储能型永磁直驱风力发电系统并网运行控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风力发电是可再生能源发电中解决当前世界环境污染和能源危机问题最有效途径之一,也是最具有大规模开发条件和商业化前景的发电方式,越来越受到世界各国的重视。由于风速具有随机波动性,因此风力发电并网功率波动很大,这对电网运行的稳定性及经济性带来负面影响。目前,新的电网规则均要求并网风电机组具有一定的低电压穿越能力,当电网发生严重短路故障时,并网风电机组能够不脱网运行,同时可以向电网提供一定的无功功率。随着我国GW级风电场的建设,风电规模的不断增大以及风电的电网穿透率不断上升,风电场输出功率的波动性给电网运行带来的不利影响亟待解决。本文以台达电力电子科教发展计划基金和电力系统国家重点实验室项目“储能型永磁直驱风力发电系统并网运行控制研究”为课题背景,基于永磁直驱风电机组,主要研究了应用电池储能提高机组的低电压穿越能力和平滑风力发电输出功率,以有效改善大规模并网风电场的电能质量和稳定性。
     首先,根据永磁直驱风电机组的工作原理,提出了双PWM变流器的控制策略,设计了三相电压软件锁相环SPLL,并通过仿真验证了风能最大功率跟踪控制、SPLL、SVPWM控制算法和双PWM变流器控制策略的正确性和有效性。
     其次,分析了VRB具有的特点,并根据VRB工作原理,搭建了其等效电路模型,通过仿真验证了其良好的充放电特性。分别对在机组直流侧增加卸荷电阻和储能电池两种提高机组低电压穿越能力的方法进行了分析和系统建模,并通过仿真验证了这两种控制策略的正确性。搭建了在风电场出口处集中配置VRB储能系统平滑风电场输出功率的仿真模型,并通过仿真验证了所提出储能系统变流器控制策略的正确性和有效性。
     最后,对储能系统进行了硬件和软件设计,搭建了应用电池储能平滑风电输出功率的小功率系统硬件实验平台,实验结果验证了应用电池储能够快速吞吐风力发电输出功率,有效平滑风力发电输出功率,以及所提出控制策略的正确性和有效性。
     本文所做的研究工作,为永磁直驱同步风力发电机组提高低电压穿越能力和提高并网风电场的电能质量和稳定性提供了一定的理论参考依据,为工程应用奠定了基础。
Wind power is one of most effective ways to solve the world's environmental pollution and energy crisis in renewable energy generation. It is a power generation mode with the most large-scale development conditions and commercial prospects, which has been drawn more attention to many countries. The intermittent and random fluctuation of wind speed result that wind power grid-connected power fluctuates largely, which has a negative influence to stability and economy of power grid operation. Currently, the new power grid rules require that wind turbines have low voltage ride through (LVRT) capacity. When the short-circuit fault occurs, wind turbine not only can grid-connected operation, but also can provide a certain reactive power. With the construction of GW class wind farms, the scale of wind power is growing and grid penetration of wind power is rising, so the adverse effects of output power fluctuations must be resolved. Taking the Power Electronics Science and Education Development Program of Delta Environmental & Educational Foundation and State Key Lab. of Power System project "Energy storage based direct-drive permanent magnet wind power grid-connected operation control system" as the background of the subject, the main study contents in this paper are that using battery energy storage to improve LVRT capability and smooth output power based on direct-drive permanent magnet wind turbine, in order to effectively improve power quality and stability of the large-scale grid-connected wind farms.
     Firstly, according to direct-drive permanent magnet wind turbine working principle, this paper proposes dual PWM converter control strategy and designs SPLL. The simulation results show that the correctness and affectivity of the MPPT control of wind, SPLL, SVPWM control algorithm and dual PWM converter control strategy.
     Secondly, this paper analyzes the characteristics of VRB. According to VRB working principle, its equivalent circuit mode is built. The simulation results show its good charge and discharge characteristics. The two ways to improve wind turbines LVRT capacity by adding unloading resistance and VRB ESS at DC-Side are analyzed and modeled, and the simulation results show the correctness of two control strategies. The simulation model is built which VRB ESS are equipped at the outlet of wind farm to smooth output power. The simulation results show that the proposed control strategy of AC/DC PWM converter is correct and effective for VRB ESS.
     Finally, the hardware and software of ESS are designed. The small power hardware test platform of smoothing wind power output power with battery energy storage is built. The experimental results verify that the energy storage battery can fast throughput output power fluctuation and effectively smooth wind power output power and the proposed control strategies are correct and effective.
     The work of this paper provides theoretical basis and reference for improving the LVRT capacity of direct-drive permanent magnet synchronous wind turbine and power quality and stability of grid-connected wind farm, and also provides the foundation for the engineering application.
引文
[1]何金波.直驱永磁同步风力发电机组功率平滑控制策略研究[学位论文].重庆,重庆大学,2009.2-6.
    [2]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[学位论文].北京,北京交通大学,2008.4-6.
    [3]叶杭冶.风力发电机组的控制技术.第2版.北京:机械工业出版社,2006:36-43.
    [4]卢洪锋.交流励磁风力发电系统及其控制策略研究[学位论文].北京.华北电力大学.2007.2-4.
    [5]刘其辉.变速恒频风力发电系统运行与控制研究[学位论文].浙江.浙江大学.2005.13-16.
    [6]朱宁.风力发电PWM变流器及其控制策略[学位论文].北京,北京交通大学,2007.4-7.
    [7]Kgs.Lyngby. Analysis of dynamic behaviour of electric power systems with large amount of wind power[D]. Technical University of Denmark, Denmark,2003.2-10.
    [8]恒毅,汪至中.风力发电机极其控制系统的对比分析[J].中小型电机,2002,29(4):41-45.
    [9]胡家兵,贺益康,刘其辉.基于最佳功率给定的最大风能追踪控制策略[J].电力系统自动化,2005,29(24):32-38.
    [10]R.J.Wai, C.Y.Lin, Y.R.Chang. Novel maximum-power-extraction algorithm for PMSG wind generation system[J]. IET Electric Power Applications,2007,1(2):275-283.
    [11]Shigeo Morimoto, Hideaki Nakayama, Masayuki Sanada, et al. Sensorless Output Maximization Control for Variable-Speed Wind Generation System Using PMSG[J]. IEEE Transaction on Industry Applications,2005,40(1):60-67.
    [12]T.Senjyu, S.Tamaki, N. Urasaki. Wind velocity and rotor position sensorless maximum power point tracking control for wind generation system [C]. Power Electronics Specialists Conference,2004:2023-2028.
    [13]李龙文.变速恒频风力发电技术研究[学位论文].湖南,湖南大学,2006.59-72.
    [14]Esmaili R, Xu L, Nichols D K. A new control method of permanent magnet generator for maximum power tracking in wind turbine application[C]//IEEE Power Engineering Society General Meeting, San Francisco, USA:2005 3:2090-2095.
    [15]佘峰.永磁直驱式风力发电系统中最大功率控制的仿真研究[学位论文].湖南,湖南大学,2009.26-34.
    [16]关宏亮,赵海翔,迟永宁,等.电力系统对并网风电机组承受低电压能力的要求[J].电网技术,2007,31(7):78-82.
    [17]张兴,张龙云,杨淑英,等.风力发电低电压穿越技术综述[J].电力系统及其自动化学报,2008,20(2):1-8.
    [18]李建林.风力发电系统低电压运行技术[M].北京:机械工业出版社,2008:12-14.
    [19]李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):29-33.
    [20]Cadadei D, Grandi G, Rossi C. A supercapacitor-based power conditioning system for power quality improvement and uninterruptible power supply//Proceedings of IEEE Indust rial Electronics Specialists Conference, July 8211,2002, LpAquila, Italy:1247-1252.
    [21]C.Luo, H.Banakar, B.Shen, et al. Strategies to smooth wind power fluctuations of wind turbine generator. IEEE Trans. on Energy Conversion,2007,22(2):341-349.
    [22]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制.中国电机工程学报,2009,29(18):71-77.
    [23]王伟胜,陈默子.浅论我国风电接入系统的有关问题[J].中国电力,2004,4:49-53.
    [24]孙涛,王伟胜,戴慧珠,等.风力发电引起的电压波动和闪变[J].电网技术,2003,27(12):62-66.
    [25]J.T.Bialasiewicz, E.Muljadi. The wind farm aggregation impact on power quality. Proceedings of the 32nd Annual Conference of IEEE Industry Electronic Society, November 7-10,2006, Paris, France:4195-4200.
    [26]H.Chong, A.Q.Huang, M.E.Baran, et al. Statcom impact study on the integration of a large wind farm into a weak loop power system. IEEE Trans. on Energy Conversion,2008,23(1): 226-233.
    [27]陈树勇,申洪,张洋,等.基于遗传算法的风电场无功补偿及控制方法的研究.中国电机工程学报,2005,25(8):1-6.
    [28]W.Li, G.Joos. Comparison of energy storage system technologies and configurations in a wind farm. Proceedings of IEEE Power Electronics Specialists Conference, June 17-21, 2007, Orlando, FL, USA:1280-1285.
    [29]林波.直驱式风电机组变流控制系统的设计与研究[硕士位论文].湖南,湖南大学,2009.10-13.
    [30]鲍洁秋.直驱变速恒频风电机组运行特性研究[D].辽宁,沈阳工业大学,2009.30-33.
    [31]姚骏,廖勇,瞿兴鸿,等.直驱永磁同步风力发电机的最佳风能跟踪控制[J].电网技术,2008,32(10):11-15.
    [32]吴迪,张建文.变速直驱永磁风力发电机控制系统的研究[J].大电机技术,2006:51-55.
    [33]尹明,李庚银,张建成,等.直驱式永磁同步风力发电机组建模及其控制策略[J].电网技术,2007,15(31):61-65.
    [34]Chinchilla M, Arnaltes S, Burgos J C. Control of permanent magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. IEEE Transactions on Energy Conversion,2006,21(1):130-135.
    [35]姚骏,廖勇,周求宽,等.双PWM控制交流励磁电源直流链电压的稳定控制策略[J].电力系统自动化,2007,31(21):63-66.
    [36]谢连军.永磁风力发电机并网逆变器的设计与仿真.新疆大学硕士学位论文,2006.22-33.
    [37]赵镜红,张俊洪,杨涛.基于DSP的SVPWM的研究[J].电机与控制学报,2002,6(2):108-110.
    [38]李彦栋,王凯斐,卓放,等.新型软件锁相环在动态电压恢复器中的应用[J].电网技术,2004,(8):42-45.
    [39]琚兴宝,徐至新,邹建龙,等.基于DSP的三相软件锁相环设计[J].船电技术,2004,(4):11-14.
    [40]贾宏新,张宇,王育飞.储能技术在风力发电系统中的应用[J].可再生能源,2009, 27(6): 10-15.
    [41]阮军鹏,张建成,汪娟华.飞轮储能系统改善并网风电场稳定性的研究[J].电力科学与工程,2008,24(3):5-8.
    [42]R.CARDENAS, R.PENA, J.CLRE. Control strategy for power smoothing vector controlled induction machine and flywheel[J]. Electronics Letters,2000,36(8):765-766.
    [43]吴俊玲,吴畏,周双喜.超导储能改善并网风电场稳定性的研究[J].电工电能新技术,2004,23(3):59-63.
    [44]陈星莺,刘孟觉,单渊达.超导储能单元在并网型风力发电系统的应用[J].中国电机工程学报(Proc. CSEE),2001,21(12):63-66.
    [45]刘昌金,胡长生,李霄,等.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化,2008,32(16):83-88.
    [46]李霄,胡长生,刘昌金,等.基于超级电容储能的风电场功率调节系统建模与控制[J].电力系统自动化,2009,33(9):86-90.
    [47]黄亚峰.风电机输出功率波动平抑控制的可行性研究[学位论文].吉林,东北电力大学,2007.33-51.
    [48]张华民,赵平,周汉涛,等.钒氧化还原液流储能电池[J].能源技术,2005,26(1):23-26.
    [49]Akira Shibata, Kanji Sato, Masato Nakajima. Development of vanadium redox flow battery for photovoltaic generation system.24th IEEE Photovoltaic Specialists Conference,1994, vol.1,950-953.
    [50]Sryllas-Kazacos M, Robin R. All-vanadium redox battery [P]. US:4786567,1988:11-22.
    [51]Akira Shibata, Kanji Sato. Development of vanadium redox flow battery for electricity storage. Power Engineering Journal,1999,13(3):130-135.
    [52]L.Barote, R.Weissbach, R.Teodorescu. Stand-alone wind system with vanadium redox battery energy storage. Proceedings of IEEE International Conference on Optimization of Electrical and Electronic Equipments, May 22-24,2008, Brasov, Romania:407-412.
    [53]J.Chahwan, C.Abbey, G.Joos. VRB modeling for the study of output terminal voltages, Internal Losses and Performance. Proceedings of IEEE Electrical Power Conference, October 25-27,2007, Montreal, Canada:387-392.
    [54]J.F.Conroy and R.Watson. Low-voltage ride-through of a full converter wind turbine with permanent magnet generator. IET Renew. Power Gener,2007,1(3):184-188.
    [55]胡书举,李建林,许洪华.直驱风电系统变流器建模和跌落特性仿真[J].高电压技术,2008,34(5):949-954.
    [56]黄庆新.风力发电并网逆变器的DSP控制系统研究[学位论文].北京,北京交通大学,2003.39-44.
    [57]张兴.PWM整流器及其控制策略的研究[学位论文].安徽,合肥工业大学,2003.72-84.
    [58]訾振宁.基于DSP的PWM整流器控制策略和应用研究[学位论文].北京,北京交通大学,2003.15-18.
    [59]张强.基于DSP的三相电压源型PWM整流器系统设计[学位论文].安徽,合肥工业大学,2003.19-27.
    [60]李广海,叶勇蒋,静坪.IPM驱动和保护电路的研究[J].自动化与仪器仪表,2003,12:43-49.
    [61]陈永利,闫英敏,赵霞.智能功率模块(PM)的驱动与保护[J].移动电源与车辆,2007,3(23): 10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700