三峡库区主要森林植被类型土壤有机碳研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择长江三峡库区马尾松针叶林、栎类混交林等11种主要森林植被类型土壤有机碳(SOC)为研究对象,采用土壤类型法和植被类型法分别对三峡库区土壤类型背景碳库及主要森林植被类型下土壤总有机碳库进行了估算,并对三峡库区主要森林植被类型SOC的组成、分配特征及其影响因子进行了分析,探讨库区主要森林植被类型下SOC的分配规律及其与各影响因子间的关系。主要结论如下:
     (1)采用土壤类型法估算的三峡库区0~20 cm和0~100 cm土层平均SOC密度分别为3.20 kg/m~2和12.59 kg/m~2;SOC总贮量分别为190.48×10~6 t和750.51×10~6 t。各土壤类型中,以黄壤、黄棕壤、暗棕壤等土壤类型碳密度较高,紫色土和粗骨土类型碳密度较低。
     (2)将三峡库区森林植被按主要优势树种和分布面积划分为马尾松针叶林、栎类混交林等11种主要森林植被类型。研究表明,不同森林植被类型下SOC含量和SOC密度均存在较大差异,二者总体上都随土层加深而降低。11种主要森林植被类型土壤平均厚度在56.3~98.5 cm间,其中杉木针叶林土壤最厚,达98.5 cm,灌木林土壤最薄,平均厚度仅56.3 cm。库区11种主要森林植被类型土壤总SOC贮量为366.36×10~6t,其中0~10 cm、10~20 cm、20~40 cm和>40 cm土层分别占22.90%、18.36%、28.33%和30.41%。与库区森林植被覆盖率总体上东部高于西部的趋势相反,库区各主要森林植被类型下SOC密度的空间分布从东至西呈现增加的趋势。
     (3)三峡库区主要森林植被类型下凋落物总有机碳贮量为1150.31×10~4t。11种主要森林植被类型中,以杉木林和温性松林下凋落物生物量最大,柑桔林凋落物生物量最小。各森林植被类型凋落物含碳率为379.70~514.91 g/kg。研究发现,三峡库区各主要森林植被类型下SOC与凋落物生物量之间的相关关系并不显著。
     (4)对采用环刀渗透法测定土壤水溶性有机碳(WSOC)的方法研究结果表明,采用环刀渗透法代替常规的浸提法测定土壤WSOC的方法切实可行。本研究采用该方法测定的各主要森林类型下WSOC总贮量为6.53×10~6 t。11种森林植被WSOC库分别为:马尾松林2.43×10~6 t,栎类混交林1.57×10~6 t,灌木林1.22×10~6 t,柏木林0.46×10~6 t,杉木林0.60×10~6 t,柑桔林0.38×10~6 t,其它软阔林0.22×10~6 t,针阔混交林0.22×10~6 t,竹林0.16×10~6 t,其它硬阔林0.20×10~6 t,温性松林0.06×10~6t。
     (5)三峡库区11种主要森林植被类型下活性有机碳(ASOC)、缓性有机碳(SSOC)和惰性有机碳(RSOC)贮量分别占土壤总有机碳的2.2%~6.0%,46.6%~81.3%和16.1%~50.0%。各森林植被类型下ASOC、SSOC、RSOC和WSOC均与土壤总有机碳之间存在很好的回归关系。不同森林植被类型土壤上层SSOC和RSOC含量大于下层的SSOC和RSOC含量,但ASOC在土层间的变化规律不明显。
     (6)三峡库区宜昌、万州、涪陵、重庆4个站点5 cm、15 cm、20 cm土层的地温与SOC含量均存在一定的负相关关系。由于整个库区地理跨度较小,本研究所选择4个站点的30年平均温度差别不大等原因,地温与SOC之间的这种相关关系并不显著。
     (7)三峡库区各主要森林植被类型下SOC含量与土壤质地、容重之间均存在很好的负相关关系。11种森林植被类型下SOC与土壤质地总的回归方程为:Y=27.69-3.88X(R~2=0.146);SOC与土壤容重间的关系则可用方程:Y=56.221-29.506X(R~2=0.361)进行表达。研究还表明,土壤水分含量、pH值和三要素养分含量均对SOC有十分重要的影响。其中,pH值和土壤水分烘干系数与SOC呈现负相关关系,土壤质量含水量和养分含量与SOC呈显著正相关关系。
     (8)海拔、坡向、坡度等环境因子与SOC含量存在较明显的相关关系,各森林植被类型下,海拔和坡度对SOC有正效应,而坡向因子对SOC有负效应。回归分析还表明,不同森林植被类型和不同土层,海拔、坡向、坡度等环境因子对SOC变异的可解释程度不同。
     (9)与农耕地相比,退耕还林实施5年后,大部分退耕模式下0~30 cm的土层SOC含量和碳密度都有不同程度的提高,但在整个0~60cm土层,SOC含量和碳密度没有显著变化(个别模式甚至还有一定程度的下降)。分析认为,5年的退耕还林经营对0~60 cm土层SOC的影响有限。
The soil organic carbon (SOC) under 11 forest types such as pinus massoniana forest, rubour mixed forest and shrubs of the Three Gorges reservoir area (TGRA) were studied. Method of soil type was chosed to calculate the SOC pool of the main soil types as the background pool of the SOC under 11 forest types, and method of vegetation type was chosed to calculate the SOC pool under 11 forest types. Fraction and distribution of SOC under main forest types, and the control factors of SOC in this paper were studied too. Major conclusions were summarized as follows:
    (1) The SOC density of the TGRA of 0~20 cm was 3.20 kg/m~2, the total SOC storage was 190.48×10~6 t; SOC density of 0~100 cm was 12.59 kg/m~2, the total SOC storage was 750.51×106 t. The SOC densities of yellow soil, yellow-brown soil and dark brown soil were higher than those of other soil types, and the SOC densities of purple soil and skeleton soil were the lowest.
    (2) Based on the data of forest inventory, the forest types of the TGRA were divided into 11 types of vegetation by its dominant tree species and acreages, such as Pinus massoniana forest, mixed forest of Quercus, and Shrubs, etc. The concentrations and densities of SOC under 11 types of vegetation were significantly different and generally decreased with depth. The average soil thickness of 11 types of vegetation was 56.3~98.5 cm, the soil thickness of forest of Cunnighamia Lanceolata was the largest (98.5 cm), and that of shrubs was the smallest (56.3 cm). The total storage of SOC under 11 main types of forest types in the TGRA was 366.36 ×10~6 t, with 22.90 %, 18.36 %, 28.33 % and 30.41 % in 0~10, 10~20, 20~40 and >40 cm soil depth interval, respectively. The densities of SOC under every vegetation type in the west of the TGRA were higher than those in the east of the TGRA. It changed counter to the trend of cover rate of forest vegetation in the TGRA.
    (3) The total carbon storage of litters under main forest types of the TGRA was 1150.31×10~4 t. The biomass of litter under cunnighamia lanceolata forest was the most of 11 forest types, and that of forest of Citrus reticulate, Citrus aurantium and Citrus grandis was the least. Content of litters under 11 forest types was 379.70~514.91g/kg. The study results show that the biomass was related with SOC, but the relationship was not significant.
    (4) The study on methods of determing of WSOC indicated that the method of ring sampler infiltration was practicable. The total storage of WSOC of the main forest types of the TGRA detrmined by ring sampler infiltration method in this paper was 6.528×10~6 t. The storages of WSOC under 11 forest types were as follows: Pinus massoniana forest 2.43 ×10~6 t , robur mixed forest 1.57 ×10~6 t, shrubs 1.22×10~6 t, Cupressus funebris forest 0.46×10~6 t, Cunninghamia lanceolata forest 0.60×10~6 t, Citrus reticulate plantation 0.38×10~6 t, other soft broad leaved forest 0.22×10~6 t, the broad leaved and coniferous mixed forest 0.22×10~6 t, Neosinocalamus affinis 0.16×10~6 t, other hard broad leaved forest 0.20 ×10~6 t, temperate Pine forest 0.06×10~6 t.
    (5) Contents of ASOC, SSOC and RSOC under 11 forest types occupied SOC with 2.2 %~6.0%, 46.6 %~81.3 % and 16.1 %~50.0 % , respectively. ASOC, SSOC, RSOC and WSOC under every main forest type in the TGRA were close related to SOC. The contents of SSOC and RSOC in upper soil layer werer higher than those in underlayer, but content of ASOC did not change with depth.
    (6) The contents of SOC were negative associated with soil temperature in 5 cm, 15 cm and 20 cm soil layer at 4 stations: YiChang, WanZhou, FuLing and ChongQing. The relationship of SOC and soil temperature were not significant, because of the small span in geography of the TGRA and the little difference among the averages of 30 years of soil temperature at 4 stations.
    (7) The contents of SOC were negative associated with soil texture and soil bulk density significantly. The regression equation of SOC and soil texture: Y = 27.69 - 3.88 X(R~2 = 0.146); the relationship between SOC and soil bulk density could be described by equation: Y = 56.221 - 29.506X
    (R~2 = 0.361) . The results of this paper also indicated that soil pH and content of soil water and soil nutrients had a very important influence on SOC. Soil pH and the soil coefficient of drying were negative associated with SOC, while soil nutrients and soil quality content of water were positively associated with SOC significantly.
    (8) Gradient and elevation had a positive influence on SOC under serval main forest types of the TGRA, while the factor of aspect had a negative influence on SOC. Analyse of linear regression indicated that the description veracity of regression equations changed with forest types and soil layers.
    (9) In five years after the beginning of the project of Grain for Green, the concentration and inventory of SOC in the 0~30 cm soil layer under most reafforestation patterns were higher than those under cropland conditions, while the concentration and inventory of SOC in the 0~60 cm soil layer did not change or even decreased in some cases. The concentration and inventory of SOC and the decreasing magnitude of SOC with the soil profile depth under all the studied reafforestation patterns were lower than those under shrubbery land conditions, which received the least impact of land use change. It is thus suggested that the impact of the five-years reafforestation patterns on the SOC in the 0~60 cm soil layer is insignificant.
引文
1.陈庆强,彭少麟.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-563.
    2.陈庆强,沈承德,孙彦敏,等.华南亚热带山地土壤剖面有机质分布特征数值模拟研究[J].应用生态学报,2003,14(8):1239-1246.
    3.程励励,文启孝,林心雄.内蒙古自治区土壤中有机碳、全氮和固定态铵的储量[J].土壤,1994.5:248-252.
    4.程瑞梅,肖文发,李建文,等.三峡库区森林植被分类系统初探[J].环境与开发,1999,14(2):4-7.
    5.程先富,史学正,于东升,等.兴国县森林土壤有机碳库及其与环境因子的关系[J].地理研究,2004,23(2):211-217.
    6.方精云,刘国华,徐高龄.中国陆地生态系统碳循环及其全球意义[M].见:王庚辰,温玉璞,温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社,1996,129-139.
    7.方精云.中国陆地生态系统碳库.自:王如松.现代生态学的热点问题研究[M].北京:中国科学技术出版社,1996.251-267.
    8.方运霆,莫江明,Sandra Brown,等.鼎湖山自然保护区土壤有机碳贮量和分配特征[J].生态学报,2004,24(1):135-142.
    9.甘海华,吴顺辉,范秀丹.广东省土壤有机碳储量及空间分布特征.应用生态学报[J],2003,14(9):1499-1502.
    10.黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    11.黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报,1999,19(3):324-328.
    12.黄雪夏,倪九派,高明,等.重庆市土壤有机碳库的估算及其空间分布特征[J].水土保持学报.2005,19(1):54-58.
    13.贾月慧,王天涛,杜睿.3种林地土壤碳和氮含量的变化[J].北京农学院学报,2005,20(3):63-66.
    14.姜培坤.不同林分下土壤活性有机碳库研究,林业科学[J],2005,41(1):10-13.
    15.解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004b,41(5):687-699.
    16.解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004a,41(1):35-43.
    17.金峰,杨浩,蔡祖聪,等.土壤有机碳密度及储量的统计研究.土壤学报,2001,38(4):522-528.
    18.金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展[J].土壤,2000(1):11-17.
    19.李鸿博,史锟,孙咏红,等.三种林下土壤浅剖面有机碳研究[J].生态学杂志,2005,24(10):1230-1333.
    20.李克让,王绍强,曹明奎.中国植被和土壤碳储量[J].中国科学(D),2003,33(1):72-78.
    21.李淑芬,俞元春,何晟.南方森林土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报,2003,20(2):119-123.
    22.李淑芬,俞元春,何晟.土壤溶解性有机碳的研究进展[J].土壤与环境,2002,11(4):
    23.李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378.
    24.李跃林,胡成志,张云,等.几种人工林土壤碳储量研究[J].福建林业科技,2004,31(4):4-7.
    25.李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20(5):548-552.
    26.李忠佩,林心雄.瘠薄红壤中有机物质的分解特征[J].生态学报,2002,22(8):1224-1230.
    27.李忠佩,王效举.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟[J].应用生态学报,1998,9(4):365-370.
    28.林心雄.中国土壤有机质状况及其管理[M].见:沈善敏主编.中国土壤肥力.北京:中国农业出版社,1998,111-153.
    29.刘国华,傅伯杰,吴刚,等.环渤海地区土壤有机碳库及其空间分布格局的研究[J].应用生态学报.2003,14(9):1489-1493.
    30.刘梦云,安韶山,常庆瑞.2005.宁南山区不同土地利用方式土壤有机碳特征研究[J].水土保持研究,12(3):47-49.
    31.马钦彦,陈遐林,王娟,等.华北主要森林植被类型建群种的含碳率分析[J].北京林业大学学报,2002,24(5/6):96-100.
    32.倪进治,徐建民,谢正苗,等.不同有机肥料对土壤生物活性有机质组分的动态影响[J].植物营养与肥料学报,2001,7(4):374-378.
    33.倪进治,徐建民,谢正苗,等.土壤水溶性有机碳研究进展[J].生态环境,2003,12(1):71-75.
    34.潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展[J],2003,18(4):609-618.
    35.潘根兴.中国土壤有机碳和无机碳库量研究.科技通报[J],1999,15(5):330-332.
    36.沈宏,曹志洪.不同农田生态系统土壤碳库管理指数的研究[J].生态学报,2000,20(1):660-668.
    37.史军,刘纪远,高志强,等.造林对土壤碳储量影响的研究[J].生态学杂志,2005,24(4):410-416.
    38.苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002(3):220-228.
    39.孙维侠,史学正,于东升,等.我国东北地区七壤有机碳密度和储量的估算研究[J].土壤学报,2004,41(2):298-300.
    40.孙维侠,史学正,于东升.土壤有机碳的剖面分布特征及其密度的估算方法研究[J].土壤,2003,35(3):236-241.
    41.唐晓红,黄雪夏,魏朝富。不同尺度土壤有机碳空间分布特征研究综述[J],中国农学通报,2005(3):224-229.
    42.汪杏芬,白克智,匡廷云.大气CO_2浓度倍增对植物暗呼吸的影响[J].植物学报,1997,9(9):849-854.
    43.汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志.1999,18(5):29-35.
    44.王晶,解宏图,朱平,等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志,2003,22(6):109-112.
    45.王清奎,汪思龙,冯宗炜,等.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005.25(3):513-519.
    46.王清奎,汪思龙,冯宗炜.杉木人工林土壤可溶有机质及其与土壤养分的关系[J].生态学报,2005(6):1299-1305.
    47.王绍强,周成虎,李克让,等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    48.王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研充1999,18(4):349-356.
    49.王秀红.我国水平地带性土壤中有机质的空间变化特征[J].地理科学,2001,21(1):19-23.
    50.王艳芬,陈佐忠,Tieszen L T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22(6):545-551.
    51.王义祥,翁伯琦.福建省土壤有机碳密度和储量的估算[J].福建农业学报,2005,20(1):42-45.
    52.吴建国,徐德应.土地利用变化对土壤有机碳的影响(理论、方法和实践)[M],北京:中国林业出版社,2004.
    53.吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599.
    54.吴庆标,王效科,郭然.土壤有机碳稳定性及其影响因素[J].土壤通报,2005,36(5):743-747.
    55.肖文发,李建文,于长青,等.长江三峡库区陆生动植物生态[M].西南师范大学出版社,重庆,2000.7.
    56.徐阳春,沈其荣.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-95.
    57.许信旺,潘根兴,侯鹏程.不同土地利用对表层土壤有机碳密度的影响[J].水土保持学报,2005,19(6):193-200.
    58.杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量.生态学报,2005,25(11):2875-2881.
    59.杨丽霞,潘剑,苑韶峰.森林土壤有机碳库组分定量化研究[J].土壤通报,2006,37(2):241-243.
    60.杨玉盛,陈光水,王小国,等.中亚热带森林转换对土壤呼吸动态及通量的影响[J].生态学报,2005,25(7):1684-1690.
    61.易志刚,蚁伟民,周国逸,等.鼎湖山三种主要森林植被类型土壤碳释放研究[J].生态学报,2003,23(8):1673-1678.
    62.于东升,史学正,孙维侠,等.基于1∶100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.
    63.俞元春,何晟,李炳凯,等.杉林土壤溶解有机碳吸附及影响因素分析[J].南京林业大学学报,2005,29(2):15-18.
    64.曾永年,冯兆东,曹广超,等.黄河源区高寒草地土壤有机碳储量及分布特征[J].地理学报,2004,59(4):497-503.
    65.张城,王绍强,丁贵瑞,等.中国东部地区典型森林植被类型土壤有机碳储量分析研究[J].资源科学,2006,28(2):97-103.
    66.张传清.俄罗斯自然生态系统中的碳循环.环境科学[J],1997,5:86-95.
    67.张国盛,黄高宝,YIN Chan.农田土壤有机碳固定潜力研究进展[J].生态学报,2005,25(2):351-357.
    68.张金屯.全球气候变化对自然土壤碳、氮循环的影响[J].地理科学,1998,18(5):463-471.
    69.张林波,曹洪法,高吉喜,等.大气CO_2浓度升高对土壤微生物的影响[J].生态学杂志,1998,17(4):33-38.
    70.张小全,陈先刚,武曙红.土地利用变化和林业活动碳贮量变化测定与监测中的方法学问题[J].生态学报,2004,24(9):2068-2072.
    71.赵兰坡,杨学明,路立平,等.长期连作玉米的黑钙土、风沙土中有机无机复合体组成及有机碳分布的特征[J].土壤通报,1996,27(3):120-123.
    72.赵永存,史学正,于东升,等.不同方法预测河北省土壤有机碳密度空间分布特征的研究[J].土壤学报,2005,42(3):379-385.
    73.周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    74.周国模,刘恩斌,余光辉.森林土壤碳库研究方法进展[J].浙江林学院学报,2006,23(2):207-216
    75. Alentini R, Mattenucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests [J]. Nature, 2000, 404: 862-864.
    76. Alessandra A F, Pedro L O, Henrique P S, et al. Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil [J]. Soil and Tillage Research, 2002, 64: 221-230.
    77. Ayanaba A, Jenkinson D S. Decomposition of carbon-14 labeled Ryegrass and Maze under tropical conditions [J]. Soil Science Society of America Journal, 1990, 54:112-115.
    78. Batjes N H. Total carbon and nitrogen in the soil of the world [J]. European Journal of Soil Science, 1996, 47: 151-163.
    79. Bazzaz F A. The response of natural ecosystems to the rising global CO_2 levels [J]. Annu. Rev. Ecol. Syst. 1990, 21: 167-196.
    80. Berger T W, Neubauer C, Glatzel G. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria [J]. Forest Ecology and Management, 2002, 159: 3-14.
    81. Bockheim J G, Walker D A, Everatt L B, et al. Soil and cryoturbation in moist nonacidic and acidic tundra in the keparuk river basin, Arctic Alaska. Arctic and Alpine Research, 1998, 30: 166-174.
    82. Bogner J. Carbon storage in landfills [M]. In: soils and global change (ed by R. Lai et ai). CRC press, inc. 1995, 67-80.
    83. Bohn H L. Estimate of organic carbon in world soils [J]. Soil Science society of America Journal, 1976, 40: 468-470.
    84. Bolin B. Change of land biota and their importance for the carbon cycle [J]. Science. 1977, 196: 613-615.
    85. Bowden R D. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest [J]. Canadian Journal of forest Research, 1993, 23:1402-1407.
    86. Bowman R A, Vigil M F, Nielsen D C, et al. Soil organic matter changes in intensively cropped dry land system [J]. Soil Science Society of American Journal. 1999,63: 186-191.
    87. Buyanovsky G A, Wagner G H. Soil respiration and carbon dynamics in parallel native and cultivated ecosystems [A]. In: soils and global change (ed by Lai R et al). Florida: CRC press, Inc. Boca Raton, 1995, 209-217.
    88. Cambardella C A, Elliott E T. Methods for physical separation and characterization of soil organic matter fractions [J]. Geoderma, 1993, 56: 443-457.
    89. Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change [J]. Nature, 1998, 393:249-252.
    90. Carter M R. Characterization of soil physical properties and organic matter under long term primary tillage in a humid climate. Soil Tillage Research, 1996, 38: 251-263.
    91. Chambers J Q, Schimel J P, Nobre A D. Respiration from coarse wood litter in central amazon forests [J]. Biogeochemistry, 2001, 52: 115-131.
    92. Charles T, Garten Jr. Soil carbon storage beneath recently established tree plantations in Tennessee and South Carolina. USA [J]. Biomass Bio-energy, 2002,23: 93-102.
    93. Chevallier T, Voltz M, Blanchart E, et al. Spatial and temporal changes of soil carbon after establishment of a pasture on a long-term cultivated vertisol (Martinique) [J]. Geoderma, 2000, 94: 43-58.
    94. Christian P G. Michael G R. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature [J]. Nature, 2000,404: 858-860.
    95. Conant R T, Six J, Paustian K. Land use effects on soil carbon fractions in the southeastern United States [J]. Biology and Fertility of Soils, 2003,36: 386-392.
    96. Curtin D, Campbell C A, Jalil A. Effects of acidity on mineralization pH: dependence of organic matter mineralization in weakly acidic soils. Soil Biology and Biochemistry, 1998, 30: 57-64.
    97. Dalal R C, Chan K Y. Soil organic matter in rainfed cropping systems of the Australian cereal belt [J]. Australian Journal of Soil Research, 2001, 9:435-464.
    98. Dale V H, Terrestrial CO_2 flux from tropical forests. In: Effects of landuse change on atmospheric CO_2 concentrations [M] (ed by Dale, V.H). Spinger-verlag, New York. 1994, 465-378.
    99. Davis M R, Condron L M. Impact of grassland afforestation on soil carbon in New Zealand: a review of paired-site studies [J]. Australian Journal of soil Research, 2002,40:675-690.
    100. Doran J W, Jones A J. Determinants of soil quality and health [M]. Soil Quality and Soil Erosion. CRC Press, 1999.
    101. Elzein A, Balesdent J. A Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils [J]. Soil Science Society of America Journal, 1995, 59:1328-1335.
    102. Eswaran H, Van Den Berg E, Reich P, Kimble J. Global Soil Carbon Resources [M]. In: soils and global change (ed by R. Lai et al). CRC Press, Inc.1995, pp 27-43.
    103. Eswaran H, Vanden B.E, Reich P. Organic carbon in soils of the world [J]. Soil Science Society of America Joumal,1993, 57:192-194.
    104. Fisher M J. Carbon storage by introduced deep-rooted grasses in the south America savannas [J]. Nature.1994,371:236-238.
    105. Guggenberger G. Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions [ J]. Org. Geochem. 1994, 21:51-66.
    106. Hammer R. D. Soil organic carbon in the Missouri forest-prairie ecotone. In: carbon forms and functions in forest soils (ed by McFee and Kelly JM) [J]. Soil Science Society of America, Inc. 1995, pp 201-232.
    107. Hanson P J, Edwards N T, Garten C T et al. Separating root and soil microbial contributions to soil respiration: a review of methods and observations [J]. Biogeochemistry. 2000, 48:115-146.
    108. Hollinger D Y, Goltz S M, Davidson E A, et al. Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest [J]. Global Change Biology. 1999, 5: 891-902.
    109. Houghton R A. Changes in the storage of terrestrial carbon since 1859[M] .In: Soils and Global Change. Florida: CRC Press, Inc. Boca Raton, 1995, pp 45-65.
    110. IPCC. land use change and forestry [R]. IPCC special report, Cambridge University Press. 2000.
    111. Jenkinson D S, Adams D E, Wild A. Model estimates of CO_2 emissions from soil in response to global warming [J]. Nature, 1991, 351: 304-306.
    112. Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Application, 2000, 10:423-436.
    113. Kirschbaum M U F. Will changes in soil organic carbon act as appositive or negative feedback on global warming [J]. Biogeochemistry, 2000,48:21-51.
    114. Koch G W, Harold A. Response of terrestrial ecosystems to elevated CO_2: A synthesis and summary. Carbon Dioxide and Terestrial Ecosystem [M], Academic press, Inc. 1996,415-429.
    115. Laclau P. Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia [J]. Forest Ecology and Management, 2003,180: 317-333.
    116. Lal R, Griffin M, Apt J, et al. Managing Soil Carbon [J]. Science, 2004,16(4): 304-393.
    117. Lal R. Soil Processes and the Carbon Cycle [M]. Boca Raton: CRC Press, 1997. 405-425.
    118. Lars K, Anette N, Martin H, et al. Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods. Agriculture Ecosystems and Environment [J], 2003,96:19-28.
    119. Leavitt S W, Follett R F, Paul E A. Estimation of the slow and fast cycling soil organic carbon pools from 6 N HCL hydrolysis Radiocarbon, 1996,38:230-231.
    120. Lefroy R D, Blair G J. Changes in soil organic matter with cropping as measured by organic carbon fractions and ~(13)C natural isotope abundance [J]. Plant and Soil. 1993, 155/156:399-402.
    121. Loveland T R, B C Reed, J F Brown, et al. Development of a global land over characteristics database and IGBP discover from 1-km AVHRR data [J]. International Jounarnal of Remote sensing, 2000, 21:1303-1330.
    122. Ludwig W. Predicting the oceanic input of organic carbon by continental erosion [J]. Global Biogeochem Cycle, 1996,10:23-41.
    123.Mendham D S, Connell A M, Grove TS. Change in soil carbon after land clearing or afforestation in highly weathered lateritic and sandy soils of south-western Australia Agric [J]. Ecosystem Environment. 2003, 95: 143-156.
    124. Mohan K, Wali, Fatih Evrendilek, et al. Assessing terrestrial ecosystem Sustainability: Usefulness of regional carbon and nitrogen models [J]. Nature & Resources, 1999, 35(4):21-33.
    125. Moody P W, Yo S A, Aitken R I. Soil organic carbon, permanganate fractions and the chemical properties of acidic soils [J]. Aust. J. Soil Res., 1997, 35: 1301-1308.
    126. Moore T R. Dissolved organic carbon: sources, sink, and fluxes and role in the soil carbon cycle [M]. In: soil processes and the carbon cycle (Lai, R et al) CRC press, inc. 1998,281-292.
    127. Mullen R W, Thomason W E, Rawn W R. Estimated increase in atmospheric carbon dioxide due to worldwide decrease in soil organic matter [J]. Communications in Soil Science and Plant Analysis, 1999, 30(11/12): 1713-1719.
    128. Ni Jian. Carbon storage in terrestrial ecosystem of China: Estimates at different spatial resolutions and their responses to climate change [J]. Clim Change. 2001,49 (3):339-358.
    129. Parton W J, Sandford Jr R L, Sanchez P A, et al. Modeling soil organic matter dynamics in tropical soils [J]. Soil Science Society of America Journal, 1989,39: 153-171.
    130. Paul E S, Jack W. Assessing Brazil's carbon budget: I. Biotic carbon pools [J]. Forest Ecology and Management, 1995, 75: 77-86.
    131. Paul K I, Polglase P J, Richards G P. Sensitivity analysis of predicted change in soil carbon following afforestation [J]. Ecologic Model, 2003, 164:137-152.
    132. Post W M. Soil carbon pools and world life zones [J]. Nature, 1982, 298: 156-159.
    133. Prentice, Katharine, Fung I Y. The sensitivity of Terrestrial carbon storage to climate change [J]. Nature, 1990,346:48-51.
    134. Price D T, Peng C H, Apps M J, et al. Simulating effects of climate Change on boreal ecosystem carbon pools in central Canada. Journal of Biogeography [J]. 1999, 26:1237-1248.
    135. Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils [J]. Global Biogeochemical Cycles, 1995, 9 (1): 23-36.
    136. Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tell us, 1992, 44B: 81-99.
    137. Rollinger J L, Strong T F, Grigal D F. Forested soil carbon storage in landscapes of the northern great lakes region. In: management of carbon sequestration in soil (ed by Lai R et al) [M]. CRC press, 1997, 335-350.
    138. Scharpenseel H W. Aggregation and organic matter storage in tropical hydromorphic soils. In: agricultural soils (ed by M., Carter et al) [M]. CRC press, Inc.1996, 361-393.
    139. Specht A, West P W. Estimation of biomass and sequestered carbon on farm forest plantations in northern New South Wales [J], Australia. Biomass Bio-energy, 2003,25(4): 363-379.
    140. Susan R, Wilma M, Comelis V, et al. Analysis of soil organic carbon and vegetation cover trends along the Botswana Kalahari Transect [J]. Journal of Arid Environments, 1998, 38: 379-396.
    141. Tatyana P K, Ted S V. Carbon cycle of terrestrial ecosystems of the former Soviet Union [J]. Environmental Science and Policy, 1998, 1: 115-128.
    142. Torhert H A, Prior S A, Rogers H, et al. Review of elevated atmospheric CO_2 effects on agro-ecosystem; residue decomposition processes and soil C storage [J]. Plant and Soil, 2000, 224: 59-73.
    143. Trumbore S E, Chadwick O A, Amundson R. Rapid exchange of soil carbon and atmospheric CO_2 driven by temperature change [J]. Science, 1996,272:393-396.
    144. Turner J, Lambert M. Change in organic carbon in forest plantation soils in eastern Australia [J]. Forest Ecology and Management, 2000,133:231-247.
    145. Valentini R, Matteucci G, Dolman A J, et al. Respiration as the main determination of carbon balance in European forest [J]. Nature, 2000,401: 861-865.
    146. Walker B, Steffen W. The terrestrial biosphere and global change: implication for natural and managed ecosystem, a synthesis of GCTE and related research [J]. IGBP Science, Stockholm, Sweden, 1997,1:1-32.
    147. Xiaoke W, Zongwei F, Zhiyun O. The impact of human disturbance on vegetative carbon storage in forest ecosystem in China [J]. Forest Ecology and Management, 2001, 148: 117-123.
    148. Zinn Y L, Resck D V S, Silva J E D. Soil organic carbon as affected by afforestation with Eucalyptus and Pinus in the cerrado region of Brazil [J]. Forest Ecology and Management, 2002, 166: 285-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700