纳米SiO_2/光致聚合物复合材料全息存储特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光致聚合物材料以其卓越的光化学特性已成为目前超高密度数字全息记录材料的研究热点。但常用的光致聚合物材料具有曝光缩皱性和折射率调制度有限等不足,影响其全息存储的读写性能。本文利用有机/无机复合材料具有抗缩皱性且能够增加材料的折射率调制度等优点,在高效光致聚合物全息记录材料中掺入纳米SiO_2粒子,并对其制备条件、相关的物理和化学机理及全息记录性能进行了较深入的研究。本文主要包含以下几方面的工作:
     1.制备了掺杂有水溶性纳米SiO_2粉体的丙烯酰胺/聚乙烯醇复合的光致聚合物全息存储材料。通过对聚合物样品制备过程的改进,使纳米SiO_2粉体能够均匀分散在聚合物体系中。
     2.用迈克尔逊干涉法测试样品中形成的纳米粒子/聚合物复合全息光栅的折射率的方法,分析不同折射率的分布情况,证明了样品内部的光栅形成过程中,纳米粒子与单体是相对扩散的。
     3.研究了不同曝光条件下材料的全息性能,通过对全息特性参数的分析,得到了一个优化的曝光方案。
     4.制备了含有不同浓度纳米SiO_2的聚合物样品。在最佳的曝光方案下实验测试并结合理论分析了各样品的布拉格偏移情况,计算了材料的曝光缩皱率。研究发现,纳米粒子的加入确实能够提高样品曝光过程的维度稳定性,有利于增加信息记录和读出的可靠性;同时通过分析透过率随曝光时间的变化曲线研究了该光致聚合物样品的成膜均匀性。
     5.实验分别测试了含有不同浓度纳米SiO_2聚合物样品的衍射效率、折射率调制度、感光灵敏度等静态参数随纳米SiO_2浓度以及曝光时间的变化曲线,解释了变化原因,最终得到一个优化的SiO_2浓度全息光致聚合物配置方案。
The excellent photochemical properties of photopolymer material have made them become the hot spot of current research on ultra-high density holographic recording material. However, the shortcomings of common photopolymer materials such as exposure shrinkage and limited refractive index modulation affect the reading and writing properties of their holographic storage. This thesis, built on the theoretical basis of the fact that organic/inorganic composite materials possess the advantages of anti-shrinkage and increasing the refractive index modulation of materials, mainly carries out work on organic/inorganic photopolymer materials blended with SiO_2-nanoparticles from the following aspects:
     1. The material of acrylimide/polyvinyl alcohol blended with hydrophilic SiO_2-nanoparticles for holographic storage is fabricated. Through improvement on the preparing process of photopolymer film, these SiO_2-nanoparticles are evenly dispersed in the polymer system.
     2. By testing the refractive index of nanoparticle/polymer composite hologram through Michelson interferometry, it analyzes the distribution of different refractive indexes and proves the counter diffusion exists in the forming process of the grating of nanoparticles and monomer within the sample.
     3. The holographic properties of the materials under different exposure conditions are studied. By analyzing the parameters of holographic properties, an optimum exposure intensity is found out.
     4. The polymer samples doped with different density of SiO_2-nanoparticles are prepared. Under the optimum exposure scheme, the bragg-mismatch and shrinkage ratio of all samples is analyzed, combining experimental tests and theories and comes to a conclusion: adding those nanoparticles increases the dimensional stability of the samples during the exposure process. Also, though analyzing the curve of transmittance changing against exposure time, the homogeneity of such photopolymer film is demonstrated.
     5. The curves of diffraction efficiency, refractive index modulation, exposure sensitivity and other static parameters changing against the density of SiO_2-nanoparticles and exposure time of the samples blended with SiO_2-nanoparticles of different density are tested, and explain the causes of these changes. Finally, it works out an optimum plan of SiO_2-nanoparticles density, which allows all holographic properties to attain the ideal value.
引文
[1]甘福熹。信息材料的跨世纪展望[J]。世界科技研究与发展, 2000,22(1):9-16
    [2]赫明钊,西良才,等。高性能光致聚合物材料与全息光存储[J]。记录媒体技术,2008,3(1):60-64
    [3] Kenji TANAKA, Hidenori MORI, et al. High Density Recording of 270 Gbit/in.2 in a Coaxial Holographic Recording System [J]. Japanese Journal of Applied Physics, 2008,12(47): 5891-5894
    [4]干福熹主编。数字光盘存储技术[M]。北京:科学出版社,1998:244-269
    [5]干福熹主编。数字光盘和光存储材料[M]。上海:上海科学技术出版社,1992:198-212
    [6]金国藩,张培坤。超高密度光存储技术的现状和今后的发展[J]。中国计量学院学报,2001,13(2):6-12.
    [7]徐端颐。光信息存储技术的发展前景[J]。记录媒体技术,2003,22(1):26-29
    [8] Shinotsuka M, Onagi N, et al. High-density and high-data transfer-rate optical disk with blue laser diode and Ag-In-Sb-Te phase-change material[J]. Jpn. J. Appl. Phys, 2000,39(11): 976-977
    [9] Shoji M, Nakamura A, et al. .High-density recording on a phase-change rewritable disk using a 405nm blue laser diode [J]. Jpn. J. Appl. Phys, 2002,41(21):1687-1688.
    [10]王佳。高密度近场光学存储技术的发展[J]。记录媒体技术,2003,31(3):19-22
    [11] A. Hsu W, Tseng M R, et al. Blue-laser readout properties of super resolution near field structure disk with inorganic write-once recording layer [J]. Jpn. J. Appl. Phys, 2003, 42(12):1005-1009
    [12] B,Kim J,Kim H, et al. Signal characteristics of super-resolution near-field structure disk in blue laser system [J]. Jpn. J. Appl. Phys, 2004,43(3):4921-4924.
    [13] C. Gorecki, S.Khalfallah, et al. New SNOM sensor using optical feedback in a VCSEL-based compound-cavity [J]. Sensor & Actuators, 2001, 87(6):113-123.
    [14] G W.Burr, F.H.Mok, et al. Storage of 1 0000 holograms in LiNb03:Fe[R].Conference on lasers and Electro-Optics, 1994,8(1):7-8
    [15] J.E Heanue, M. C. Bashaw et al. Volume holographic storage and retrieval of digital data [J]. Science, 1994, 265(5173):749-752
    [16] L.Hesselink. Digital holographic data storage looks ahead [J]. Photonics Spectra,1996,30(3):44-46
    [17] Q Burr, C. M. Jefferson, et al. Volume holographic data storage at an areal density of 250 gigapixelsin.[J]. Opt. Lett, 2001, 26(7): 444-446
    [18] H. Horimai, Y. Aoki. Optical information recording apparatus [P]: US, 20050007930. 2005-l-13
    [19] Y. Chen, C.Wang, et al. Photochromic fulgide for holographic recording [J]. Opt. Mater, 2004, 26(1):75-77
    [20]赵业权。超大容量光学体全息存储技术与材料的研究动态[J]。高技术通讯,2002, 12(5):107-110
    [21]黄明举,姚华文,等。光聚物全息光盘记录方法和光路的优化[J]。光学学报, 2003, 23(4):402-406
    [22]黄明举等。厚度对光聚物高密度全息存储记录参量的影响[J]。ACTA PHOTONICA S1NICA, 2002, 31(2):246-249
    [23] Yao Hua-wen et a1.Study of the holographic storage characteristics of a green light sensitive photopolymer[J]。.JOURAL OF FUNCTION MATERIALS AND DEVICES,2002,8(4): 346- 350
    [24]周臣明。光致聚合物材料中双组分单体对聚合效率及全息存储性能的影响[J]。全国高分子学术论文报告会,2003,3(1)12-14
    [25]董怡,金伟奇。超高密度光存储技术[J]。激光与红外,2005,3(8):543-547
    [26]佘鹏。全息光存储综述及发展状况[J]。记录媒体技术,2005,5(2):12-17
    [27]陶世荃编著。光全息存储[M]。北京::北京工业大学出版社,1998: 33-35
    [28] G T.Sincerbox.Holographic storage revisited [M]. London:London Academic Press, 1994:14-16
    [29] J.Ma, T.Chang, et al. Ruggedized digital holographic data storage with fast a access[J]. Opt.Quantum Electron, 2000, 32(2): 383-392
    [30] H. J.考尔菲尔德著,郑庸等译[M]。光全息手册。北京:科学出版社,1988:123-129
    [31] S. Cambell, X.Yi, et al. Hybrid sparse—wavelength angle—multiplexed optical data storage system [J]. Opt.Lett. 1994,19(24): 2161-2163
    [32] D. Psaltis, M. Levene, et al. Holographic storage using shiftmultiplexing [J]. Opt. Lett.1995,20(7):782-784
    [33] W.C.Su C.H.Lin.Enhancement of the angular selectivity in encrypted holographic memory[J]. Appl.Opt.2004,43(11): 2298-2304
    [34] G A. Rakuljic, V.Leyva, et al. Optical data storage by using orthogonal wavelength- multiplexed volume holograms [J]. Opt. Lett. 1992, 17(20): 1471-1473
    [35] V. Markov, J. Millerd, et al. Multilayer volume holographic optical memory [J]. Opt. Lett. 1999, 24(4): 265-267
    [36]张培琨,金国藩,等。利用动态散斑实现体全息存储的新型复用技术[J]。光子学报,2001,30(9): 1124-1127
    [37] C. Moser, w-Liu, et al. Folded shift multiplexing [J]. Opt.. Lett. 2003,28(11): 899-90l
    [38] B. Lee, S. Han, et al. Remote multiplexing of holograms with random patterns from multimode fiber bundles [J]. Opt.Lett. 2004,29(1): 116-118
    [39] K. Anderson, K. Curtis. Polytopic multiplexing [J]. Opt. Lett. 2004,29(12): 1402-1404
    [40]干福熹主编。信息材料[M]。天津:天津大学出版社,2003:405-418
    [41]周臣明。光致聚合物的全息存储特性研究[J]。北京工业大学硕士论文。2003: l-3
    [42]干福熹主编。数字光盘存储技术[M]。北京:科学出版社,1998: 244-269
    [43]陶世荃,王大勇,等著。光全息存储[M]。北京:北京工业大学出版社,1998:213-216
    [44] C, R. M. Shelby, D.A. Waldman,et al. Distortions in pixel-matched holographic data storage·due to lateral dimensional change of photopolymer storage media [J]. Opt. Lett. 2000, 25(10): 713-715
    [45]黄明举,姚华文,等。光聚物全息光盘记录方法和光路的优化[J]。光学学报, 2003, 23(4) : 402-406
    [46] H. A. Philippaerts, R. J. Pollet, et al. Photographic fine grain silver halide materials [P]: US: 3661592.1972-5-9
    [47] K.Michiue, T. Moriya, et al. Hologram silver halide photographic material,hologram and method for producing the same [P]: US, 20070 1 72779. 2007-7-26
    [48] A. Bel6ndez, C. Neipp, et al. Silver halide sensitized gelatinholograms in Slavich PFG-0 1 red-sensitive emulsion [J]. J. Mod. Opt. 1999,46(14): 1913-1925
    [49] J. M. Kim. Post-exposure treatment method of silver halide emulsion layer, hologram manufactured using the method, and holographic optical element including the hologram [P]: US, 68l1930. 2004-ll-2
    [50] M. Matsumoto, K. Nishide. Hologram and method of production thereof with photo-crosslinkable polymers [P]: US, 4258111.1981-3-24
    [51] M. Matsumoto, K. Nishide. Hologram recording material [P]: US,4287277.1981-9-1
    [52] J. J. Cowan. Holographic optical data storage medium [P]: US, 4999234.1991-3-12
    [53] K. Wang, L. Guo, et al. Methylene blue dichromated-gelatin holograms: antihumidity method for taking offstrongly adsorbing humiditygroups [J]. Appl. Opt. 1998,37(2): 326-328
    [54] D. Pantelic, B. Muric. Improving the holographic sensitivity of dichromated gelatin in the blue—green part ofthe spectrum by sensitization with xanthene dyes [J]. Appl. Opt. 2001, 40(17): 2871-2875
    [55] F. ojouani, Y Israeli, et al. New combined polymer/chromium approach for investigating the phototransformations involved in hologram formation in dichromated poly(vinyl alcoh01). J. Polym. Sci. Part [J], A. PolymChem. 2006, 44(3): 1317-1325
    [56]赵体成,颜军,等。存储材料螺吡喃的单光子写入和双光子读出[J]。中国激光, 1996, 23(8): 751-755
    [57] V. P. Pham, Gt Manivannan R. A. et al. New azo-dye—doped polymer systems as dynamic holographic recording media [J]. Appl. Phys. A: Mater. Sci. Proc, 1995, 60(3): 239-242
    [58] Y. Chen, C. Wang, et al. Photochromic fulgide for holographic recording [J]. Opt. Mater. 2004, 26(1): 75-77
    [59] S. Pu, T. Yang, et al. Photochromic diarylethene for polarization holographic optical recording [J]. Mater. Lett. 2007,61(3): 855-859
    [60]傅正生,孙宾宾,等。光致变色螺嗯嗪化合物开环体的热稳定性研究进展[J]。化学研究, 2006,17(4): 102-107
    [61] K. Buse, A. Adibi, D. Psaltis. Non-volatile holographic storage in doubly doped lithiumniobate crystals [J]. Nature, 1998, 393(6686): 665-668
    [62] M. R. R. Gesualdi, M. Muramatsu,et al. Light-induced lens analysis in photorefractive crystals employing phase-shifting real-time holographic interferometry[J].Opt. Commun.,2008, 281(23): 5739-5744
    [63] K. Shcherbin, V. Danylyuk,et al. Photorefractive recording in ac-biased cadmium telluride [J]. J. Alloys Compd., 2004,371(12): 191-194
    [64] J. J. Stankus, S. M. Silence, et al. Electric-field-switchable stratified volume holograms in photorefractive polymers [J]. Opt.Lett.,1994,19(18):1480-1482
    [65] D. M. Burland, R. G. Devoe, et al. Wortmann. Photorefractive polymers for digital holographic optical storage [J]. Pure.Appl.Opt,1996,5(6):513-520;
    [66] http://www.hardwareheaven.com/other-tech-news/22989-holographic-data-storage.html
    [67] R. Castagna, D. E. Lucchetta, et al. Haloalkane-based polymeric mixtures for high density optical data storage [J]. Opt. Mater. 2008,30(12): 1878-1882
    [68] J. Y Woo, E. H. Kim, et al. High dielectric anisotropy compound doped transmission gratings of HPDLC [J]. Opt. Commun. 2008, 28(18): 2167-2172
    [69] E. H. Jeong, B. K. Kim. Holographic polymer dispersed liquid crystals using vinyltri–methoxysilane [J]. Opt. Commun. 2009, 282(8): 1541-1545
    [70]王国杰,和亚宁,等。一种具有可逆光加工特性的偶氮聚电解质的合成与表征[J]。高等学校化学学报,2003, 24(4): 724-727
    [71] P. Rochon, E. Batalla, et al. Optically induced surface gratings on azoaromatic polymer films [J]. Appl. Phys. Lett.,1995, 66(2): 136-138
    [72] D. Y. Kim, S. K. Tripathy, et al. Laser-induced holographic surface relief gratings on nonlinear optical polymer films [J]. Appl. Phys. Lett.,1995,66(2): 1166-1168
    [73] B. L. Booth. Photopolymer Material for Holography [J]. Appl. Opt., 1975,14(3): 593-601
    [74] W. J. Tomlinson, E. A. Chandross, et al. Multicoponent photopolymer systems for volume phase holograms and grating devices [J]. Appl. Opt., 1976,15(2): 534-541
    [75] L. Dhar, K. Curtis, et al. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems [J]. Opt. Lett.,1998,23(21): 1710-1712
    [76] F. T. O’Neill, J. R. Lawrence, et al. Thickness variation of self-processing acrylamide-based photopolymer and reflection [J]. Opt..Eng., 2001,40(4): 533-539
    [77] M. Ortuno, S. Gallego, et al. Holographic characteristics of a 1-mm-thick photopolymer to be used in holographic memories [J]. Appl. Opt., 2003,42(35): 7008-7012
    [78] L. Carretero, S. Blaya, et al. A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography [J].J. Mod. Opt.,1998,45(11):2345-2354
    [79] S. Q. Tao, H. Y. Wang, et al. Scattering noise properties of holographic photopolymers by means of real-time transmittance analysis [J].Chin. Phys. Lett., 2008,25(8): 2896-2899
    [80] Y. H. Wan, S. Q. Tao, et al. Coherent scattering noise properties of a blue laser sensitized holographic photopolymer material [J]. Proc. of SPIE, 2007,6827(11): 1-7
    [81]陶世荃等编著.光全息存储[M].北京:北京工业大学出版社,1998:33-35
    [82] G. T. Sincerbox. holographic storage revisited [M].London: London Academic Press, 1994:24-26
    [83]潘祖仁,等。自由基聚合[M]。北京:化学工业出版社,1981:36-45
    [84] Dynamic hologram recording characteristics in DuPont photopolymers [J]. Appl. Opt., 1999, 38(8):1357-1368.
    [85] N. Suzuki, Y. Tomita, et al. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films[J]. Appl. Phys. Lett. 2002, 81(21):4121–4123
    [86] Y. Tomita , H. Nishibiraki. Improvement of holographic recording sensitivities in the green in SiO2 nanoparticledispersed methacrylate photopolymers doped with pyrromethene dyes[J]. Appl. Phys. Lett. 2003, 83(21): 410–412
    [87] N. Suzuki and Y. Tomita. Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films[J]. Jpn. J. Appl. Phys, 2003, 42(21): 927–929
    [88] Wu. Kechen, J.G. Snijders, et al. Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters[J]. J. Phys. Chem. 2002, 106(132):8954-8958
    [89] Changli L , Bai Yang. High refractive index organic–inorganic nanocomposites[J]. J. Mater. Chem, 2009, 19(21): 2884–2901
    [90]张立德,牟季美。纳米材料和纳米结构[M]。北京:科学出版社,2001:140
    [91]孙海波。无机纳米粒子表面修饰研究进展[J]。塑料助剂,2009, 7(8): 86-88
    [92]祖庸,王训,等.超细二氧化钛分散性研究[J]。涂料工业,1999, 26(6): 6-8
    [93]欧宝丽,李笃信。无机纳米粒子表面修饰[J]。高分子材料科学与工程,2008, 24(5): 1-5
    [94] Somasundaran P,Krishnakumar S. Adsorption of surfactants and polymers at the solid-liquid interface [J]. Colloids and SurfacesA: Physicochemical and Engineering Aspects, 1997, 123(2): 491-513.
    [95]李远,陈建国,等。PP/纳米CaCO3分散体系的研究[J]。塑料工业,2001, 29(1):16-18.
    [1] R. A. Lessard, G. Manivannan.Holographic recording materials[J].SPIE, 1995,2405(11): 21-23
    [2] M. Vincent, R. Yvon, et al. Characterization of Dopont photopolymer: determination of kinetic parameters in a diffusion model [J]. Appl. Opt. 2002,41(17): 3427-3435
    [3]赫明钊,西良才,等。高性能光致聚合物材料与全息光存储[J]。记录媒体技术,2008,2(1):60-64
    [4]李善君,等主编。高分子光化学原理及应用。上海:复旦大学出版社,2003: 161-199
    [5] Salvador Blaya, Luis Carretero, et al. Optimization of an acrylamide-based dry film used for holographic recording [J]. Applied Optics. 1998,37(32): 7604-7610
    [6] Tomita, Y., Chikama, et al. Two dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymerfilm [J]. Opt. Lett. 2006, 31(12):1402-1404.
    [7] Tomita, Y., Suzuki, et al. Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers [J]. Opt. Lett. 2005, 30(21): 839-841.
    [8]禚渡华。新型光致聚合物全息存储材料的物理特性研究[D]。北京工业大学,2007:12-16
    [9] Vaia. R., Dennis. C., et al. One step, Micrometer-scale Organization of Nano- and Mesoparticles Using Holographic Photopolymerisation [J].Adv. Mat, 2001, 13(11): 1570-1571.
    [10]赵凯华,钟锡华。光学[M]。北京:北京大学出版社,1982: 309-310
    [11] W S Kim, Y C Jeong, et al. Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer [J]. Opt. Expr, 2006, 14(20): 8967-8973
    [12] D A Waldman, H Y S Li, et al. Volume shrinkage in slant fringe gratings of a catonic ring-opening holographic recording materials [J]. J. Imaging Sci. & Tech, 1997, 41(5): 497-514
    [13] H N Yum, P R Hemmer, et al. Demonstration of a simple technique for determining the M/# of a holographic substrate by use of a single exposure e[J]. Opt. Lett. 2004, 29(15): 1784-1786
    [1]黄明举。光致聚合物高密度全息存储性能及其盘状数字全息存储技术的研究[D]。上海光机所,2003:23-25
    [2] Y. Tomita and H. Nishibiraki. Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes [J]. Appl. Phys. Lett. 2003, 83(2):410–412.
    [3] N. Suzuki and Y. Tomita. Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films [J]. Jpn. J. Appl. Phys. 2003, 42(32), 927–929.
    [4] N. Suzuki and Y. Tomita. Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100% [J]. Appl. Opt, 2004, 43(21):2125–2129.
    [5] N. Suzuki and Y. Tomita. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films [J]. Appl. Phys. Lett. 2002, 81(2):4121–4123.
    [6] Naoaki Suzuki and Yasuo Tomita. Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographicrecording [J], Opt. Expr. 2006, 14(26): 12712- 12719
    [7] Naydenova et al. Holographic recording in nanoparticle-doped photopolymer. Proc [J]. SPIE, 2006, 62(52): 45-46
    [8] Y. Tomita, N. Suzuki, et al. Volume holographic recording based on mass transport of nanoparticles doped in methacrylate photopolymers [J].SPIE, 2005, 59(39):123-129
    [9] Tomita, Y., Chikama, et al. Two dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film [J]. Opt. Lett, 2006, 31(21):1402-1404.
    [10] Tomita, Y., Suzuki, N., et al. Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers [J]. Opt. Lett, 2005, 30(21): 839-841.
    [11] Vaia, R., Dennis, C., Natarajan, et al. One step, Micrometer-scale Organization of Nano- and Mesoparticles Using Holographic Photopolymerisation [J]. Adv. Mat. 2001, 13(21):1570-1574.
    [12] Sakhno, O., Goldenberg, L., et al. Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms [J]. Nanotechnology, 2007, 18(21): 105704-105709.
    [13] Sanchez, C., Escuti, M., et al. TiO2 Nanoparticle– Photopolymer Composites for Volume Holographic recording [J]. Adv. Funct. Mater, 2005, 15(21): 1623-1639.
    [14] Naydenova, I., Sherif, H., et al. Holographic recording in nanoparticle-doped photopolymer [J]. Proc. SPIE 2006, 62(52): 45-46.
    [15] F T O’Neill, J R Lawrence, et al. Comparison of holographic photopolymer materials by use of analytic nonlocal diffusion models [J]. Appl. Opt, 2002,41(5): 845-852
    [16] G H zhao and P Mouroulis. Diffusion model of formation in dry photopolymer materials [J]. J. Mod. Opt, 1994, 4l(10): 1929-1939
    [17] P. W. Oliveira, H. Krug, et al. Fabrication of GRIN-materials by photopolymerizationof diffusion-controlled organic-inorganic nanocomposite materials [J]. Mater.1996, 435(24): 553-558.
    [18] Piazzolla and B K Jellkins. First-harmonic diffllsion modeI for holographic grating fomation in photopolymers [J]. J. Opt. Soc. Am. B, 2000, 17(7): 1147-1156
    [1] Raymond K, Kostuk. Dynamic hologram recording characteristics in DuPont photopolymers [J]. Appl. Opt.,1999, 38 (8): 1357-1368
    [2] N. Suzuki, Y. Tomita, et al. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films [J]. Appl. Phys. Lett. 2002, 81(21):4121–4123
    [3] Y. Tomita, H. Nishibiraki. Improvement of holographic recording sensitivities in the green in SiO2 nanoparticledispersed methacrylate photopolymers doped with pyrromethene dyes [J]. Appl. Phys. Lett. 2003, 83(21): 410–412
    [4] N. Suzuki and Y. Tomita. Diffraction properties of volume holograms recorded in SiO2 nanoparticle-dispersed methacrylate photopolymer films [J]. Jpn. J. Appl. Phys, 2003, 42(21): 927–929
    [5] Wu. Kechen, J.G. Snijders, et al. Reinvestigation of hydrogen bond effects on the polarizability and hyperpolarizability of urea molecular clusters [J]. J. Phys. Chem. 2002, 106(132):8954-8958
    [6] Changli L, Bai Yang. High refractive index organic–inorganic nanocomposites [J]. J. Mater. Chem, 2009, 19(21): 2884–2901
    [7] Ashley, J. Bernal, et al. Holographic data stroge [J]. IBMJ, 2000, 44(21):341-346.
    [8] Suzuki, N., Tomita, Y., et al. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films [J]. Appl. Phys. Lett, 2002, 81(31): 4121-4123
    [9] Suzuki, N., Tomita, Y. Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100% [J]. Appl. Phys. Lett, 2004, 43(16):2125-2129
    [10] Sanchez. TiO2 Nanoparticle-photopolymer Composites for Volume Holographic recording [J]. Adv, Funct. Mater. 2005, 15(25):1623-1629
    [11] Suzuki, N., Tomita, Y., et al. Highly transparent ZrO2 nanoparticle s- dispersed acrylate photopolymers for volume holographic recording [J]. Opt. Expr, 2006, 14(35) :12712-12716
    [12] Kim, W., Jeong, et al. Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer [J]. Opt. Expr, 2006, 14(42):8976-8979
    [13] Sakhno. Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV volume holograms [J]. Nanotechnology. 2007, 18(41): 105704-10570
    [14] Goldenberg L. Holographic Composites with Gold Nanoparticles [J]. Chem. Mater.2008, 20(21): 4619-4627
    [15] Sakhno, Goldenbenberg. Effective volume holographic structures based on organic-inorganic photopolymer nanocomposites [J]. Journal of optics, 2009, 11(21):159-167
    [16] Naydenova et al. Holographic recording in nanoparticle-doped photopolymer [J]. Proc. SPIE, 2006,62(52):45-49
    [17] Ying Cai, Julie L.P., et al., Decreased oxygen inhibition in photopolymerized acrylate/epoxide hybrid polymer coatings as demonstrated by Raman spectroscopy. Polymer [J]. 2006, 47(49): 6560-6566
    [18] FuRi Ling and Li Dan. Influence of thiol on the holographic properties of silica nanoparticle-embedded acrylate photopolymer films [J].Opt. Mater, 2008,31(36): 206–208
    [19]王爱荣,王素莲,等。双染料敏化的光致聚合物全息特性研究[J]。激光与光电子学进展,2005,9(42): 22-25
    [20]黄明举,姚华文,等。厚度对光聚物高密度全息存储记录参量的影响[J]。光子学报,2002,31(2): 246-249
    [21]翟凤潇。核黄素敏化的光致聚合物的数字化全息记录特性研究[J]。光子学报,2006,43(21):159-167
    [22] Yao Huawen, Chen Zhongyu, et al. Introduction of holographic data storage—based organic photopolymers[J].Progress in Physics. 2001,21(4):459-468
    [23] D H R Vilkomerson, D Bostwick, et al. Some effect of emulsion shrinkage on a hologram’s image space [J]. Appl. Opt., 1967, 6(7): 1270-1272
    [24] H. Kogelnik. Coupled wave theory for thick hologram gratings [J]. Bell Syst. Tech. J. 1969, 48(21): 2909–2947
    [25]黄明举,姚华文,等。导致光聚物全息存储布拉格偏移因素的研究[J]。光子学报,2002, 29(11): 975-978
    [26] N. Suzuki and Y. Tomita. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films [J]. Appl. Phys. Lett. 2002, 81(21): 4121–4123.
    [27] S. Blaya, L. Cm'retero, et a1. Optimal composition of an acrylamide and N ,N’-methylenebisacrylamide holographic recording material[J]. J. Mod. Opt., 1998,45(12): 2573-2584
    [28] S. Blaya, L. Carretero, et a1. Holography as a technique for the study of photopolymerizationkinetics in dry polymeric films with a nonlinear response [J]. Appl. Opt..,1999, 38(6):955-962
    [29] S. Blaya, Mallavia, et al. Highly sensitive photopolymerizaable dry film for einrealtimeholography [J]. Appl. Phys. Lett, 1998, 37(12):1628-1630
    [30] S.Blaya, L.Carretero, et a1. New photopolymerizable holographic recording material based on polyvinylalcohol and 2-hydroxiethylmethacrylate [J]. Appl. Phys. B, 2002, 74(6): 603-605
    [31] A. Bclendez, Fimia, L. et al. Self-induced phase gratings due to the inhomogeneous structure of acrylamide photopolymer systems used as holographic recording materials [J]. Appl. Phys. Lett. , 1995, 37(26): 3856-3858

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700