and their copolymers for photonic applications. J Polym Sci Part A Polym Chem, 2004, 42(24): 6375-6383.
    [25] Kim E, Cho SY, Yeu DM et al. Low optical loss perfluorinated methacrylates for a single-mode polymer waveguide. Chem Mater, 2005, 17(5): 962-966.
    [26] Knoche T, Muller L, Klein R et al. Low loss polymer waveguides at 1300 and 1550 nm using halogenated acrylates. Electron Lett, 1996, 32(14): 1284-1285.
    [27] Matsuura T, Ando S, Sasaki S et al. Polyimides derived from 2,2'--bis(trifluoromethyl)-4,4'-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components. Macromolecules, 1994, 27(22): 6665-6670.
    [28] Han KS, Jang WH, Rhee TH. Synthesis of fluorinated polyimides and their application to passive optical waveguides. J Polym Sci, 2000, 77(10): 2172-2177.
    [29] Kang JW, Kim JJ, Kim J et al. Low-loss and thermally-stable TE-mode selective polymer waveguides using photosensitive fluorinated polyimide. IEEE Photonic Technol Lett, 2002, 14(9): 1297-1299.
    [30] Kim SU, Lee C, Sundar S et al. Synthesis and characterization of soluble polyimides containing trifluoromethyl groups in their backbone. J Polym Sci Part B Polym Phys, 2004, 42(23): 4303-4312.
    [31] Choi WS, Harris FW. Synthesis and polymerization of trifluorovinylether-terminated imide oligomers. Polymer, 2000, 41(16): 6213-6221.
    [32] Lee HJ, Lee EM, Lee MH et al. Crosslinkable fluorinated poly(arylene ethers) bearing phenyl ethynyl moiety for low-loss polymer optical waveguide devices. J Polym Sci Part A Polym Chem, 1998, 36(16): 2881-2887.
    [33] Lee HJ, Lee MH, Oh MC et al. Crosslinkable polymers for optical waveguide devices. II. Fluorinated ether ketone oligomers bearing ethynyl group at the chain end. J Polym Sci Part A Polym Chem 1999, 37(14): 2355-2361.
    [34] Kim JP, Lee WY, Kang JW et al. Fluorinated poly(arylene ether sulfide) for polymeric optical waveguide devices. Macromolecules, 2001, 34(22): 7817-7821.
    [35] Kim JP, Kang JW, Kim JJ et al. Fluorinated poly(arylene ether sulfone)s for polymeric optical waveguide devices. Polymer, 2003, 44 (15): 4189-4195.
    [36] Lee KS, Lee JS. Synthesis of highly fluorinated poly(arylene ether sulfide) for polymeric optical waveguides. Chem Mater, 2006, 18(18): 4519-4525.
    [37] Jiang J, Callender CL, Blanchetière C et al. Optimizing fluorinated poly(arylene ether)s for optical waveguide applications.Opt Mater,2006,28(3):189-194.
    [38]Qi Y,Ding J,Day M et al.Cross-linkable highly fluorinated poly(arylene ether ketones/Sulfones) for optical waveguiding applications.Chem Mater,2005,17(3):676-682.
    [39]Qi Y,Ding J,Day M et al.Cross-linkable highly halogenated poly(arylene ether ketone/sulfone)s with tunable refractive index:synthesis,characterization and optical properties.Polymer,2006,47(25):8263-8271.
    [40]Li XD,Zhong ZX,Kim JJ et al.Novel photosensitive fluorinated poly(arylene ether)having zero birefringence.Macromol Rapid Commun,2004,25(11):1090-1094.
    [41]Jr.DWS,Babbb DA,Shaha HV et al.Perfluorocyclobutane(PFCB) polyaryl ethers:versatile coatings materials.Journal of Fluorine Chemistry,2000,104(1):109-117.
    [42]Kahlenberg F.Structure-property correlations in fluoroaryl functionalized inorganic-organic hybrid polymers for telecom applications:[Ph.D dissertation].W(u|¨)rzburg:Univ.of W(u|¨)rzburg,2004.
    [43]Ma H,Luo J,Kang SH et al.Highly fluorinated and crosslinkable dendritic polymer for photonic applications.Macromol Rapid Commun,2004,25(19):1667-1673.
    [44]Wong S,Ma H,Jen AKY.Highly fluorinated trifluorovinyl aryl ether monomers and perfluorocyclobutane aromatic ether polymers for optical waveguide applications.Macromolecules,2003,36(21):8001-8007.
    [45]Gao H,Wang D,Guan S et al.Fluorinated hyperbranched polyimide for optical waveguides.Macromol Rapid Commun,2007,28(3):252-259
    [46]Houbertz R,Domann G,Cronauer C et al.Inorganic-organic hybrid materials for application in optical devices.Thin Solid Films,2003,442(1-2):194-200.
    [47]蹇锡高,Hay AS,郑海滨.含二氮杂萘酮结构的聚醚酮及制备法.中国,发明专利,93109179.9.1993.
    [48]蹇锡高,Hay AS,郑海滨.含二氮杂萘酮结构的聚醚砜及制备法.中国,发明专利,93109180.2.1993.
    [49]刘少琼,张军,蹇锡高.聚醚枫酮树脂基摩擦材料的性能研究.工程塑料应用,2000,28(2):6-8.
    [50]尚蕾,蹇锡高,兰建武等.含二氮杂萘酮结构耐热胶粘剂的研究.粘接,2002,23(3):1-3.
    [51]廖功雄,蹇锡高,何伟,等.含硫醚和二氮杂萘酮结构聚芳醚酮的合成与性能.高分子学报,2002,5:641-646.
    [52]兰建武,蹇锡高,王国庆等.聚芳醚砜酮纤维的热性能.合成纤维工业,2003,26(2):24-26.
    [53]王棒海,蹇锡高,廖功雄等.玻纤增强PPEKS复合材料及其性能研究.中国塑料,2004,18(2):40-43.
    [54]Jian XG,Dai Y,Zeng L et al.Application of poly(phthalazinone ether sulfone ketone)s to gas membrane separation.J Appl Polym Sci,1999,71(14):2385-2390.
    [55]Liu YJ,Jian XG,Liu SJ.Synthesis and properties of novel poly(phthalazinone ether ketone ketone).J Appl Polym Sci,2001,82(4):823-826.
    [56]Dai Y,Jian XG,Liu XM et al.Synthesis and characterization of sulfonated poly(phthalazinone ether sulfone ketone) for ultrafiltration and nanofiltration membranes.J Appl Polym Sci,2001,79(9):1685-1692.
    [57]Su Y,Jian XG,Zhang SH et al..Preparation and characterization of quaternized poly (phthalazinone ether sulfone ketone) NF membranes.J Membr Sci,2005,241(2):225-233.
    [58]Zhang SH,Jian XG,Dai Y.Preparation of sulfonated poly(phthalazinone ether sulfone ketone) composite nanofiltration membrane.J Membr Sci,2005,246(2):121-126.
    [59]Gao Y,Robertson GP,Guiver MD et al.Sulfonated copoly(phthalazinone ether ketone nitrile)s as proton exchange membrane materials.J Membr Sci,2006,278(1-2):26-34.
    [60]Wu CR,Zhang SH,Yang,DL et al.Preparation,characterization and application in wastewater treatment of a novel thermal stable composite membrane.J Membr Sci,2006,279(1-2):238-245.
    [61]Yang YQ,Jian XG,Yang DL et al.Poly(phthalazinone ether sulfone ketone)(PPEKS)hollow fiber asymmetric nanofiltration membranes:Preparation,morphologies and properties.J Membr Sci,2006,270(1-2):1-12.
    [62]Sun QM,Wang JY,Liu C et al.Lyotropic liquid crystalline poly(aryl ether ketone)copolymer containing phthalazinone moiety and biphenyl mesogen.Euro Polym Jnl,2007,43(8):3683-3687.
    [63]张守海,蹇锡高,朱秀玲等.含二氮杂萘酮结构聚芳酰胺超滤膜的研制.应用化学,2001,18(12):1012-1013.
    [64]朱秀玲,蹇锡高,卢冶等.含3-甲基苯基-2,3-二氮杂萘-1-酮结构聚醚酰胺的合成、表征与性能.高等学校化学学报,2003,24(2):355-358.
    [65]王锦艳,肖树德,蹇锡高等.含3,5-二甲基二氮杂萘酮联苯结构聚醚酰亚胺的合成与性能.高等学校化学学报,2003,24(3):555-558.
    [66]Wang JY,Liao GX,Liu C et al.Poly(ether imide)s derived from phthalazinone- containing dianhydrides.J Polym Sci Part A Polym Chem,2004,42(23):6089-6097.
    [67]Zhu XL,Jian XG.Soluble aromatic poly(ether amide)s containing aryl-,alkyl-,and chloro-substituted phthalazinone segments.J Polym Sci Part A Polym Chem,2004,42(8):2026-2030.
    [68]Liang QZ,Liu PT,Liu C et al.Synthesis and properties of lyotropic liquid crystalline copolyamides containing phthalazinone moiety and ether linkages.Polymer,2005,46(16):6258-6265.
    [69]Gao YR,Wang JY,Liu C et al.Synthesis of new soluble polyarylates containing phthalazinone moiety.Chinese Chemical Letter,2006,16(1):140-142.
    [70]阎庆玲,王锦艳,李树奇等.杂萘联苯结构聚醚腈酮漆包线的制备和性能.材料研究学报,2006,20(3):287-290.
    [71]潘海燕,梁勇芳,朱秀玲等.用于燃料电池质子交换膜的含萘及氮杂环结构的新型磺化聚酰亚胺的合成及性能.高等学校化学学报,2007,28(1):173-176.
    [72]Liu PT,Liu C,Jian XG.Synthesis and properties of novel aromatic copolyamides containing phthalazinone moiety.Journal of Macromolecular Science,Part A:Pure and Applied Chemistry,2006,43(7):1043-1050.
    [73]梁勇芳,朱秀玲,张守海等.一种非氟掺杂型质子交换膜材料的制备及表征.功能材料,2007,38(3):408-411.
    [74]王明晶.含二氮杂萘酮联苯结构新型聚芳醚腈的研究:(博士学位论文).大连:大连 理工大学,2007.
    [75]王锦艳,肖树德,蹇锡高.含氟杂萘联苯型聚醚酰亚胺共聚物的合成.合成树脂及塑料,2003,20(6):13-15.
    [76]Xiao SD,Wang JY,Jin K et al.Synthesis and characterization of a fluorinated phthalazinone monomer 4-(2-fluoro-4-hydroxyphenyl)-phthalazin-1(2H)-one and its polymers from polycondensation reactions.Polymer,2003,44(24):7369-7376.
    [1]Chen LZ,Jian XG,Gao X,et al.Synthesis and characterization of poly(aryl ether ketone) from 4-(3-Phenyl-4-hydroxyphenyl) phthalazinone.Chinese Journal of Polymer Science,1999,17(5):491-493.
    [2]刘彦军,蹇锡高,刘圣军.含二氮杂萘酮结构聚醚砜酮酮的合成及表征.材料研究学报,2000,14(1):100-103.
    [3]彭静,蹇锡高,刘少琼.PPESK树脂基复合材料的摩擦磨损性能.材料研究学报,2001,15(2):244-248.
    [5]蹇锡高,张守海,戴英.新型磺化聚醚矾酮复合纳滤膜.膜科学与技术,2001,21(1): 11-14.
    [6]Dai Y,Jian XG,Zhang SH,et al.Thermostable ultrafiltration and nanofiltration membranes from sulfonated poly(phthalazinone ether sulfone ketone).Journal of Membrane Science,2001,188(2):195-203.
    [7]Liu PT,Wang JY,Liu C,et al.Lyotropic Liquid Crystalline Polyamides Containing Aromatic,Heterocyclic Structures:Preparation and Properties.Macromol Chem Phys 2006,207(17):1610-1615.
    [8]卢彦斌,苏桂仙,宋媛.可溶性耐高温聚酰亚胺压电复合材料的制备与性能.塑料工业,2007,35(6):66-68.
    [9]叶培大,吴彝尊.光波导技术基本理论.北京:人民邮电出版社,1981.
    [10]Teng CC.Precision measurements of optical attenuation profile along propagation path in thin-film waveguides.Appl Opt,1993,32(4):1051-1054.
    [11]Wang YF,Hay AS.Macrocyclic arylene ether ether sulfide oligomers:new intermediates for the synthesis of high-performance poly(arylene ether ether sulfide)s.Macromolecules,1997,30(2):182-193.
    [12]Qi Y,Song N,Chen T et al.Novel macrocyclic precursors of poly{aryl ether ketone(sulfone)}containing hexafluoroisopropylidene units:Synthesis,characterization,and polymerization.Macromol Chem Phys,2000,201(8):840-845.
    [13]Wang SJ,Meng YZ,Hlil AR et al.Synthesis and characterization of phthalazinone containing poly(arylene ether)s,poly(arylene thioether)s,and poly(arylene sulfone)s via a novel N-C coupling reaction.Macromolecules,2004,37(1):60-65.
    [14]韩晓星,朱大庆,宁娜等.用于光波导的高性能聚合物薄膜制备工艺研究.激光技术,2004,28(3):315-318.
    [15]Alfred GE,Bonner FT,Peck LG.Flow of a viscous liquid on a rotating disk.J Appl Phys,1958,29(5):858-862.
    [16]Spangler LL,Torkelson JM,Royal JS.Influence of solvent and molecular weight on thickness and surface topography of spin-coated polymer films.Polym Engng Sci,1990,30(11):64-653.
    [17]李林科.基于新型聚合物材料的微环谐振器的基础研究:(硕士学位论文).大连:大连理工大学,2007.
    [18]Kang JW,Kim JP,Lee JS et al.Structure-property relationship of fluorinated co-poly(arylene ether sulfide)s and co-poly(arylene ether sulfone)s for low-loss and low-birefringence waveguide devices.J Lightwave Technol,2005,23(1):364-373.
    [19]Jiang J,Callender CL,Blanchetiere C et al.Optimizing fluorinated poly(arylene ether)s for optical waveguide applications.Opt Mater,2006,28(3):189-194.
    [20]Zernike F,Douglas JW,Olson DR.Transmission measurements in optical waveguides produced by proton irradiation of fused silica.J Opt Soc Am,1971,61(4):678-679.
    [21]Goell JE,Standley RD.Sputtered glass waveguide for integrated optical circuits.Bell Syst Tech J,1969,48:3445-3448.
    [22]Okamura Y,Yoshinaka S,Yamamoto S.Measuring mode propagation losses of integrated optical waveguides:a simple method.Appl Opt,1983,22(23):3982-3894.
    [23] Chu ST, Pan W, Sato S et al. Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay. IEEE Photon Technol Lett, 1999,11(6): 688-690.
    [24] Terui Y, Ando S. Refractive indices and thermo-optic coefficients of aromatic polyimides containing sulfur atoms. JPhotopolym Sci Technol, 2005,18(2): 337-340.
    [1]Kim JP,Lee WY,Kang JW et al.Fluorinated poly(arylene ether sulfide) for polymeric optical waveguide devices.Macromolecules,2001,34(22):7817-7821.
    [2]Kim JP,Kang JW,Kim JJ et al.Fluorinated poly(arylene ether sulfone)s for polymeric optical waveguide devices.Polymer,2003,44(15):4189-4195.
    [3]Lee KS,Lee JS.Synthesis of highly fluorinated poly(arylene ether sulfide) for polymeric optical waveguides.Chem Mater,2006,18(18):4519-4525.
    [4]Ding JF,Liu FT,LI M et al.Fluorinated poly(arylene ether ketone)s bearing pentafluorostyrene moieties prepared by a modified polycondensation.J Polym Sci Part A Polym Chem,2002,40(23):4205-4216.
    [5]Qi Y,Ding J,Day M et al.Cross-linkable highly halogenated poly(arylene ether ketone/sulfone)s with tunable refractive index:synthesis,characterization and optical properties.Polymer,2006,47(25):8263-8271.
    [1]Ding J,Qi Y,Day M et al.A low temperature polycondensation for the preparation of highly fluorinated poly(arylene ether sulfone)s containing crosslinkable pentafluorostyrene moieties.Macromol Chem Phys,2005,206(23):2396-2407.
    [2]王浩敏,李佐宜,林更琪等.光波导用玻璃薄膜的制备及其性能研究.光电子技术与信息,2002,15(1):28-31.
    [3]Ding J,Du X,Day M et al.Highly fluorinated poly(arylene alkylene ether sulfone)s:synthesis and thermal properties.Macromolecules,2007,40(9):3145-3153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700