水稻广亲和基因S5-n遗传转化分析及水稻OsAP蛋白家族分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是重要的粮食作物之一,如何更加有效的提高水稻产量是全世界都关注的重要问题之一。水稻籼粳亚种间的杂种优势很早就被发现,但是籼、粳杂种F_1普遍存在不育或者半不育的现象,这使得籼粳亚种间杂种优势的利用受到了极大的限制。幸好,水稻资源中存在着一类特殊的种质资源,即广亲和品种。它能有效克服籼、粳亚种不育或者半不育现象,给籼、粳杂种利用带来希望。
     本研究主要是分离克隆控制籼粳广亲和性状的一个主效基因S5基因,该基因位于水稻第6染色体上,编码一个天冬氨酸蛋白酶,通过控制籼粳杂种F_1代雌配子的育性而影响结实率。本研究在前人对S5位点定位工作基础上展开研究,S5定位区段内主要包含三个候选基因为ORF3、ORF4和ORF5。对ORF3、ORF4和ORF5分别构建包含籼稻片段的正义转化载体,以粳稻Balilla为转化受体进行转化。通过对转基因植株小穗育性的考察,发现ORF3和ORF4的T_0代转基因阳性植株和阴性植株的结实率不存在显著的差异,因此排除ORF3和ORF4作为候选基因的可能性。分析ORF5的T_0代转基因植株育性数据,发现转基因阳性植株的平均结实率2.8%,胚囊育性为12.8%,而阴性植株的平均结实率是53.3%,胚囊育性是76.7%,两者的花粉育性都在80%以上。以上结果表明,转基因阳性植株结实率下降的原因主要是胚囊败育,这表明ORF5可能是S5基因。进一步分析ORF5的T_1代转基因植株育性数据,发现ORF5 T_1(B10)代正义转化阳性植株平均胚囊育性为1.3%,阴性植株平均胚囊育性为92.3%;阳性植株平均花粉育性为90.4%,阴性植株平均花粉育性为87.9%;阳性植株平均结实率为0,阴性植株平均结实率为89.4%,这一结果是完全共分离的,因此确定ORF5就是S5基因。为了分析S5基因在广亲和品种中的功能,采用将正义转化载体ORF5-NJ11转入受体广亲和品种02428后,得到的T_1代转基因阳性植株分别同籼稻南京11和粳稻Balilla测交,考察测交后植株的结实率和胚囊育性,其中转基因阳性株系C04T1与粳稻Balilla进行测交后植株的胚囊育性和小穗育性分别是53.6%和53.5%,转基因阴性株系C04T1与粳稻Balilla进行测交后植株的胚囊育性和小穗育性分别是81.9%和72.8%;转基因阳性株系C04T1与籼稻南京11进行测交后植株的胚囊育性和小穗育性分别85%和67.5%,转基因阴性株系C04T1与籼稻南京11进行测交后植株的胚囊育性和小穗育性分别是85%和63.5%。而另一株系C02T1测交后的胚囊育性类似于C04的结果。这一结果说明S5-n是没有功能的。通过原位杂交分析S5基因的表达情况,发现该基因主要在珠心细胞、珠被、孢原细胞、大孢子母细胞中表达,在叶片、根等营养器官中没有表达。
     本研究还对S5基因编码的天冬氨酸蛋白酶家族在水稻中的分布情况、进化关系、基因与蛋白的结构及天冬氨酸蛋白酶家族在水稻中在水稻中的表达情况进行了详细的分析。通过BLASTp搜索方法在TIGR、KOME、NCBI RefSeq数据库中进行搜索,最终确定水稻基因组中共有96个OsAP基因,它们分布在水稻12条染色体的不同位置。在进化上96个OsAP蛋白分可分为A、B和C三大类型,其中A类基因相比其他两类在进化上更加保守。而C类基因在数量上最多,在基因结构上变异最大。根据CREP数据库中明恢63和珍汕97表达谱芯片数据,分析水稻中OsAP基因家族表达情况。通过聚类分析66个表达的OsAP基因,可以分为三类。第Ⅰ类有分为4个亚类,Ⅰα和Ⅰγ亚类基因表达量都很低,Ⅰβ亚类的特点是在根中的表达相比其他组织表达要高,而Ⅰδ亚类主要是在开花前一天的雄蕊中高表达。第Ⅱ类包含26个基因,该类特点主要在营养组织表达量相对较高,而在幼穗组织中表达量相对较低:第Ⅲ类包含17个基因,该类特点是基因在大部分营养器官表达量比较低,但在幼穗发育时期的表达量比较高。同时,本研究也对OsAP家族在光暗处理及激素处理情况下的差异表达基因也进行了分析,发现对珍汕97和明恢63发芽后48小时的胚芽及胚根进行连续光照处理48小时和连续暗处理48小时处理后共有14个2倍差异表达OsAP基因。在激素(NAA,GA3和KT)处理的条件下的表达情况相比3叶期的苗叶(seedling),共有9个2倍差异表达OsAP基因。另外,比较分析12对位于大片段复制区的重复基因的表达模式,有7对在进化中出现新功能化,说明这个家族在进化中出现新功能化是在一个相对较高的水平。
Rice is one of the important food crops in the world,so one of the important issues is how to improve rice production.F_1 hybrids between indica and japonica usually demonstrate very strong hybrid vigor,but it is the partial sterility or full sterility frequently observed in most indica-japonica crosses.So this is a major difficulty encountered in the development of such inter-subspecific hybrids.However,a special group of rice germplasm,referred to as wide compatibility varieties,is able to produce highly fertile hybrids when crossed to both indica and japonica.
     The purpose of this study is to clone a gene S5 which is a major locus for indica-japonica hybrid sterility and wide compatibility,and was previously located on chromosome 6.Here,we show that S5 encodes an AP,which conditioned embryo-sac sterility in indica-japonica hybrids.Our researches have been done based on the previously work according to S5 loci,and it included three ORFs(ORF3-5). Transformation constructs were prepared for ORF3,ORF4 and ORF5 with indica genomic DNA fragments,and they were introduced into the japonica variety Balilla. Examination of the spikelet fertility of the T_0 plants under natural field conditions showed that there was not a statistically significant difference between the transgene-positive and -negative plants of ORF3 or ORF4,indicating that neither of them is a likely candidate for S5.Then,we examed the spikelet fertility,embryo-sac fertility and pollen fertility of transgene-positive and -negative plants of ORF5 construct.It showed that the average spikelet fertility of the positive plants was 2.8%and the average embryo-sac fertility of the positive plants was 12.8%,but the average spikelet fertility of the negative plants was 53.3%and the average embryo-sac fertility of the negative plants was 76.7%.However, the average pollen fertility of the positive and the negative plants were more than 80%. This result showed the low spikelet fertility of transgene-positive plants because of embryo-sac abortion,strongly suggesting ORF5 to be the candidate for S5.Analysis the fertility of T_1 plants,we found the average embryo-sac fertility of ORF5 T_1(B10) transgenic positive and negative plants were 1.3%and 92.3%respectively,and the average pollen fertility of ORF5 T_1(B10) transgenic positive and negative plants were 90.4%and 87.9%respectively,and the average spikelet fertility of ORF5 T_1(B10) transgenic positive and negative plants were 0 and 89.4%respectively,so the results were perfect cosegregation and ORF5 was the S5 gene.To gain insight into the function of S5, the ORF5-NJ11 construct was introduced to 02428,and T_1 progenies were test-crossed with Nanjing 11 and Balilla,were examined for embryo-sac fertility and spikelet fertility. The average embryo-sac and spikelet fertility of C04T1×Balilla transgenic positive plants were 53.6%and 53.5%respectively,and the average embryo-sac and spikelet fertility of C04T1×Balilla transgenic negative plants were 81.9%and 72.8%respectively. The average embryo-sac and spikelet fertility of C04T1×Nanjing 11 transgenic positive plants were 85%and 67.5%respectively,and the average embryo-sac and spikelet fertility of C04T1×Balilla transgenic negative plants were 85%and 63.5%respectively. This results indicate that S5-n is a nonfunctional allele.RNA in situ hybridization showed S5 has a localized expression in the ovule tissues including necellus,integument, megasporocytes and megaspores.It had no detection in leaves and roots.
     Another,we analyzes the distribution and expression of all genes belonged to the aspartic protease family in rice.We identified 96 OsAP genes by a comprehensive bioinformaitic analysis of rice genome sequence database including TIGR,KOME and NCBI RefSeq.Totally 93 OsAP genes were localized on the 12 rice chromosome pseudomolecules.96 OsAP were divided into three categories in a phylogenetic tree,and the A category was more conserved structure compared to another two categories.The numbers of genes were the largest in the C category,but the gene structure varied much. Expression profile data of OsAP genes in Minghui 63 and Zhenshan 97,using RNA samples from 31 tissues hybridized with Affymetrix rice gene chips were extracted from CREP database(http://crep.ncpgr.cn).Sixty-six of the genes had "present" call in at least one of the stages analyzed.Expression pattern of the sixty-six genes were grouped into three main classes.ClassⅠwas subdivided into four subclasses.ClassⅠαand classⅠγshowed low expression levels in all tissues analyzed.ClassⅠβand ClassⅠδparticularly showed high expression in root and stamen in one day before flowering respectively, compared to the rest analyzed tissues.ClassⅡshowed low expression in the stages of young panicle development,but they showed relatively high transcript accumulation in vegetative tissues.In contrast,classⅢshowed high expression level during the stages of young panicle development,but with low expression in most vegetative tissues.To investigate the light regulation of OsAP genes,the microarray data were obtained for the tissues of plumule and radicle treated with light and dark for 48 hr at 48 hr after emergence.A total of 14 OsAP genes were differentially expressed between light and dark treatments in the two tissues in two varieties.For phytohormone treatments,nine OsAP genes in two varieties exhibited differential expression in response to NAA,GA3 and KT treatments.All of 12 pairs of the genes located in the segmentally duplicated regions were found to be represented in the Affymetrix GeneChip,which provided opportunity for comparing their expression patterns.The expression patterns of the two members of seven gene pairs were different in most of the tissues tested,indicating one member of the duplicates might have gained new function.
引文
1.蒋巨星.水稻广亲和基因S_5位点染色体区段物理图谱构建及其部分BAC克隆的DNA序列测定与初步分析.[硕士学位论文].武汉:华中农业大学图书馆,2000
    2.李宝健,欧旭学智.籼粳杂种F_1小花败育的细胞学研究.中山大学学报(自然),1989,8:137-146
    3.刘桂富,卢永根,张桂权.籼粳稻F_1花粉不育性等位基因的基因型和分化度.华南农业大学学报,1994,15:67-71
    4.刘克德.水稻广亲和遗传基础的全基因组分析及S_5位点区段部分物理图谱的构建.[博士学位论文].武汉:华中农业大学图书馆,1998
    5.李任华,徐才国,李香花,王象坤.有利基因和有利的基因互作能够提高籼粳杂种育性.遗传学报,1999,26:228-238
    6.刘永胜,周开达,弱国大,罗文质.水稻籼粳杂种雌性不育的细胞学初步研究.实验生物学报,1993,26:95-99
    7.刘永胜,孙敬三,周开达.水稻亚种间杂种小穗败育的细胞学基础.实验生物学报,1997,30:335-341
    8.李文涛,张桂权.水稻F_1花粉不育基因的精细定位及其遗传分化研究.分子植物育种,2003,1:559-561
    9.欧阳学智,李宝健.水稻籼粳杂种F_1雌配子体败育的超微结构和酸性磷酸酶细胞化学研究(简报).实验生物学报,1995,28:435-439
    10.邱树青 水稻广亲和基因S_5~n的精细定位与抽穗期形状的全基因组分析[博士学位论文].武汉:华中农业大学图书馆,2005
    11.末翔.水稻籼粳亚种间杂种不育机理的研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    12.滕俊琳,王以秀,薛庆中.水稻亚种杂种F_1小孢子和花粉发育的超微结构.电子显微学报,1990,3:30
    13.徐玉梅.籼、粳亚种间杂种F_1代不育机理的细胞学研究.[硕士学位论文].武汉:华中农业大学图书馆,2007
    14.徐才国.水稻亚种内及亚种间杂交花粉在柱头上附着和萌发状态的观察.华中农业大学学报,1995,14:421-425
    15.徐云碧,申宗坦,陈英,朱立煌.水稻籼粳杂种F_2群体中RFLP标记的异常分离及其染色体分布.植物学报,1995,37:91-96
    16.王以秀,严菊强,薛庆中,沈圣泉.水稻亚种间杂种—代部分雄性不育的细胞学研究.浙江农业大学学报,1991,17:417-422
    17.严长杰,梁国华,顾世梁,裔传灯,陆驹飞,李欣,汤述翥,顾铭洪.典型籼粳杂种不育性的分子标记分析及其遗传基础.遗传学报,2003,30:267-276
    18.杨存义,陈中正,庄楚雄,梅曼彤,刘耀光.水稻籼粳稻杂种不育基因座Sc的遗传图和物理图精细定位.科学通报,2004,4:1273-1277
    19.杨弘远.利用整体染色透明技术观察胚囊、胚、胚乳和胚状体.植物学报,1986,28:575-581
    20.张桂权,卢永根.栽培稻杂种不育性的遗传研究Ⅱ花粉不育性的基因模式.遗传学报,1993a,20:222-228
    21.张桂权,卢永根,刘桂富,杨进昌,张华.栽培稻杂种不育性的遗传研究Ⅲ不同类型品种F_1花粉不育性的等位基因分化.遗传学报,1993b,20:541-551
    22.张桂权,卢永根,张华,杨进昌,刘桂富.栽培稻(Oryza sativa)杂种不育性的遗传研究Ⅳ F_1花粉不育性的基因型.遗传学报,1994,21:34-41
    23.张志胜.栽培稻亚种间杂种不育性的细胞学研究.[华南农业大学博士学位论文].2002
    24.庄楚雄,张桂权,梅曼彤,卢永根.栽培稻F_1花粉不育基因座S-a的分子定位.遗传学报,1999,26:213-218
    25.朱晓红,曹显祖,朱庆森.水稻籼粳亚种间杂种配子体败育及其与小穗不孕关系的研究.作物学报,1998,24:421-430
    26.朱文银,李文涛,丁效华,张泽民,曾瑞珍,朱海涛,张桂权.水稻F_1花粉不育基因S-e 的初步鉴定.华南农业大学学报,2008,29:1-5
    27.Amanda J G,Thomas H T,Jason C.Genetic structure and diversity in Oryza sativa L.Genetics,2005,169:1631-1638
    28.An C I,Fukusaki E,Kobayashi A.Aspartic proteinases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco.Planta,2002,214:661-667
    29.Asakura T,Watanabe H,Abe K,Arai S.Rice aspartic proteinase,oryzasin,expressed during seed ripening and germination,has a gene organization distinct from those of animal and microbial aspartic proteinases.Eur J Biochem,1995,232:77-83
    30.Asakura T,Watanabe H,Abe K,Arai S.Oryzasin as an aspartic proteinase occurring in rice seeds:purification,characterization,and application to milk clotting.J Agric Food Chem,1997,45:1070-1075
    31.Bajon C,Horlow C,Motamayor J C,Sauvanet A,Robert D.Megasporogenesis in Arabidopsis thaliana L.:an ultrastructural study.Sex Plant Reprod,1999,12:99-109
    32.Baumann K,De Paolis A,Costantino P,Gualberti G.The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants.Plant Cell,1999,11:323-333
    33.Barrett A J,Rawlings N D,Woessner J F.In Handbood of Proteolytic Enzymes 2nd Edn,(Elsevier Acad.Press,Amsterdam,Boston,Heidelberg,London,New York,Oxford,Paris,San Diego,San Francisco,Singapore,Sydney and Tokyo),2004,pp3-4
    34.Belozersky M A,Sarbakanova Sh T,Dunaevsky Ya E.Aspartic proteinase from wheat seeds:isolation,properties and action on gliadin.Planta,1989,177:1432-2048
    35.Bhalerao R,Keskitalo J,Sterky F,Erlandsson R,Bjorkbacka H,Birve S J,Karlsson J,Gardestrom P,Gustafsson P,Lundeberg J,Jansson S.Gene expression in autumn leaves.Plant Physiol,2003,131:430-442
    36.Bi X Z,Gurdev S,Khush G S,Bennett J.The rice nucellin gene ortholog OsAspl encodes an active aspartic protease without a plant-specific insert and is strongly expressed in early embryo.Plant Cell Physiol,2005,46:87-98
    37.Bourgeois J,Malek L.Purification and characterization of an aspartyl proteinase from dry jack pine seeds.Seed Science Research,1991,1:139-147
    38.Byzova M V,Franken J,Aarts M G M,de Almeida-Engler J,Engler G,Mariani C,Van Lookeren Campagne M M,Angenent G C.Arabidopsis STERILE APETALA,a multifunctional gene regulating inflorescence,flower,and ovule development.Genes Dev,1999,13:1002-1014
    39.Cercos M,Gomez-Cadenas A,Ho T H D.Hormonal regulation of a cysteine proteinase gene,EPB-1,in barley aleurone layers:cis- and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid.Plant J,1999,19:107-118
    40.Chaudhury A M,Koltunow A,Payne T,Luo M,Tucker M R,Dennis E S,Peacock W J. Control of early seed development. Annu Rev Cell Dev Biol, 2001, 17:677-699
    
    41. Chen F Q, Foolad M R. Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol Biol, 1997, 35:821-831
    
    42. Chen X, Pfeil J E, Gal S. The three typical aspartic proteinase genes of Arabidopsis thaliana are differentially expressed. Eur J Biochem, 2002, 269:4675-4684
    
    43. Chen J, Jiang L, Wang C, Ikehashi H, Zhai H, Wan J. Mapping of loci for pollen sterility of indica-japonica hybrids in rice (Oryza saliva L.). Acta Agronomica Sinica. 2006, 32:515-521
    
    44. Chen Y, Li H, Shi D, Yuan L, Liu J, Sreenivasan R, Baskar R, Grossniklaus U, Yang W. The central cell plays a critical role in pollen tube guidance in Arabidopsis. The Plant Cell, 2007,19:3563-3577
    
    45. Chen J, Ding J, Ouyang Y, Du H, Yang J, Cheng K, Zhao J, Qiu S, Zhang X, Yao J, Liu K, Wang L, Xu C, Li X, Xue Y, Xia M, Ji Q, Lu J, Xu M, Zhang Q. A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc NatlAcadSci USA 2008, 108:11436-11441
    
    46. Cheung A Y. Pollen-pistil interactions during pollen-tube growth. Trends Plant Sci, 1996,1:45-51
    
    47. Christensen C A, Subramanian S, Drews G N. Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Dev Biol, 1998, 202:136-151
    
    48. Christensen C A, King E J, Jordan J R, Drews G N. Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod, 1997, 10:49-64
    
    49. Christensen C A, Gorsich S W, Brown R H, Jones L, Brown J, Shaw J M, Drews G N.Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell, 2002,14:2215-2232
    
    50. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q and Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev, 2006, 20:1250-1255
    
    51. Cooper D C. Macrosporogenesis and embryo-sac development in Euchlaena mexicana and Zea mays. J Agri Res, 1937, 55:539-551
    
    52. CCordeiro M C, Pais M S, Brodelius P E. Tissue-specific expression of multiple forms of cyprosin (aspartic proteinase) in flowers of Cynara cardunculus. Physiol Plantarum, 1994, 92,645-653
    
    53. Cruz de Carvalho M H, d'Arcy-Lameta A, Roy-Macauley H, Gareil M, Ei Maarouf H, Pham-Thi A T, Zuily-Fodil Y. Aspartic protease in leaves of common bean {Phaseolns vulgaris L.) and cowpea (Vigna unguiculata L. Walp): enzymatic activity, gene expression and relation to drought susceptibility. FEBS Lett, 2001, 492, 242-246
    
    54. Davies D R. The structure and function of aspartic proteinases. Annu Rev Biophys Chem, 1990,19:189-215
    
    55. De Block M, Debrouwer D. RNA-RNA in situ hybridization using digoxigenin-labeled probes:the use of high-molecular-weight polyvinyl alcohol in the alkaline phosphatase indoxyl-nitroblue tetrazolium reaction. Analytical biochemistry, 1993, 215:86-89
    
    56. Devanand P S, Rangaswamy M, Ikehashi H. Identification of hybrid sterility gene loci in two cytoplasmic male sterile lines in rice. Crop Science, 2000, 40:640-646
    
    57. D'Hondt K, Bosch D, Van Damme J, Goethals M, Vandekerckhove J, Krebbers E. An aspartic proteinase present in seeds cleaves Arabidopsis 2S albumin precursors in vitro. J Biol Chem,1993,268:20884-20891
    
    58. D'Hondt K, Stack S, Gutteridge S, Vandekerckhove J, Krebbers E, Gal S. Aspartic proteinase genes in the Brassicaceae Arabidopsis thaliana and Brassica napus. Plant Mol Biol, 1997,33:187-192
    
    59. Dobzhansky T. Studies on hybrid sterility. Genetics, 1936, 21:113-135
    
    60. Doi E, Shibata D, Matoba T, Yonezawa D. Characterization of pepstatin-sensitive acid protease in resting rice seeds. Agric Biol Chem, 1980, 44:741-747
    
    61. Doi K, Taguchi K, Yoshimura A. RFLP mapping of S20 and S21 for F_1 pollen semi-sterility found in backcross progeny of Oryza sativa and O. glaberrima. Rice Genet Newsl, 1999, 16:65-68
    
    62. Drews G N, Lee D, Christensen G A. Genetic analysis of female gametophyte development and function. Plant Cell, 1998, 10:5-17
    
    63. Dunn B M. Structure and mechanism of the pepsin-like family of aspartic peptidases. Chem Rev,2002, 102:4431-4458
    
    64. Elliott R C, Betzner A S, Huttner E, Oakes M P, Tucker W Q J, Gerentes D, Perez P, Smyth D R.AINTEGUMENTA, an APETAL2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell, 1996, 8:155-168
    
    65. Faro C, Gal S. Aspartic proteinase content of the Arabidopsis genome. Current Protein and Peptide Science, 2005, 6:493-500
    
    66. Faro C, Ramalho-Santos M, Vieira M, Mendes A, Simoes I, Andrade R, Verissimo P, Lin X,Tang J, Pires E, Cloning and characterization of cDNA encoding cardosin A, an RGD-containing plant aspartic proteinase. J Biol Chem, 1999, 274:28724-28729
    
    67. Faure J E. Double fertilization in flowering plants: Discovery, study methods and mechanisms. C R Acad Set Se. III Sci Vie, 2001, 324:551-558
    
    68. Faure J E, Rotman N, Fortune P, Dumas C. Fertilization in Arabidopsis thaliana wild type:Developmental stages and time course. Plant J, 2002, 30:481-488
    
    69. Feldmann K A, Coury D A, Christianson M L. Exceptional segregation of a selectable marker (KanR) in Arabidopsis identifies genes important for gametophytic growth and development.Genetics, 1997,147:1411-1422
    
    70. Frazao C, Bento I, Costa J, Soares C M, Verissimo P, Faro C, Pires E, Cooper J, Carr ondo M A.Crystal structure of cardosin A, a glycosylated and Arg-GIy-Asp containing aspartic proteinase from the flowers of Cynara cardunculus L. J Biol Chem, 1999, 74:27694-27701
    
    71. Fu Y, Yuan M, Huang B Q, Yang H Y, Zee S Y, O'Brien T P. Changes in actin organization in the living egg apparatus of Torenia fournieri during fertilization. Sex Plant Reprod, 2000,12:315-322
    
    72. Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y. Repression of shoot growth,a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins.Plant Cell, 2000, 12:901-915
    
    73. Fusada N, Masuda T, Kuroda H, Shimada H, Ohta H, Takamiya K. Identification of a novel cis-element exhibiting cytokinin-dependent protein binding in vitro in the 5'-region of NADPH-protochlorophyllide oxidoreductase gene in cucumber. Plant Mol Biol, 2005, 59:631-645
    
    74. Gallagher T L, Gasser C S. Independence and interaction of regions of the INNER NO OUTER protein in growth control during ovule development. Plant Physiology, 2008,147:306-315
    
    75. Garciamartinez J L, Moreno J. Proteolysis of ribulose-l,5-bisphosphate carboxylase oxygenase in citrus leaf extracts. Physiol Plantarum, 1986, 66, 377-383
    
    76. Ge X C, Dietrich C, Matsuno M, Li G J, Berg H, Xia Y J. An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO reports,2005, 6:282-288
    
    77. Glaszmann J C. Isozymes and classification of Asian rice varieties. Theor Appl Genet, 1987,74:21-30
    
    78. Golubovskaya I, Avalkina N, Sheridan W F. New insights into the role of the maize ameioticl locus. Genetics, 1997, 147:1339-1350
    
    79. Groβ-Hardt R, Kagi C, Baumann N, Moore J, Baskar R, Gagliano W, Jurgens G, Grossniklaus U LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biology 2007, 5:494-500
    
    80. Gubler F, Kalla R, Roberts J K, Jacobsen J V. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pl alpha-amylase gene promoter.Plant Cell, 1995, 7:1879-1891
    
    81. Guevara M G, Oliva C R, Machinandiarena M, Daleo G R. Purification and properties of an aspartic protease from potato tuber that is inhibited by a basic chitinase. Physiol Plantarum, 1999,106:164-169
    
    82. Guevara M G, Daleo G R, Oliva C R. Purification and characterization of an aspartic protease from potato leaves. Physiol Plantarum, 2001, 112:321-326
    
    83. Guilloteau M, Laloi M, Michaux S, Bucheli P, McCarthy J. Identification and characterisation of the major aspartic proteinase activity in Theobroma cacao seeds. J Sci Food Agric, 2005,85:549-562
    
    84. Haig D. New perspectives on the angiosperm female gametophyte. Bot Rev, 1990, 56:236-275
    
    85. Han B, Xue Y B. Genome-wide intraspecific DNA-sequence variations in rice. Current Opinion in Plant Biology, 2003, 6:134-138
    
    86. Harushima Y, Kurata N, Yano M, Nagamura T, Sasaki T. Detection of segregation distortion in an indica-japonica rice cross using a high-resolution molecular map. Theor Appl Genet, 1996,92:145-150
    
    87. Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N. A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics, 2001, 159:883-892
    
    88. Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N. Diverse Variation of Reproductive Barriers in Three Intraspecific Rice Crosses. Genetics, 2002, 160:313-332
    
    89. Heimgartner U, Pietrzak M, Geersten R, Brodelius P, Silva Figueiredo A C. Purification and partial characterization of milk clotting proteases from flowers of cynara cardunculus.Phytochemistry, 1990, 29:1405-1410
    
    90. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza saliva L) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994,6:271-282
    
    91. Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T. Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell, 1998, 10:2019-2031
    
    92. Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T. Pollen tube attraction by the synergid cell. Science, 2001, 293:1480-1483
    
    93. Higashiyama T. The synergid cell: Attractor and acceptor of the pollen tube for double fertilization. J Plant Res, 2002, 115:149-160
    
    94. Higashiyama T, Kuroiwa H, Kuroiwa T. Pollen-tube guidance: Beacons from the female gametophyte. Curr Opin Plant Biol, 2003, 6:36-41
    
    95. Higashiyama T, Inatsugi R, Sakamoto S, Sasaki N, Mori T, Kuroiwa H, Nakada T, Nozaki H,Kuroiwa T, Nakano A. Species preferentiality of the pollen tube attractant derived from the synergid cell of Toreniafournieri. Plant Physiology, 2006, 142:481-491
    
    96. Hiraiwa N, Kondo M, Nishimura M, Hara-Nishimura I. An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants. Eur J Biochem 1997,246:133-141
    
    97. Hirano H, Sano Y, Hirai A, Sasaki T. Genetics of Speciation in Rice. Rice Biology in the Genomics Era. Springer Berlin Heidelberg, 2008, 247-259
    
    98. Holdaway-Clarke T L, Feijo J A, Hackett G R, Kunkel J G, Hepier PK. Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell, 1997, 9:1999-2010
    
    99. Howden R, Park S K, Moore J M, Orme J, Grossniklaus U, Twell D. Selection of T-DNA-tagged male and female gametophytic mutants by segregation distortion in Arabidopsls. Genetics, 1998,149:621-631
    
    100. Huang B Q, Russell S D. Female germ unit: Organization, isolation, and function. Int Rev Cytol,1992, 140:233-292
    
    101. Huang B Q, Sheridan W F. Embryo sac development in the maize indeterminate gametophyte 1 mutant: abnormal nuclear behavior and defective microtubule organization. Plant Cell, 1996, 8:1391-1407
    
    102. Huck N, Moore J M, Federer M, Grossniklaus U. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development, 2003, 130:21490-2159
    
    103. Hudson M E, Quail P H. Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol, 2003, 133:1605-1616
    
    104. Ikehashi H, Araki H. Varietal screening for compatibility types revealed in F_1 fertility of distant crosses in rice. Jpn J Breed, 1984, 34:304-312
    
    105. Ikehashi H, Araki H. Genetics of F_1 sterility in remote crosses in rice. International Rice Research Institute. In: Rice Genetics, 1986, 119-130
    
    106. Jefferson R A, Kavanagh T A, Bevan M W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBOJ, 1987, 6:3901-3907
    
    107. Ji Q, Lu J, Chao Q, Gu M, Xu M. Delimiting a rice wide-compatibility gene S_5~n to a 50 kb region.Theor Appl Genet, 2005, 11:1495-1503
    
    108. Jing W, Zhang W, Jiang L, Chen L, Zhai H, Wan J. Two novel loci for pollen sterility in hybrids between the weedy strain Ludao and the Japonica variety Akihikari of rice (Oryza sativa L).Theor Appl Genet, 2007, 114:915-925
    
    109. Johnson M A, Preuss D. Plotting a course: Multiple signals guide pollen tubes to their targets.Dev Cell, 2002, 2:273-281
    
    110. Kervinen J, Tobin G J, Costa J, Waugh D S, Wlodawer A, Zdanov A. Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J, 1999,18:3947-3955
    111. Kitamura E. Genetics studies on sterility observed in hybrids between distantly related varieties of rice (Oryza sativa L.). Bull Chgoku Arg Exp Sta, 1962a, Series A: 141 -205
    
    112. Kitamura E. Studies on cytoplasmic sterility of hybrids in distantly related varieties of rice (Oryza sativa L). Japan J Breed, 1962b, 12:81 -84
    
    113.Klucher K M, Chow H, Reiser L, Fischer R L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell, 1996, 8:137-153
    114. Koide Y, Ikenaga M, Sawamura N, Nishimoto D, Matsubara K, Onishi K, Kanazawa A, Sano Y.The evolution of sex-independent transmission ratio distortion involving multiple allelic interactions at a single locus in rice. Genetics, 2008,180:409-420
    115.Kranz E. In vitro fertilization. In Current Trends in the Embryology of Angiosperms, S.S.Bhojwani and W.Y. Soh, eds (Dordrecht, The Netherlands: Kluwer Academic Publishers), 2001,143-166
    
    116. Kubo T, Eguchi M, Yoshimura A. A new gene for F_1 pollen sterility in Japonica/Indica cross of rice. Rice Genet Newsl, 2000, 17:63-64
    
    117. Kubo T, Yoshimura A. Linkage analysis of an F_1 sterility gene in Japonica/Indica cross of rice.Rice Genet Newsl, 2001, 18:52-53
    
    118. Kuwabara T, Suzuki K. Reversible Changes in Conformation of the 23-kDa Protein of Photosystem II and Their Relationship to the Susceptibility of the Protein to a Proteinase from Photosystem II Membranes. Plant and Cell Physiology, 1995, 36:495-504
    
    119. Laloi M, McCarthy J, Morandi O, Gysler C, Bucheli P. Molecular and biochemical characterisation of two aspartic proteinases TcAP1 and TcAP2 from Theobroma cacao seeds.Planta, 2002, 215:754-762
    
    120. Lee R H, Wang C H, Huang L T, Chen S C. Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot, 2001, 52:1117-1121
    
    121. Li W T, Zeng R Z, Zhang Z M, Ding X H, Zhang G Q. Identification and fine mapping of S-d, a new locus conferring the partial pollen sterility of intersubspecific F_1 hybrids in rice(Oryza sativa L.). Theor Appl Genet, 2008, 116:915-922
    
    122. Li W T, Zeng R Z, Zhang Z M, Ding X H, Zhang G Q. Fine mapping of locus S-b for F_1 pollen sterility in rice {Oryza sativa L.). Chinese Science Bulletin, 2006, 51:675-680
    
    123. Li Z K, Shannon R M. Genetics of hybrid sterility and hybrid breakdown in an intersubspecific rice(Oyaza sativa L.) population. Genetics, 1997, 145:1139-1148
    
    124. Li D, Chen L, Jiang L, Zhu S, Zhao Z, Liu S, Su N, Zhai H, Ikehashi H, Wan J. Fine mapping of S32(t), a new gene causing hybrid embryo sac sterility in a Chinese landrace rice (Oryza sativa L.) Theor Appl Genet, 2007a, 114:515-524
    
    125. Li W C, Jiang L, Zhou, S R, Wang C M, Liu L L, Chen L M, Ikehashi H, Wan J M. Fine mapping of pss1, a pollen semi-sterile gene in rice (Oryza sativa L.). Theor Appl Genet, 2007b,114:939-946
    
    126. Lin S Y, Ikehashi H, Yanagihara S, Kawashima A. Segregation distortion via male gametes in hybrids between Indica and Japonica or wide-compatibility varieties of rice (Oryza sativa L.).Theor Appl Genet, 1992, 84:812-818
    
    127. Lin S Y, Ikehashi H. A gamete abortion locus detected by segregation distortion of isozyme locus Est-9 in wide crosses of rice (Oryza sativa L.). Euphytica, 1993, 67:35-40
    
    128. Lin Y J, Zhang Q. Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23:540-547
    
    129. Liu A, Zhang Q, Li H. Location of a gene for wide-compatibility in the RFLP linkage map. Rice Genet Newsl, 1992,9:134-136
    
    130. Liu K D, Zhou Z Q, Xu C G, Zhang Q, Saghai Maroof M A. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, japonica and wide compatibility varieties.Euphytica, 1996,90:275-280
    
    131. Liu K D, Wang J, Li H B, Xu C G, Liu A M, Li X H, Zhang Q F. A genome-wide analysis of wide compatibility in rice and the precise location of the 55 locus in the molecular map. Theor Appl Genet, 1997,95:809-814
    
    132. Liu H Y, Xu C G, Zhang Q. Male and female gamete abortions, and reduced affinity between the uniting gametes as the causes for sterility in an indica/japonica hybrid in rice. Sexual Plant Reprod, 2004, 17:55-62
    
    133. Liu J, Zhang Y, Qin G, Tsuge T, Sakaguchi N, Luo G, Sun K, Shi D, Aki S, Zheng N, Aoyama T, Oka A, Yang W, Umeda M, Xie Q, Gu H, Qua L. Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. The Plant Cell, 2008, 20:1538-1554
    
    134. Long Y, Zhao L, Niu B, Su J, Wu H, Chen Y, Zhang Q, Guo J, Zhuang C, Mei M, Xia J, Wang L, Wu H, Liu Y. Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. PNAS, 2008, 105:18871-18876
    
    135. Lord E M, Russell S D. The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 2002, 18:81-105
    
    136. Lu C G, Takabatake K, Ikehashi H. Identification of segregation-distortion-neutral alleles to improve pollen fertility of indica-japonica hybrids in rice (Oryza sativa L.). Euphytica, 2000,113:101-107
    
    137. Lu Q, Li X H, Guo D, Xu C G and Zhang Q. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Mol Genet Genomics,2005,273:507-511
    
    138. Lyttle T W. Segregation distorters. Annu Rev Genet, 1991, 25:511 -557
    
    139. Maekawa M. Inukai Shmbashi N. Spikelet sterility in F_1 hybrids between rice varieties Silewash and Hayakogane. Japan J Breed, 1991, 41:359-363
    
    140. McCormick S. Control of male gametophyte development. Plant Cell, 2004, 16:142-153
    
    141. Mena M, Cejudo F J, Isabel-Lamoneda I, Carbonero P. A Role for the DOF Transcription Factor BPBF in the Regulation of Gibberellin-Responsive Genes in Barley Aleurone. Plant Physiol,2002, 130:111-119
    
    142. Misra, R.C. Contribution to the embryology of Arabidopsis thaliana (Gay and Monn.). Agra Univ J Res Sci, 1962, 11:191-199
    
    143. Moore J M, Vielle calzada J P, Gaghano W, Grossniklaus U. Genetic characterization of hadad, a mutant disrupting female gametogenesis in Arabidopsis thaliana. Cold Spring Harbor Symp Qnant Biol, 1997,62:35-47
    
    144. Mutlu A, Pfeil J E, Gal S. A probarley lectin processing enzyme purified from Arabidopsis thaliana seeds. Phytochemistry, 1998, 47:1453-1459
    
    145. Muller H J, Pontecorvo G. Recombinants between Drosophila species, the F_1 hybrids of which are sterile. Nature, 1940, 146:199-200
    146. Murray M G, Thompson W F. Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res, 1980, 8:4321-4329
    
    147. Nakamura M, Tsunoda T, Obokata J. Photosynthesis nuclear genes generally lack TATA-boxes: a tobacco photosystem I gene responds to light through an initiater. Plant J, 2002, 29:1-10
    
    148. Nakano T, Murakami S, Shoji T, Yoshida S, Yamada Y, Sato F. A novel protein with DNA binding activity from tobacco chloroplast nucleoids. The Plant Cell, 1997, 9:1673-1682
    
    149. Kulkarni A, Rao M. Biochemical characterization of an aspartic protease from Vigna radiata:kinetic interactions with the classical inhibitor pepstatin implicating a tight binding mechanism.Biochimica et Biophysica Acta, 2007, 1774: 619-627
    
    150. O'Brien J S, Kishimoto Y. Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J. 1991, 5:301-308
    
    151.Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell, 2003, 15,1591-1604
    
    152. Oka H I. Phylogenetic diferentiation of cultivated rice. Japan J Breed, 1953, 4:101-110
    
    153. Oka H I. Genetic analysis for the sterility of hybrids between distantly related varieties of cultivated rice. J Genet, 1957, 55:397-409
    
    154. Oka H I. Analysis of genes controlling F_1 sterility in rice by the use of isogenic lines. Jpn J Genet,1974,77:521-534
    
    155. Oka H I, Doida Y. Phylogenetic differentiation of cultivated rice. Jpn J Genet, 1962, 37: 24-35
    
    156. Pagnussat G C, Yu H J, Ngo Q A, Rajani S, Mayalagu S, Johnson C S, Capron A, Xie L F, Ye D,Sundaresan V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 2005, 132:603-614
    
    157. Pagnussat G, Yu H, Sundaresana V. Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. The Plant Cell, 2007, 19:3578-3592
    
    158. Palanivelu R, Preuss D. Pollen tube targeting and axon guidance: Parallels in tip growth mechanisms. Trends Cell Biol 2000, 10:517-524
    
    159. Palanivelu R, Brass L, Edlund A F, Preuss D. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell, 2003, 114: 47-59
    
    160. Panavas T, Pikula A, Reid P D, Rubinstein B, Walker E L. Identification of senescence-associated genes from daylily petals. Plant Molecular Biology, 1999, 40:237-248
    
    161. Pierson E S, Miller D D, Callaham D A, van Aken J, Hackett G, Hepler P K. Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol, 1996, 174:160-173
    
    162. Polanowski A, Wilusz T, Kolaczkowska M K, Wieczorek M, Wilimowska-Pelc A, Kuczek M.Purification and characterization of aspartic proteinases from Cucumis sativus and Cucurbita Cucurbita maxima seeds. Aspartic Proteinases. New York, Walter de Gryter, 1985, 49-52
    
    163. Qiu S Q, Liu K D, Jiang J X, Song X, Xu C G, Li X H, Zhang Q F. Delimitation of the rice wide compatibility gene S_5~n to a 40-kb DNA fragment. Theor Appl Genet, 2005, 1080-1086
    
    164. Radlowski M, Kalinowski A, Adamczyk J, Kro'likowski Z, Bartkowiak S. Proteolytic activity in the maize pollen wall. Physiol Plant, 1996, 98:172-178
    
    165.Raghavan V. Some reflections on double fertilization, from its discovery to the present. New Phytol, 2003, 159:565-583
    166. Ramalho-Santos M, Pissarra J, Verissimo P, Pereira S, Salema R, Pires E, Faro C J. Cardosin A,anabundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta, 1997, 203, 204-212
    
    167. Rawlings N D, Barrett A J. MEROPS: the peptidase database. Nucleic Acids Res, 1999,27:325-331
    
    168. Ray S, Park S S, Ray A. Pollen tube guidance by the female gametophyte. Development, 1997,124:2489-2498
    
    169. Reiser L, FischerR L. The ovule and the embryo sac. Plant Cell, 1993, 5:1291-1301
    
    170. Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fisher R. The BEL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 1995, 83:735-742
    
    171. Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G L. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.Science, 2000,290:2105-2109
    
    172. Rieping M, Schoffl F. Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet, 1992,231:226-232
    
    173. Rodrigo I, Vera P, Conejero V. Degradation of tomato pathogenesis-related proteins by an endogenous 37-kD an aspartyl endoproteinase. Eur J Biochem, 1989, 184:663-669
    
    174. Rodrigo I, Vera P, Vanloon L C, Conejero V. Degradation of tobacco pathogenesis-relatedproteins evidence for conserved mechanisms of degradation of pathogenesis-related proteins in plants. Plant Physiol, 1991, 95, 616-622
    
    175. Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure J E. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol, 2003, 13:432-436
    
    176. Runeberg-Roos P, Saarma M. Phytepsin, a barley vacuolar aspartic proteinase, is highly expressed during autolysis of developing tracheary elements and sieve cells. Plant J, 1998,15:139-145
    
    177. Runeberg-Roos P, T(?)rmakangas K, Ostman A. Primary structure of a barley-grain aspartic proteinase. A plant aspartic proteinase resembling mammalian cathepsin D. Eur J Biochem, 1991,202:1021-1027
    
    178. Russell S D. The egg cell: Development and role in fertilization and early embryogenesis. Plant Cell, 1993,5:1349-1359
    
    179. Russell S D. Attraction and transport of male gametes for fertilization. Sex Plant Reprod, 1996, 9:337-342
    
    180. Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. Second edition.Cold Spring Harbor Laboratory Press, New York, 1989. pp. 16.7-16.8
    
    181. Sano Y. A new gene controlling sterility in F_1 hybrids of two cultivated rice species. The Journal of Heredity, 1983, 74:435-439
    
    182. Sano Y. Identification of sterility genes introduced from Oryza glaberrima into O. sativa. Jpn. J.Breed. 1985,35:202-203
    
    183. Sano Y. The genic nature of gamete eliminator in rice. Genetics, 1990, 125:183-191
    
    184. Sano Y. Pollen-killer in rice. Japan J. Breed. 1994. 44 (suppl. 1): 298
    
    185. Sawamura N, Sano Y. Chromosomal location of gamete eliminator, S11(t), found in an Indica-Japonica hybrid.Rice Genet Newslett, 1996, 13:70-71
    
    186. Sarkkinen P, Kalkkinen N, Tilgmann C, Siuro J, Kervinen J, Micola L. Aspartic proteinase from barley grains is related to mammalian lysosomal cathepsin D. Planta, 1992,186:317-323
    
    187. Schaaf A, Reski R, Decker E L. A novel aspartic proteinase is targeted to the secretory pathway and to the vacuole in the moss Physcomitrella patens. Evr J Cell Biol, 2004, 83:145-152
    
    188. Sheridan W F, Avalkina N A, Shamrov I I, Batygina T B, Golubovskaya I N. The mac1 gene: controlling the commitment to the meiotic pathway in maize. Genetics, 1996, 142:1009-1020
    
    189. Sheridan W F, Huang B Q. Nuclear behavior is defective in the maize {Zea mays L.) lethal ovule2 female gametophyte. Plant J, 1997, 11:1029-1041
    
    190. Shi D, Liu J, Xiang Y, Ye D, Sundaresan V, Yang W. SLOW WALKER1, essential for gametogenesis in Arabidopsis, encodes a WD40 protein involved in 18S ribosomal RNA biogenesis. The Plant Cell, 2005,17:2340-2354
    
    191.Shimizu K K, Okada K. Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development, 2000, 127:4511-4518
    
    192. Singh S P, Sundaram R M , Biradar S K, Ahmed M I, Viraktamath B C, Siddiq E A. Identification of simple sequence repeat markers for utilizing wide-compatibility genes in inter-subspecific hybrids in rice (Oryza sativa L). Theor Appl Genet, 2006, 113:509-517
    
    193. Simoes I, Faro C. Structure and function of plant aspartic proteinases. Eur J Biochem, 2004,271:2067-2075
    
    194. Sobrizal, Matsuzaki Y, Sanchez P L, Ikeda K, Yoshimura A. Identification of a gene for male gamete abortion in backcross progeny of Oryza sativa and Oryza glumaepatula. Rice Genet Newsl,2000, 17:59-61
    
    195. Sobrizal, Matsuzaki Y, Yoshimura A. Mapping of a gene for pollen semi-sterility on chromosome 8 of rice. Rice Genet Newsl, 2001,18:59-60
    
    196. Sobrizal, Matsuzaki Y. Yoshimura A. Mapping of pollen semi-sterility gene, S28(t), on rice chromosome 4. Rice Genet Newsl, 2002, 19:80-82
    
    197. Song X, Qiu S Q, Xu C G, Li X H, Zhang Q F. Genetic dissection of embryo sac fertility, pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theor Appl Genet, 2005, 110:205-211
    
    198. Sobrizal Y, Matsuzaki Y, Yoshimura A. Mapping of a gene for pollen semi-sterility on rice chromosome 8 of rice. Rice Genet Newslett, 2001:59-61
    
    199. Springer P S, Mccombie W R, Sundaresan V, Martienssen R A. Gene trap tagging of PROHFERA an essential MCM2-3-5-like gene in Arabidopsis. Science, 1995, 268:877-880
    
    200. Stachowiak D, Wilimowska-Pelc A, Kolaczkowska M, Polanowski A, Wilusz T, Larsen L B. Aspartic proteinase from the seeds of figleaf gourd (Cucurbita ficifolia). Acta Biochim Polonica 1994,41:181-182
    
    201.Tamura T, Terauchi K, Kiyosaki T, Asakuraa T, Funaki J, Matsumoto I, Misaka T, Abe K.Differential expression of wheat aspartic proteinases, WAP1 and WAP2, in germinating and maturing seeds. Journal of Plant Physiology, 2007, 164:470-477
    
    202. Taneichi T, Koide Y, Nishimoto D, Sano Y. Hybrid sterility gene S13 found in a distantly related rice species, O. longistaminata. Genes & Genet Syst, 2005, 80:477
    
    203. Taguchi K, Doi K, Yoshimura A. RFLP mapping of 5/9, a gene for Fl pollen semi-sterility found in backcross progeny of Oryza saliva and O. glaberrisna. Rice Genet Newsl, 1999, 16: 70-71
    
    204. Takahashi K, Athauda S B P, Matsumoto K, Rajapakshe S, Kuribayashi M, Kojima M,Kubomura-Yoshida N, Iwamatsu A, Shibata C, Inoue H. Nepenthesin, a Unique member of a novel subfamily of aspartic proteinases: enzymatic and structural characteristics. Current Protein and Peptide Science, 2005, 6:513-525
    
    205. Terauchi K, Asakura T, Naoko N, Matsumoto I, Abe K. Characterization of the genes for two soybean aspartic proteinases and analysis of their different tissue-dependent expression. Planta,2004,218:947-957
    
    206. Terauchi K, Asakura T, Ueda H, Tamura T, Tamura K, Matsumotoa I, Misaka T, Hara-Nishimura I, Abe K. Plant-specific insertions in the soybean aspartic proteinases, soyAPl and soyAP2,perform different functions of vacuolar targeting. Journal of Plant Physiology, 2006,163:856-862
    
    207. Terzaghi W B, Cashmore A R. Light-regulated transcription. Annu Rev Plant Mol Biol, 1995, 46:445-474
    
    208. Timotijevic G S, Radovic S R, Konstantinovic M M. Aspartic proteinases from buckwheat (Fagopyrum esculentum moench) seeds-purification and properties of the 47 kDa enzyme. Arch Biol Sci, Belgrade, 2006, 58:171-177
    
    209. Tokes Z A, Woon W C, Chambers S M. Digestive enzymes secreted by carnivorous plant Nepenthes macferlanei-1. Planta, 1974, 119:39-46
    
    210.T(?)rmakangas K, Hadlington J L, Pimpl P, Hillmer S, Brandizzi F, Teeri T H, Denecke J. A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. The Plant Cell, 2001,13:2021-2032
    
    211. Ulmasov T, Hagen G, Guilfoyle T J. Dimerization and DNA binding of auxin response factors.Plant J, 1999, 19:309-319
    
    212. Van der Hoorn. Plant Proteases: From Phenotypes to Molecular Mechanisms. Annu Rev Plant Biol, 2008, 59:191-223
    
    213. Verissimo P, Faro C, Moir A J G, Lin Z, Tang J, Pires E. Purification, characterization and partial amino acid sequencing of two new aspartic proteinases from fresh flowers of Cynara cardunculus L. Eur J Biochem, 1996, 235:762-768
    
    214. Vieira M, Pissarra J, Verissimo P, Castanheira P, Costa Y, Pires E, Faro C. Molecular cloning and characterization of cDNA encoding cardosin B, an aspartic proteinase accumulating extracellularly in the transmitting tissue of Cynara cardunculus L. Plant Mol Biol, 2001, 45,529-539
    
    215. Wan J, Yanagihara S, Kato H, Ikehashi H. Multiple alleles at a new locus causing hybrid sterility between a Korean indica variety and a javanica variety in rice (Oryza sativa L.). Jpn J Breed, 1993,43:507-516
    
    216. Wan J M, Ikehashi H. Identification of a new locus 5-16 causing hybrid sterility in native rice varieties (Oryza sativa L.) from Tai-hu lake region and Yunnan province, China. Jpn J Breeding,1995,45:461-470
    
    217. Wan J M,Yamaguchi Y, Kato H, lekhashi H. Two new loci for hybrid sterility in rice (Oryza sativa L.). Theor Appl Genet, 1996, 92:183-190
    
    218. Wan J, Ikehashi H, Sakai M, Horisue H, Imbe T. Mapping of hybrid sterility gene 57 7 of rice (Oryza sativa L.) by isozyme and RFLP markers. Rice Genet News, 1998, 15: 151-154
    
    219. Wang J, Liu K D, Xu C G, Li X H, Zhang Q. The high level of wide-compatibility of variety Dular has a complex genetic basis. Theor Appl Genet, 1998, 97:407-412
    
    220. Wang C, Zhu C, Zhai H, Wan J. Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.) Genet Res, 2005, 86:97-106
    
    221. Wang G W, HeYQ, XUCG, Zhang Q F. Fine mapping of f5-Du ,a gene conferring wide- compatibility for pollen fertility in inter-subspecific hybrids of rice (Oryza sativa L.). Theor Appl Genet, 2006, 112:382-387
    
    222. Wang H, Liu Y, Bruffett K, Lee J, Hause G, Walker J, Zhang S. Haplo-insufficiency of MPK3 in MPK6 mutant background uncovers a novel function of these two MAPKs in Arabidopsis ovule development. The Plant Cell, 2008, 20: 602-613
    
    223. Weathenvax, P. Gametogenesis and fecundation in Zea mays as the basis of xenia and heredity in the endosperm. Bull Torrey Bot Club, 1919, 46:73-90
    
    224. Willemse M T M, van Went J L. The female gametophyte. In Embryology of Angiosperms, B.M.Johri, ed (Berlin:Springer-Verlag), 1984, 159-196
    
    225. Xia Y J, Suzuki H, Borevitz J, Blount J, Guo Z J, Patel K, Dixon R A, Lamb C. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. The EMBO Journal, 2004,23, 980-988
    
    226. Xu N, Hagen G, Guilfoyle T. Multiple auxin response modules in the soybean SAUR 15A promoter. Plant Sci, 1997, 126:193-201
    
    227. Yang W C, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev, 1999,13:2108-2117
    
    228. Yang W C, Sundaresan V. Genetics of gametophyte biogenesis in Arabidopsis. Plant Biology,2000, 3:53-57
    
    229. Yanagihara S, Kato H, Ikehashi H. A new locus for multiple alleles causing hybrid sterility between an Aus variety and javanica varieties in rice (Oryza sativa L.). Theor Appl Genet,1992,90:182-188
    
    230. Yu H J, Hogan P, Sundaresan V. Analysis of the Female Gametophyte Transcriptome of Arabidopsis by Comparative Expression Profiling. Plant Physiology, 2005, 139:1853-1869
    
    231. Zhang Q, Saghai Maroof M A, Lu T Y, Shen B Z. Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet, 1992, 83:495-499
    
    232. Zhang Q, Liu K D, Yang G P, Saghai Maroof M A, Xu C G, Zhou Z Q. Molecularmarker diversity and hybrid sterility in indica-japonica rice crosses. Theor Appl Genet, 1997, 95:112-118
    
    233. Zhao Z G, Jiang L, Zhang W W, Yu C Y, Zhu S S, Xie K, Tian H, Liu L L, Ikehashi H, Wan J M. Fine mapping of S31, a gene responsible for hybrid embryo-sac abortion in rice (Oryza sativa L.). Planta, 2007, 226:1087-1096
    
    234. Zhu S S, Wang C M, Zheng T Q, Ikehashi H, Wan J. A new gene causing hybrid sterility located on chromosome 2 in a remote cross of rice. Plant Breeding, 2005a, 124:1-6
    
    235. Zhu S S, Jiang L, Wang C M, Zhai H Q, Li D T, Wan J M. The origin of weedy rice Ludao in China deduced by a genome wide analysis of its hybrid sterility genes. Breeding Sci, 2005b,55:409-414
    
    236. Zhu X H, Cao X Z. Studies on gametophytic fertility of indica-japonica hybrids in rice. CRRN,1992,5:3-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700