尿素变性大豆蛋白的分子结构及胶粘机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蛋白胶粘剂由于具有良好的可再生性、可降解性、来源丰富等优点而受到人们的关注从而再次成为研究的热点。尿素是常用的蛋白质变性剂,在胶粘剂研究中起着重要的作用。本课题主要是通过研究尿素变性大豆蛋白的分子结构的变化来揭示其产生胶粘的机理。
     论文首先系统研究了大豆蛋白中的两个主要球蛋白:7S和11S分别经过尿素变性后分子结构的变化,在软、中、硬三种不同硬度的木块上的湿润能力的变化及胶粘强度的变化。特性粘度及流变实验结果表明,不同浓度尿素变性导致了7S、11S分子结构的不同变化,差示扫描量热结果证明尿素变性部分展开了7S、11S的分子结构。液滴形状分析结果表明不同的胶粘剂在不同的木块上有不同的湿润性能,7S蛋白经过尿素变性后在胡桃木和樱桃木上有较好的湿润性能,11S蛋白经过1 mol/L尿素变性后在松木上有好的湿润性能。1 mol/L尿素变性使得11S蛋白在三种木块上的胶粘强度在所有胶粘剂中为最大;3 mol/L尿素变性使得7S蛋白在胡桃木和樱桃木上的胶粘强度比11S的大,但在松木上的胶粘强度则是11S/3M高于7S/3M。结合傅立叶红外光谱分析胶粘剂的二级结构结果表明,胶粘强度与尿素变性前后蛋白质的二级结构的变化有关。
     通过测定不同浓度尿素变性后的大豆蛋白的内源性荧光光谱,二级结构,特性粘度,巯基含量,表面疏水性,相对分子质量分布和粒径分布等表征了尿素变性蛋白质的结构变化,并通过正交试验确定了尿素变性大豆蛋白胶粘榉木的实验条件。内源性荧光光谱实验结果表明,尿素展开了大豆蛋白分子,尿素浓度不同展开的程度不同,展开的蛋白质会进一步聚集,二级结构,特性粘度及巯基含量测定结果进一步证实了这一点。1 mol/L尿素变性后的蛋白质的表面疏水性最大,相对分子质量分布和粒径分布实验结果表明,尿素变性后蛋白质中都有聚集体出现,1 mol/L尿素变性蛋白质分子中组分分布最不均匀。流变测定结果表明,所有样品都是剪切变稀体系,当8 mol/L尿素变性蛋白质时则几乎为牛顿流体。通过正交试验表明,对于胶粘榉木而言,温度和时间是影响胶粘强度的两个主要因素,热压压强是次要因素。1 mol/L和3 mol/L尿素变性提高了大豆蛋白在榉木上的胶粘强度,其中1 mol/L尿素变性蛋白具有最大的胶粘强度,此时,当热压温度为100℃和120℃时,胶粘强度没有显著性差异。
     将尿素变性大豆蛋白经过100℃加热处理10 min来模拟实际热压时的反应条件,通过测定样品的分子结构的变化来研究高温加热蛋白质对其结构的进一步影响。热力学实验结果表明,尿素变性和加热处理都降低了蛋白质的变性自由能,加热减少了蛋白质分子可接触表面面积,变性展开了蛋白质分子,同时分子之间互相缠绕成了网状结构,1 mol/L和3mol/L尿素部分展开了蛋白质结构,加热后蛋白质展开的比例增加。傅立叶红外光谱分析二级结构结果表明,与加热前的样品相比较,加热进一步改变了蛋白质的二级结构。当尿素浓度达到8 mol/L时,蛋白质已经完全变性了。样品经过加热处理后,随着尿素浓度的增加,蛋白质的表面疏水性降低。在尿素变性后的样品中,1 mol/L尿素变性导致蛋白质具有最大的表面疏水性,抗水性实验证明了这一点。相对分子质量分布及粒径分布实验结果表明,尿素变性蛋白质在加热后会不同程度地形成聚集体,同时,由于尿素展开蛋白质结构的程度不同从而导致各个样品中组分的分散性不同,低浓度尿素变性蛋白加热后多分散性较高,均一的分布有利于胶粘。
     通过测定不同浓度尿素变性大豆蛋白加热固化以后蛋白质样品的溶出活化能,使用不同溶剂溶解及使用不同电泳方法研究了尿素变性大豆蛋白在100℃加热处理10 min固化后的分子间相互作用。活化能实验结果表明,固化后的SPI/1M/100℃的活化能最高,使用不同溶剂溶解样品后测定溶出物的相对分子质量分布,分析结果表明,尿素变性大豆蛋白经过加热固化后通过二硫键和范德华引力形成聚集体,聚集体之间通过疏水相互作用和非共价键结合会有利于胶粘强度。使用还原原态电泳、非还原SDS-PAGE电泳和SDS-PAGE电泳来进一步对蛋白质样品的分子间作用力进行研究,结果表明:尿素变性导致蛋白质分子展开,分子形状变大,蛋白质分子主要以疏水相互作用结合,亚基之间存在二硫键。
     使用戊二醛对1 mol/L尿素变性后的大豆蛋白进行了结构的交联与固定,通过使用差示扫描量热仪、热重分析仪、凝胶色谱、SDS-PAGE凝胶电泳测定不同浓度戊二醛交联后的样品的性质,结果表明,80 mmol/L戊二醛交联效果最好,胶粘后的榉木的干、湿胶粘强度都证实了这一结果,气相色谱分析结果表明,此时胶粘剂中残留的戊二醛浓度为0.0031%/(g胶粘剂)。
Soy protein-based adhesives are gaining increasing attention due to their biodegradability and renewability. Urea is a common chemical denaturant of proteins. The molecule of urea has carbonyl amide bond which is similar to the molecule of protein. The action mechanism of urea on protein has been sought by many studies but it is still an unsolved and important problem in protein chemistry, experimental data on specific protein-urea interactions are scarce. Urea is a common component in adhesive. So the molecular structure and adhesion mechanism of soy protein modified with different concentrations of urea were studied.
     Firstly, wettability and adhesive properties of the major soy protein components conglycinin (7S) and glycinin (11S) after urea modification were characterized. Modified 7S and 11S soy proteins were evaluated for gluing strength with pine, walnut, and cherry plywood and for wettability using a bubble shape analyzer. The molecular structure change was studied by chemical analysis, DSC and Rheometer. The results showed that different adhesives had varying degrees of wettability on the wood specimens. The 7S soy protein modified with urea had better wettability on cherry and walnut. The 11S soy protein modified with 1 mol/L urea had better wettability on pine. The 1 mol/L urea modification gave 11S soy protein the greatest bonding strength in all the wood specimens. The 3 mol/L urea modification gave 7S soy protein stronger adhesion on cherry and walnut than did 11S protein; but with pine, 11S soy protein had greater adhesion strength than 7S soy protein. Measurement of protein secondary structures indicated that the change of secondary structure after urea modification can affect the adhesion strength. DSC result and Rheology profile showed that urea modification unfolded the molecular structure of proteins.
     Secondly, the effects of different concentrations of urea modification on soy protein isolates (SPI) were investigated by chemical analysis, Fluorescence, SEC-HPLC and particle size distribution analysis. Chemical analysis showed urea can unfold the structure of protein and the unfold degree increased with urea concentration increasing. SEC-HPLC and particle size distribution analysis revealed that with the increasing of the urea concent tion, aggregates were produced. 1 mol/L urea modification gave SPI the biggest polydispersity index. Rheological analysis indicated that all samples were shear thinning systems. Orthogonal tests of adhesion strength showed that temperature and press time were the major factors that affect the adhesion strength. Pressing at 120℃and 2 MPa for 10 min gave urea-modified SPI better adhesion property, and in the urea concentration tested, 1 mol/L urea modification gave SPI the highest bonding strength under this conditions, the adhesion strengths of SPI pressed at 100℃and that at 120℃were not statistically different thereof.
     Thirdly, the physicochemical properties changes of SPI which was modified with different concentrations of urea and was heated at 100℃for 10 min were studied. Thermodynamic analysis showed free energy of SPI decreased as a result of urea modification and heating. Heating reduced the accessible surface area of urea-modified SPI and caused tangled molecular structure. 1 mol/L and 3 mol/L urea unfolded partially protein molecular structure and unfolded fraction increased after heating at 100℃. FTIR analysis confirmed that heating further changed the secondary structures. Whether heated or unheated, SPI modified by 1 mol/L urea exhibited the highest surface hydrophobicity, which may be beneficial to water resistance of adhesive. This was supported by the lowest delamination rate of SPI modified by 1 mol/L urea. SEC-HPLC and particle size distribution analysis revealed that soy protein modified with different concentrations of urea had varying degrees of aggregation and varying polydispersity. Lower urea concentration resulted to the higher polydispersity of soy protein after heating. Uniform molecular distribution was benefited for better adhesive strength.
     Fourthly, SPI modified with urea and heated at 100℃for 10min were freeze-drying and the inter-molecular interactions were investigated by kinetics study, the method of breaking special bonds between molecules using different buffers, and different electrophoresises. The kinetics study showed that 1 mol/L urea modified SPI after heating had the highest activating energy. SEC-HPLC of soy protein samples dissolved in 0.1 mol/L, pH7.0 phosphate buffer, 2%SDS solution and 2% SDS + 0.5%β-ME showed that aggregation existing in sample was benefit for the adhesion strength. The results of reducing-PAGE, non-reducing SDS-PAGE and SDS-PAGE analysis further confirmed the study of intermolecular forces, the results showed that: urea modification unfolded the protein molecule, intermolecular bonds mostly were hydrophobic interaction, and disulfide bonds existed between subunits.
     Finally, various concentrations of glutaraldehyde were used to crosslink and fix the structure of SPI modified with 1 mol/L urea. The results of DSC, TGA, SEC-HPLC, SDS-PAGE and adhesion strength test showed that 80 mmol/L glutaraldehyde had the best cross-linking performance and had the highest wet and dry adhesion strength. The release of glutaraldehyde from crosslinked adhesive was evaluated by GC and the release of glutaraldehyde was 0.0031 %/( g adhesive) at 80 mmol/L glutaraldehyde.
引文
1.赵光明,蔡淑萍,高红岩.改善大豆分离蛋白功能性质的方法[J].食品科技,2001(5):21-33
    2.Yuan YJ,Velev OD,Chen K,et al.Effect of pH and Ca~(2+) induced associations of soybean proteins[J].Journal of Agriculture and Food Chemistry,2002,50:4953-4958
    3.Liu K.Expanding soybean food utilization[J].Food Technology,2000,54(7):46-58
    4.Kinsella JE.Functional properties of soy proteins[J].Journal of the American Oil Chemists' Society,1979,56:242-258
    5.Wolf WJ.Soybean proteins:their functional,chemical,and physical properties[J].Journal of Agriculture and Food Chemistry,1970,18(6):969-976
    6.De Graaf LA.Denaturation of proteins from a non-food perspective[J].Journal of Biotechnology,2000,79:299-306
    7.Kumar R,Choudhary V,Mishra S,et al.Adhesives and plastics based on soy protein products[J].Industrial Crops and Products,2002(16):155-172
    8.刘志明.麦杆表面特性及麦杆泡花板胶接机理的研究[D]:[博士学位论文].哈尔滨:东北林业大学木材科学与技术专业,2002
    9.Fleury F(瑞士).棉秆替代木材生产刨花板的分析[J].林产工业,1995,6(22):9-11
    10.Pease DA.Wood process adapted to straw particleboard[J].Wood Technology,1998,124(7):20-24
    11.李康球.木材胶粘剂五十年的发展与今后预测[J].中国胶粘剂,2000,9(2):38-40
    12.Zucaro JB,Reen RR.The second forest:filling the wood source gap while creating the environmental performance board of the 21st century[C].29~(th)International Particle Board/Composite Materials Symposium:Washington State University,1995
    13.王孟钟,黄应昌.胶粘剂应用手册[M].化学工业出版社,1987.1-7
    14.Patrick RL.Treatise on Adhesion and Adhesives[M].New York,1967
    15.杨玉岜等.合成胶粘剂[M].科学出版社,1980
    16.Klug JH.High-performance adhesive systems for polymer composite bonding applications[D]:[Ph.D.Thesis].Washington:University of Washington,1999
    17.Comyn J.Adhesion Science[M].UK:the Royal Society of Chemistry,1997
    18.Pocious AV.Adhesion and Adhesive Technology[M].New York:Hanser Publisher,1997.3-50
    19.邱建辉等.胶粘剂实用技术[M].北京:化学工业出版社,2004.1-6
    20.龚辈凡.我国胶粘剂工业发展趋势与对策[J].中国胶粘剂,2001,10(5):38-41
    21.洪一前,李永辉,盛奎川.基于大豆蛋白改性的环境友好型胶粘剂的研究进展[J].粮油加工,2007,(3):83-85
    22.李永辉.基于改性大豆蛋白胶粘剂的中密度纤维板制备及性能研究[D]:[硕士学位论文].浙江:浙江大学生工食品学院,2007
    23.Franzen KL,Kinsella JE.Functional properties of succinylated and acetylated soy protein[J].Journal of Agriculture and Food Chemistry,1976,24(4):788-795
    24.中国标准出版社.中国林业标准汇编—人造板卷[M].北京:中国标准出版社,1998.137-139
    25.Wu WU,Hettiarachchy NS,Qi M.Hydrophobicity,solubility and emulsifying of soy protein peptides prepared by papain modification and ultrafiltration[J].Journal of the American Oil Chemists' Society,1998,75:845-850
    26.Ignjatovic NL,Tomic SL,Vrhovacc LP,et al.Determination of optimal conditions for modification of urea formaldehyde adhesives by enzymatically modified soybean adhesive[J].Hemijska Industrija,1998,52:286-289
    27.Hettiarachchy NS,Kalapathy U,Myers DJ.Alkali-modified soy protein with improved adhesive and hydrophobic properties[J].Journal of the American Oil Chemists' Society,1995,72(12):1461-1464
    28.Kumar R,Choudhary V,Mishra S,et al.Enzymatically-modified soy protein part 2:adhesion behavior[J].Journal of Adhesion Science and Technology,2004,18:261-273
    29.Kalapathy U,Hettiarachchy NS,Myers D,et al.Alkali-modified soy proteins:effect of salts and disulfide bond cleavage on adhesion and viscosity[J].Journal of the American Oil Chemists' Society,1996,73(8):1063-1066
    30.Huang WN,Sun XZ.Adhesive properties of soy proteins modified by sodium dodecyl sulfate and sodium dodecylbenzene sulfonate[J].Journal of the American Oil Chemists' Society,2000,77:705-708
    31.Huang WN,Sun XZ.Adhesive properties of soy proteins modified by urea and guanidine hydrochloride[J].Journal of the American Oil Chemists' Society,2000,77:101-104
    32.Zhong ZK,Sun XZ.Thermal and mechanical properties and water absorption of guanidine hydrochloride modified soy protein(11S)[J].Journal of Applied Polymer Science,2000,78:1063-1070
    33.Zhong ZK,Sun XZ.Thermal and mechanical properties and water absorption of sodium dodecyl sulfate modified soy protein(11S)[J].Journal of Applied Polymer Science,2001,81:166-175
    34.Liu Y,Li KC.Modification of soy protein for wood adhesives using mussel protein as a model:the influence of a mercapto group[J].Macromolecular Rapid Communications,2004,25(21):1835-1838
    35.Sun XZ,Zhong ZK.Adhesives from modified soy proteins[R].Symposium:Wood Adhesive 2000,Forest Products Society,June 22-23,South Lake Tahoe,Nevada
    36.Li K,Geng X,Simonsen J,et al.Novel wood adhesives from condensed tannins and polyethylenimine[J].International Journal of Adhesion & Adhesives,2004,24(4):327-333
    37.时君友,韩忠军.尿素改性酚醛树脂胶粘剂的研究[J].粘结,2006,27(1):15-17
    38.杜官本,李君,杨忠.苯酚-尿素-甲醛共缩聚树脂研制I.合成与分析[J].林业科学,2000,36(5):73-77
    39.陶毓博,李鹏,陆仁书等.尿素改性酚醛树脂胶粘剂的研究[J].林产工业,2005,(1):13-16
    40.李建章,周文瑞,高伟等.无甲醛聚合物胶粘剂的合成与应用研究[J].中国胶粘剂,2007,16(5):25-28
    41.Pizzi A,Stephanou A,Antunes I,et al.Alkaline PF resins linear extension by urea condensation with hydroxybenzy achohol groups[J].Journal of Applied Polymer Science,1993,50:2201-2207
    42.Hombach R,Dollhausen M,Hess H,et al.Adhesive joining of surfaces using thermosetting polyurethane urea[P].U.S.Patents,C09J 502.1986-6-17
    43.Conner AH.Urea-Formaldehyde Adhesive Resins.In:Polymeric Materials encyclopedia[M].Boca Raton,New York:CRC Press,1996.8496-8501
    44.Skeist I.Handbook of Adhesives[M].3~(rd) edition.New York:Van Nostrand Reinhold,1990.401-407
    45.Bian K,Sun XZ.Adhesive performance of modified soy protein polymers[J].Polymer Chemistry,1988,39:72-73
    46.Sun XZ,Bian K.Shear strength and water resistance of modified soy protein adhesives[J].Journal of the American Oil Chemists' Society,1999,76:977-980
    47.Mo X,Hu J,Sun XZ,et al.Compression and tensile strength of low density wheat-protein particle board[J].Industrial Crops and Products,2001,14:1-9
    48.Mo X,Sun XZ,Wang DH.Thermal properties and adhesion strength of modified soybean storage proteins[J].Journal of the American Oil Chemists' Society,2004,81:395-400
    49.Cheng EZ(Michael).Adhesion mechanism of soybean protein adhesives with cellulosic materials[D]:[Ph.D.Thesis].Manhattan,KS:Kansas State University,2004
    50.Lorcnz LF,Conner AH.The effect of soy protein additions on the reactivity and formaldehyde emissions of urea-formaldehyde adhesive resins[J].Forest Products Journal,1999,49(3):73-78
    51.Guo ML,Myers D J,Howard H,et al.Soybean based adhesive resins and composite products utilizing such adhesives[P].U.S.Patent,363620.2001-10-23
    52.栾健美,黄卫宁,邹奇波.基于尿素和STP控制修饰的SPI胶粘特性的研究[J].中国油脂,2006,(4):24-29
    53.Sun XZ,Bian K.Modified soy protein adhesives[P].U.S.Patent,6497760,2002-12-24
    54.郑瑞琪,余云照.结构胶粘剂及胶接技术[M].北京:科学出版社,1993.25-27
    55.Gollob L,Wellons JD.Wood adhesion.In:Handbook of Adhesives[M].3~(rd) editon.Skeist I,eds.New York:Van Nostrand Reinhold,1990.598-610
    56.Petrie EM.Handbook of adhesives and sealants[M].New York:McGraw-Hill,2000
    57.陈道义,张军营.胶接基本理论[M].北京:科学出版社,1994,1-30
    58.Chelak W,Newman WH.MDI high moisture content bonding mechanism,parameters,and benefits using MDI in composite wood products[C].Proceedings Of 25~(th) International Particleboard/Composite Materials Symposium.Pullman,Wash:Washington State University,1991,205-209
    59.Lester WC.An Overview of Soybean Processing.In:Soybean Utilization Alternatives[M].McCann L,eds.St.Paul,MN:Univeraity of Minnesota,1988
    60.Wolf WJ,Rackis,Smith AK.Behavior of the 11S protein of soybeans in acid solutions[J].Journal of the American Chemical Society,1958,80:5730-5735
    61.Renkema JMS.Formation,structure and rheological properties of soy protein gels [D]:[Ph.D.Thesis].Netherlands:Wageningen University,2001
    62.Koshiyama I.Storage Proteins of Soybean.In:Seed Protein Biochemistry,Genetics,Nutritive value[M].Matinus Nijhoff/Dr W.Junk Publisher,1983,427-450
    63.Catsimpoolas N,Ekenstam C.Isolation of alpha,beta and gamma conglycinin[J].Archives of Biochemistry and Biophysics,1969,129:490-497
    64.石彦国.大豆制品工艺学[M].北京:中国轻工业出版社,2005
    65.陶慰孙等.蛋白质分子基础[M].北京:高等教育出版社.1980.5-17
    66.Vojdani F,Whitaker JR.Chemical and Enzymatic Modification of Proteins for Improved Functionality.In:Protein Functionality in Food System[M].Hettiarachchy NS,Ziegler GR eds.New York:Marcel Dekker,1994.261-310
    67.Kinsella JE.Functional properties of soy proteins[J].Journal of the American Oil Chemists' Society,1979,56:242-258
    68.Lambuth AL.Soybean Glues.In:Handbook of Adhesives[M].2~(nd) editon.Skeist I eds.New York:Van Nostrand Reinhold,1977.172-180
    69.Feeney RE,Whitaker JR.Improvement through chemical and enzymatic modifications[C].Advance of ACS Symposium Series 160.Washington,DC:American Chemistry Society,1977
    70.Van der Leeden MC,Rutten AACM,Frens G.How to develop globular proteins into adhesives[J].Journal of Biotechnology,2000,79:211-221
    71.符若文,李谷,冯开才编.高分子物理[M].北京:化学工业出版社,2005
    72.Sigma Co.Product information—urea
    73.Spiro K.Ueber die Beeinflussung der Eiweisscoagulation durch stickstoffhaltige Substanzen[J].Zeitschrift fur Physikalische Chemie,1900,30:182-199
    74.Ramsden W.Some new properties of urea[J].Journal of Physiology,1902,28:23-27
    75.Tanford C.Protein denaturation.Part B:the transition from native to denatured state[J].Advances in Protein Chemistry,1968,23:122-275
    76.Ellerton HD,Dunlop PJ.Activity coefficients for the systems water-urea and water urea sucrose at 25℃ from isopiestic measurements[J].Journal of Physical Chemistry, 1966, 70: 1831-1837
    
    77. Mizutani Y, Kamogawa KJ, Nakanishi K. Effect of Urea on hydrophobic Interaction: Raman Difference Spectroscopy on the C-H Stretching Vibration of Acetone and the C-N Stretching Vibration of Urea [J]. Journal of Physical Chemistry, 1989, 93: 5650-5654
    
    78. Bruning W, Holtzer A. The effect of urea on hydrophobic bonds: the critical micelle concentration of N-dodecyltrimethylamrnonium bromide in aqueous solutions of urea [J]. Journal of the American Chemical Society, 1961, 83: 4865-4866
    
    79. Wetlaufer DB, Malik SK, Stoller L, et al. Nonpolar group participation in the denaturation of proteins by urea and guanidinium salts. Model compound studies [J]. Journal of the American Chemical Society, 1964, 86:508-514
    
    80. Mukerjee P, Ray A. The effect of urea on micelle formation and hydrophobic bonding [J]. Journal of Physical Chemistry, 1963, 67:190-192
    
    81. Schick MJ. Effect of electrolyte and urea on micelle formation [J]. Journal of Physical Chemistry, 1964, 68: 3585-3587
    
    82. Zou Q, Habermann-Rottinghaus SM, Murphy KP. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect [J]. Proteins: Structure, Function, and Genetics, 1998, 31: 107:115
    
    83. Frank HS, Franks FJ. Structural approach to the solvating power of water for carbohydrates urea as a structure breaker [J]. Journal of Physical Chemistry, 1968, 48: 4746-4757
    
    84. Nozaki Y, Tanford C. The solubility of amino acids and related compounds in aqueous urea solutions [J]. Journal of Biological Chemistry, 1963, 238: 4074-4081
    
    85. Roseman M, Jencks WP. Interactions of urea and other polar compounds in water [J]. Journal of the American Chemical Society, 1975, 97: 631-640
    
    86. Finer EG, Franks F, Tait (?) J. Nuclear magnetic resonance studies of aqueous urea solutions [J]. Journal of the American Chemical Society, 1972, 94: 4424-4427
    
    87. Walrafen GE. Raman spectral studies of the effects of urea and sucrose on water structure [J]. Journal of the American Chemical Society, 1966, 44: 3726-3727
    
    88. Hammes GG, Schimmel PR. An investigation of water-urea and water-urea polyethylene glycol interactions [J]. Journal of Physical Chemistry, 1967, 89: 442-446
    
    89. Barone G, Rizzo E, Vitagliano V. Opposite effect of urea and some of its derivatives on water structure [J]. Journal of Physical Chemistry, 1970, 74: 2230-2232
    
    90. Grant EH, Keefe SE, Shack R. Dielectric dispersion of urea and thiourea [J]. Advances in Molecular Relaxation Processes, 1972, 12(4):217-228
    
    91. Subramanian S, Sarma TS, Balasuburamanian D, et al. Effects of the urea-guanidinium class of protein denaturation on water structure: heats of solution and proton chemical shift studies [J]. Journal of Physical Chemistry, 1971, 75(6): 815-820
    
    92. Swenson CA. Effects of protein denaturants of the urea-guanidinium class on bulk water structure: An infrared study [J]. Archives of Biochemistry and Biophysics, 1966, 117(3): 494-498
    
    93. Schellman JA. The thermodynamics of urea solutions and the heat of formation of the peptide hydrogen bond [J]. Comptes-Rendus des Travaux du Laboratoire Carlsberg, Series Chimique. 1955, 29: 223-229
    
    94. Kreschek GC, Scheraga HA. The Temperature Dependence of the Enthalpy of Formation of the Amide Hydrogen Bond: the Urea Model [J]. Journal of Physical Chemistry, 1965, 69(5): 1704-1706
    
    95. Stokes RH. Thermodynamics of aqueous urea solutions [J]. Australian Journal of Chemistry, 1967, 20: 2087-2100
    
    96. Tsai J, Gerstein M, Levitt M. Keeping the shape but changing the charges: A simulation study of urea and its isosteric analogs [J]. Journal of Physical Chemistry, 1996, 104(23): 9417-9430
    
    97. Bennion BJ, Daggett V. The molecular basis for the chemical denaturation of proteins by urea [J]. Proceedings of the National Academy of Sciences, 2003, 100(9): 5142-5147
    
    98. Nir IY, Feldman AA, Garti N. Surface properties and emulsion behavior of denatured soy proteins [J]. Journal of Food Science, 1994, 59(3):606-610
    1.Kalapathy U,Hettiarachchy NS,Myers D,et al.Modification of soy proteins and their adhesive properties on woods[J].Journal of the American Oil Chemists'Society,1995,72:507-510
    2.Hettiarachchy NS,Kalapathy U,Myers D.Alkali-modified soy protein with improved adhesive and hydrophobic properties[J].Journal of the American Oil Chemists' Society,1995,72:1461-1464
    3.Kalapathy U,Hettiarachchy NS,Myers.,et al.Alkali-modified soy proteins:effect of salts and disulfide bond cleavage on adhesion and viscosity[J].Journal of the American Oil Chemists' Society,1996,73:1063-1066
    4.Sun XZ,Bian K.Shear strength and water resistance of modified soy protein adhesives[J].Journal of the American Oil Chemists' Society,1999,76:977-980
    5.Huang WN,Sun XZ.Adhesive properties of soy proteins modified by urea and guanidine hydrochloride[J].Journal of the American Oil Chemists' Society,2000,77:101-104
    6.Huang WN,Sun XZ.Adhesive properties of soy proteins modified by sodium dodecyl sulfate and sodium dodecylbenzene sulfonate[J].Journal of the American Oil Chemists' Society,2000,77:705-708
    7.Zhong ZK,Sun XZ,Fang XH,et al.Adhesion properties of soy protein with fiber cardboard[J].Journal of the American Oil Chemists' Society,2001,78:37-41
    8.Cheng EZ(Michael).Adhesion mechanism of soybean protein adhesives with cellulosic materials[D]:Ph.D.Dissertation.Manhattan,KS:Kansas State University,2004
    9.Wright DJ.The Seed Globulins.In:Hudson BJF(eds) Developments in Food Proteins[M].London:Elsevier,1987,81-157
    10.Van der Leeden MC,Rutten AACM,Frens G.How to develop globular proteins into adhesives[J].Journal of Biotechnology,2000,79:211-221
    11.Thanh VH,Shibasaki K.[3-conglycinin from soybean proteins[J].Biochimeca et Biophysica Acta,1977,490:370-384
    12.Mo XQ,Sun XZ,Wang DH.Thermal properties and adhesion strength of modified soybean storage proteins[J].Journal of the American Oil Chemists'Society,2004,81:395-400
    13.陈道义,张军营.胶接基本原理[M].北京:科学出版社,1994
    14.王孟钟,黄应昌.胶粘剂应用手册[M].北京:化学工业出版社,1987.374-407
    15.Hemingway RW.Thermal instability of fats relative to surface wettabilty of yellow birch[J].Tappi Journal,1969,52:2149-2155
    16.Hse CY.Wettability of southern pine veneer by phenol formaldehyde wood adhesives[J].Forest Products Journal,1972,12:452-461
    17.Hse CY.Properties of phenolic adhesives as related to bond quality in southern pine plywood[J].Forest Products Journal,1971,21:44-52
    18.Kajita H.Wettability of the surface of some American softwoods species[J].Mokuzai Gakk,1992,38:516-521
    19.Thanh VH,Shibasaki K.Major proteins of soybean seeds.A straightforward fractionation and their characterization[J].Journal of Agricultural.Food Chemistry,1976,24:1117-1121
    20.刘志明.麦杆表面特性及麦杆泡花板胶接机理的研究[D]:[博士学位论文].黑龙江哈尔滨:东北林业大学,2002
    21.Zhang X,Huang LX,Nie SQ.FTIR characteristic of the secondary structure of insulin encapsulated within liposome[J].Journal of Chinese Pharmaceutical Science,2003,12(1):11-14
    22.Van de Weert M,Haris PI,Hennink WE,et al.Fourier transform infrared spectrometric analysis of protein conformation:effect of sampling method and stress factors[J].Analytical Biochemistry,2001,297:160-169
    23.Zhao XY,Chen FS,Xue WT,et al.FTIR spectra studies on the secondary structures of 7S and 11S globulins from soybean proteins using AOT reverse micellar extraction[J].Food Hydrocolloids,2007,DOI 10.1016/j.foodhyd.2007.01.019
    24.张美珍主编,张美珍,柳百坚,谷晓昱合编.聚合物研究方法[M].北京:中国轻工出版社,2000.93-95
    25.Zhong ZK,Sun XZ,Fang XH,et al.Adhesive strength of guanidine hydrochloride-modified soy protein for fiberboard application[J].International Journal of Adhesion & Adhesives,2002,22:267-272
    1.Wolf WJ.Soybean protein:their functional,chemical,and physical properties[J].Journal of Agricultural and Food Chemistry,1970,18:969-976
    2.Kumar R,Choudhary V,Mishra S,et al.Adhesives and plastics based on soy protein products[J].Industrial Crops and Products,2002,16:155-172
    3.Sun XZ,Bian K.Shear strength and water resistance of modified soy protein adhesives[J].Journal of the American Oil Chemists' Society,1999,76:977-980
    4.Zhong ZK,Sun XZ,Fang XH,et al.Adhesion properties of soy protein with fiber cardboard[J].Journal of the American Oil Chemists' Society,2001,78:37-41
    5.Pace CN.Determination and analysis of urea and guanidine hydrochloride denaturation curves[J].Methods in Enzymology,1986,131:266-280
    6.Bennion BJ,Daggett V.The molecular basis for the chemical denaturation of proteins by urea[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(9):5142-5147
    7.Vanzi F,Madan B,Sharp K.Effect of the protein denaturants urea and guanidinium on water structure:a structural and thermodynamic study[J].Journal of the American Chemical Society,1998,120(41):10748-10753
    8.D(o|¨)tsch V,Wider G,Siegal G,et al.Interaction of urea with an unfolded protein.The DNA-binding domain of the 434-repressor[J].The Federation of European Biochemical Societies Letters,1995,366:6-10
    9.Liepinsh E,Otting G.Specificity of urea binding to proteins[J].Journal of the American Chemical Society,1994,116:9670-9674
    10.Thayer MM,Haltiwanger RC,Allured VS,et al.Peptide-urea interactions as observed in diketopiperazine-urea cocrystal[J].Biophysical Chemistry,1993,46:165-169
    11.AOAC.Official Methods of Analysis[M].11~(th) editon.Washington;DC:Association of Official Analytical Chemists,1970
    12.Kalapathy U,Hettiarachchy NS,Rhee KC.Effect of drying methods on molecular properties and functionalities of disulfide bond-cleaved soy proteins[J].Journal of the American Oil Chemists' Society,1997,74(3):195-199
    13.Ellman GL.Tissue sulfhydryl groups[J].Archives of Biochemistry and Biophysics,1959,82:70-77
    14.Boatright WL,Hettiarachchy NS.Effect of lipids on soy protein isolate solubility [J].Journal of the American Oil Chemists' Society,1995,72(12):1439-1444
    15.Beveridge T,Toma S J,Nakai S.Determination of SH and SS-groups in some food proteins using Ellman's reagent[J].Journal of Food Science,1974,39:49-51
    16.Kato A,Nakai S.Hydrophobicity determined by a fluorescence probe methods and its correlation with surface properties of proteins[J].Biochimica et Biophysica Acta,1980,624:13-20
    17.Bradford MM.A rapid and sensitive method for the quantitation of mierogram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72:248-254
    18.Zhang X,Huang LX,Nie SQ.FTIR characteristic of the secondary structure of insulin encapsulated within liposome[J].Journal of Chinese Pharmaceutical Science,2003,12(1):11-14
    19.王建华,卫亚丽,文宗河等.蛋白质结构的FTIR研究进展[J].化学通报,2004,(7):482-486
    20.谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J].高等学校化学学报,2003,24(2):226-231
    21. Xiong YL, Kinsella JE. Evidence of a urea-induced sulfhydryl oxidation reaction in proteins [J]. Agricultural and Biological Chemistry, 1990, 54(8): 2157-2159
    
    22. Hua YF, Huang YR, Qiu AY, et al. Properties of soy protein isolate prepared from aqueous alcohol washed soy flakes [J]. Food Research International, 2005, 38: 273-279
    
    23. Gerbanowski A, Malabat C, Rabiller C, et al. Grafting of aliphatic and aromatic probes on rapeseed 2S and 12S proteins: influence on their structural and physicochemical [J]. Journal of Agricultural and Food Chemistry, 1999, 47: 5218-5226
    
    24. Hayakawa S, Nakai S. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins [J]. Journal of Food Science, 1985, 50(2): 486-491
    
    25. Nakai S. Structure-function relationships of food proteins with an emphasis on the importance of protein hydrophobicity [J]. Journal of Agricultural and Food Chemistry, 1983, 31: 676-683
    
    26. Ramsden W. Some new properties of urea [J]. Journal of Physiology-London, 1902, 28:23-27
    
    27. Mckenzie HA, Smith MB, Wake RG. Molecular weight of ovalbumin and of bovine serum albumin in urea solution [J]. Nature, 1955, 176 (4485): 738-738
    
    28. Puppo C, Chapleau N, Speroni F, et al. Physicochemical modification of high-pressure-treated soybean protein isolates [J]. Journal of Agricultural and Food Chemistry, 2004, 52: 1564-1572
    
    29. Sigma Co. Product information—urea
    
    30. Zhong ZK, Sun XZ, Fang XH, et al. Adhesive strength of guanidi ne hydrochloride-modified soy protein for fiberboard application [J]. InternationalJournal of Adhesion & Adhesives, 2002, 22: 267-272
    
    31.王孟钟,黄应昌. 胶粘剂应用手册[M]. 化学工业出版社,1987。374-390
    
    32. Inoue M, Norimoto M, Tanahashi M, et al. Steam or h(?)t fixation of compressed wood [J]. Wood Fiber Science, 1993, 25 (3): 224-235
    1.Kalapathy U,Hettiarachchy NS,Myers D,et al.Modification of soy proteins and their adhesive properties on woods[J].Journal of the American Oil Chemists'Society,1995,72:507-510
    2.Zhong ZK,Sun XZ,Fang XH,et al.Adhesive strength of guanidine hydrochloride-modified soy protein for fiberboard application[J].International Journal of Adhesion & Adhesives,2002,22:267-272
    3.Sun XZ,Bian K.Shear strength and water resistance of modified soy protein adhesives[J].Journal of the American Oil Chemists' Society,1999,76:977-980
    4.Huang WN,Sun XZ.Adhesive properties of soy proteins modified by urea and guanidine hydrochloride[J].Journal of the American Oil Chemists' Society,2000,77:101-104
    5.Zhang ZH,Hua YF.Urea-modified soy globulin proteins(7S and 11S):effect of wettability and secondary structure on adhesion[J].Journal of the American Oil Chemists' Society,2007,84:853-857
    6.Cheng EZ(Michael).Adhesion mechanism of soybean protein adhesives with cellulosic materials[D]:[Ph.D.Thesis].Manhattan,KS:Kansas State University,2004
    7.Ellman GL.Tissue sulfhydryl groups[J].Archives of Biochemistry and Biophysics,1959,82:70-77
    8.Boatright WL,Hettiarachchy NS.Effect of lipids on soy protein isolate solubility[J].Journal of the American Oil Chemists' Society,1995,72(12):1439-1444
    9. Beveridge T, Toma S J, Nakai S. Determination of SH and SS-groups in some food proteins using Ellman's reagent [J]. Journal of Food Science, 1974, 39: 49-51
    
    10. Kato A, Nakai S. Hydrophobicity determined by a fluorescence probe methods and its correlation with surface properties of proteins [J]. Biochimica et Biophysica Acta, 1980, 624: 13-20
    
    11. Hettiarachchy NS, Kalapathy U, Myers D. Alkali-Modified Soy Protein with Improved Adhesive and Hydrophobic Properties [J]. Journal of the American Oil Chemists' Society, 1995, 72:1461-1464
    
    12. Choi WY, Lee CM, Park HJ. Development of biodegradable hot-melt adhesive based on poly-e-caprolactone and soy protein isolate for food packaging system [J]. LWT-Food Science and Technology, 2006, 39:591-597
    
    13. Zhong ZK, Sun XZ, Fang XH, et al. Adhesion strength of sodium dodecyl sulfate-modified soy protein to fiberboard [J]. Journal of Adhesion Science Technology, 2001, 15(12): 1417-1427
    
    14. Wang Y, Mo X, Sun XZ, et al. Soy protein adhesion enhanced by glutaraldehyde crosslink [J]. Journal of applied polymer science, 2007, 104(1):130-136
    
    15. Bloksma AH. Thiol and disulfide groups in dough rheology [J]. Cereal Chemistry, 1975,52: 170-183
    
    16. Okamoto N, Wada T, Takagi S, et al. Texture of SS cross-linked gelatin gels [J]. Agricultural and Biological Chemistry, 1973, 37: 2501-2505
    
    17. Yamagishi T, Takaya M, Ebina F, et al. Effect of heating temperature on sulfhydryl and disulfide contents and state of aromatic amino acid residues [J]. Agricultural and Biological Chemistry, 1984, 48(2): 537-539
    
    18. Stathopoulos CE, Tsiami AA, Schofield JD, et al. Effect of heat on rheology, surface hydrophobicity and molecular weight distribution of glutens extracted from flours with different bread-making quality [J]. Journal of Cereal Science, doi: 10.1016/j.jcs.2007.03.002
    
    19.符若文,李谷,冯开才编. 高分子物理[M]. 北京:化学工业出版社,2005
    
    20. Van der Leeden MC, Rutten AACM, Frens G. How to develop globular proteins into adhesives [J]. Journal of Biotechnology, 2000, 79: 211-221
    
    21. Roberge S, Dube MA. The effect of particle size and compositon on the performance of styrene/butyl acrylate miniemulsion-based PSAs [J]. Polymer, 2006, 47(3): 799-807
    1.Hermansson A M.Microstructure of Protein Gels Related to Functionality.In:Protein Structure-Function Relationships in Food[M].Yada R Y,Jackman R L eds.London:Blackie Academic & Professional Press,1994.22-24
    2.Slade L,Levine H,Finley JW.Protein Water Interactions:Water as a Plasticizer of Gluten and Other Protein Polymers.In:Protein Quality and the Effects of Processing[C].Dixon R,Finley John Weds.New York and Basel Philips:Marcel Dekker INC,1988.9-24
    3.华欲飞,孟祥勇,黄剑旭.蛋白质分子聚集状态对大豆蛋白溶胀性能的影响[J].无锡轻工大学学报,2000,19:46-49
    4.Kinsella JE,Damodaran S,German B.Physiochemical and functional properties of oilseed proteins with emphasis on soy protein[J].New Protein Food,1985,5:107-179
    5.Pace CN.Determination and analysis of urea and guanidine hydrochloride denaturation curves[J].Methods in Enzymology,1986,131:266-280
    6.Dill K.Dominant forces in protein folding[J].Biochemistry,1990,29:7133-7135
    7.Pace CN,Laurents DV,Thomson JA.pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1[J].Biochemistry,1990,29:2564-2572
    8.Engel M,Williams RW,Erickson BW.Designed coiled-coil proteins:synthesis and spectroscopy of two 78-residue a-helical dimmers[J].Biochemistry,1991,30:3161-3169
    9.Makhatadze GI,Privalov PL.Protein interactions with urea and guanidinium chloride.A calorimetric study[J].Journal of Molecular Biology,1992,226:491-505
    10.Creighton TE.Proteins[M].2~(nd) editon.New York:WH Freeman & Company,1993
    11. Thompson KS, Vinson CR, Freire E. Thermodynamic characterization of the structural stability of the coiled-coil region of the Bzip transcription factor GCN4 [J]. Biochemistry, 1993, 32: 5491-5496
    12. Zou Q, Habermann-Rottinghaus SM, Murphy KP. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect [J]. Proteins: Structure, Function, and Genetics, 1998,31: 107:115
    13. Neet KE, Timm DE. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation [J]. Protein Science, 1994, 3: 2167-2174
    14. Ohnishi S, Shortle D. Effects of denaturants and substitutions of hydrophobic residues on backbone dynamics of denatured staphylococcal nuclease [J]. Protein Science, 2003,12: 1530-1537
    15.郭尧军. 蛋白质电泳实验技术[M].北京:科学出版社,1999.123-160
    16. Cao YN, Yang PL, Shi PJ, et al. Purification and characterization of a novel protease-resistant α-galactosidase from Rhizopus sp. F78 ACCC 30795 [J]. Enzyme and Microbial Technology, 2007, 41: 835-841
    17. Davis BJ. Disc electrophoresis, II. Method and application to human serum proteins [J]. Annal New York Academy of Sciences, 1964, 121: 404-427
    18. Sun XT, Zhang SC. Purification and characterization of a putative vitellogenin from the ovary of amphioxus (Branchiostoma belcheri tsingtaunese) [J]. Comparative Biochemistry and Physiology, Part B, 2001, 129: 121-127
    19. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature 1970, 227: 680-685
    20. Schokker EP, Singh H, Pinder DN, et al. Characterization of intermediates formed during heat-induced aggregation of β-lactoglobulin AB at neutral pH [J]. International Dairy Journal, 1999, 9: 791-800
    21. De la Fuente MA, Hemar Y, Tamehana M, et al. Process-induced changes in whey proteins during the manufacture of whey protein concentrates [J]. International Dairy Journal, 2002, 12: 361-369
    22. Glibowski P, Mleko S, Wesolowska-Trojanowska M. Gelation of single heated vs. double heated whey protein isolate [J]. International Dairy Journal, 2006, 16: 1113-1118
    23. Jorgensen CS, Jagd M, Sorensen BK, et al. Efficacy and compatibility with mass spectrometry of methods for elution of proteins from sodium dodecyl sulfate-polyacrylamide gels and polyvinyldifluoride membranes [J]. Analytical Biochemistry, 2004, 330: 87-97
    24.宋世谟,王正烈,李文斌.物理化学[M](第三版).北京:高等教育出版社.218-326
    25.华欲飞.醇法大豆浓缩蛋白的物理改性[D]:[博士学位论文].无锡:江南大学食品学院,1993
    26.Matthew J.Physical and chemical attributes of a defatted soy flour meat analog [D]:[Master of Science].America:the Faculty of the Graduate School in University of Missouri-Columbia,2007
    27.Zhang HK,Li L,Tatsumi E,et al.Influence of high pressure on conformational changes of soybean glycinin[J].Innovative Food Science and Emerging Technologies,2003,4:269-275
    28.Zhang HK,Li L,Tatsumi E,et al.High-pressure treatment effects on proteins in soy milk[J].LWT-food science and technology,2005,38:7-14
    29.Utsumi S,Damodaran S,Kinsella JE.Heat induced interactions between soybean proteins:Preferential association of 11S basic subunits and b subunits of 7S[J].Journal of Agricultural and Food Chemistry,1984,32:1406-1412
    30.陶慰孙等.蛋白质分子基础[M].北京:高等教育出版社.1980
    1.法内斯托克SR,斯泰因比歇尔A主编.聚酰胺和蛋白质材料Ⅱ.生物高分子[M]:第8卷.邵正中,杨新林译.北京:化学工业出版社,2005.374-385
    2.Ledward DA,Tester RF.Molecular transformations of proteinaceous foods during extrusion processing[J].Trends in Food Science & Technology,1994,5:117-120
    3.Li M,Lee TC.Relationship of the extrusion temperature and the solubility and disulfide bond distribution of wheat proteins[J].Journal of Agriculture and Food Chemistry,1997,45:2711-2717
    4.Prudencio-Ferreira SH,Areas JAG.Protein-protein interactions in the extrusion of soya at various temperatures and moisture contents[J].Journal of Food Science,1993,58:378-381
    5.de Graaf LA.Non-food applications of cereal proteins[J].Industry Proteins,1998,6(3):9-11
    6.Miller AG,Gerrard JA.The maillard reaction and food protein crosslinking[J].Progress in Food Biopolymer Research,2005,1:69-86
    7.Wong SS.Introduction.In:Chemistry of Protein Conjugatioin and Cross-Linking [M].Boca Raton,Florida:CRC Press.1991a
    8.Ly Y,Jane J,Johnson LA.Soy Proteins as Biopolymers.In:Biopolymers from Renewable Resources[M].Kaplan D eds.Heidelberg:Springer-Verlag,1998.171-200
    9.Wong SS.Homobifunctional Cross-linking Reagents.In:Chemistry of Protein Conjugatioin and Cross-Linking[M].Boca Raton,Florida:CRC Press.1991b.
    10.Huang-Lee LLH,Cheung DT,Nimni ME.Biomedical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde-derived cross-links[J].Journal Biomedical Materials Research,1990,24:1185-1201
    11.Ziegler K,Schmitz I,Zahn H.Introduction of New Crosslinks into Proteins[J].Advances in Experimental Medicine and Biology,1974,86A:345-354
    12.Lundblad RL.The Chemical Crosslinking of Peptides Chains.In:Chemical Reagents for Protein Modification[M].Boca Raton,Florida:CRC Press,2005
    13.Park SK,Bae DH,Rhee KC.Soy protein biopolymers cross-linked with glutaraldehyde[J].Journal of the American Oil Chemists' Society,2000,77(8):879-883
    14.Wang Y,Mo X,Sun XZ,et al.Soy protein adhesion enhanced by glutaraldehyde crosslink[J].Journal of applied polymer science,2007,104(1):130-136
    15.符若文,李谷,冯开才编.高分子物理[M].北京:化学工业出版社,2005
    16.Ghorpade VM,Li H,Gennadios A,et al.Chemically Modified Soy Protein Films [J].Transactions of the American Society of Association Executives,1995,38:1805-1809
    17.Laemmli UK.Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature 1970,227:680-685
    18.Schokker EP,Singh H,Pinder DN,et al.Characterization of intermediates formed during heat-induced aggregation of β-lactoglobulin AB at neutral pH[J].International Dairy Journal,1999,9:791-800
    19.de la Fuente MA,Hemar Y,Tamehana M,et al.Process-induced changes in whey proteins during the manufacture of whey protein concentrates[J].International Dairy Journal,2002,12:361-369
    20.Glibowski P,Mleko S,Wesolowska-Trojanowska M.Gelation of single heated vs.double heated whey protein isolate[J].International Dairy Journal,2006,16:1113-1118
    21.Jorgensen CS,Jagd M,Sorensen BK,et al.Efficacy and compatibility with mass spectrometry of methods for elution of proteins from sodium dodecyl sulfate-polyacrylamide gels and polyvinyldifluoride membranes[J].Analytical Biochemistry,2004,330:87-97
    22.Friedli G.Interaction ofdeaminated soluble wheat protein(SWP) with other food proteins and metals[D]:[Ph.D.Thesis].UK:University of Surrey.1996
    23.Beppu MM,Vieira RS,Aimoli CG,et al.Crosslinking of chitosan membranes using glutaraldehyde:Effect on ion permeability and water absorption[J].Journal of Membrane Science,2007,301:126-130
    24.王孟钟,黄应昌.胶粘剂应用手册[M].化学工业出版社,1987
    25.Rybicki E,Purves M.SDS Polyacrylamide Gel Electrophoresis(SDS-PAGE)[DB/OL].South Africa:Dept Microbiology,University of Cape Town.http://www.mcb.uct.ac.za/sdspage.html,2005-05-11
    26.Bigi A,Cojazzi G,Panzavolta S,et al.Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking[J].Biomaterials,2001,22:763-768
    27.Cheng EZ(Michael).Adhesion mechanism of soybean protein adhesives with cellulosic materials[D]:[Ph.D.Thesis].Manhattan,KS:Kansas State University,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700