三峡库区森林生态系统有机碳储量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类经济的快速发展,环境问题日益突出,尤其是大量使用化石燃料而引发的“温室效应”已成为当今世界面临的最为严峻的全球性环境问题。森林作为陆地生态系统的主体,对维持生态平衡、保护生态安全、防止生态危机起着决定性的作用。三峡库区位于长江流域的咽喉,属生态敏感区,因此,准确预测三峡库区森林生态系统碳储量对研究区域碳循环及碳汇问题意义重大。本文通过研究森林系统三个层次的有机碳储量及碳密度,估算了库区整个森林系统的有机碳储量及碳密度,并以库区分布最广、最具代表性的马尾松林为例,对影响系统有机碳密度的因素进行了研究,主要获得了以下结论:
     (1)三峡库区森林生态系统共分为11个植被类型,各植被类型植被层生物量密度大小次序依次是:常绿阔叶林>针阔混交林>落叶阔叶林>马尾松林>针叶混交林>杉木林>经济林>竹林>温性松>柏木林>灌木林;各植被类型的生产力大小次序依次是:竹林>常绿阔叶林>杉木林>马尾松林>针叶混交林>落叶阔叶林>温性松林>针阔混交林>经济林>灌木林>柏木林。
     (2)三峡库区不同植物不同器官含碳率测定结果表明,植物含碳率平均为0.4903,不同树种不同器官的含碳率之间无显著差异。库区森林生态系统植被层总碳储量为58.54×10~6t,各植被类型植被层碳储量分别为:马尾松林21.88×10~6t;柏木林2.11×10~6t;杉木林1.54×10~6t;温性松林0.91×10~6t;针叶混交林5.83×10~6t;针阔混交林6.00×10~6t;常绿阔叶林2.71×10~6t;落叶阔叶林7.72×10~6t;灌木林7.05×10~6t;经济林2.18×10~6t;竹林0.60×10~6t。
     (3)三峡库区11种森林植被类型下凋落物生物量密度大小顺序为:杉木林>温性松林>落叶阔叶林>常绿阔叶林>马尾松林>针叶混交林>竹林>针阔混交林>柏木林>灌木林>经济林。库区森林生态系统中凋落物现存总量为1755.04×10~4t。各林分凋落物枯落物含碳率平均值为0.3638,含碳率高低次序依次为:马尾松林>杉木林>竹林>温性松林>针叶混交林>针阔混交林>柏木林>落叶阔叶林>常绿阔叶林>灌木林>经济林,凋落物含碳率的高低对其有机碳存量有重要影响。三峡库区森林生态系统凋落物有机碳总储量为667.28×10~4t,各森林植被类型凋落物有机碳库存量分别为:马尾松林265.59×10~4t、灌木林105.84×10~4t、落叶阔叶林88.23×10~4t、针叶混交林64.00×10~4t、针阔混交林47.36×10~4t、杉木林24.92×10~4t、常绿阔叶林20.10×10~4t、温性松林19.60×10~4t、柏木林18.50×10~4t、竹林8.40×10~4t、经济林4.76×10~4t。各植被类型凋落物平均碳密度是2.64t/hm~2,各凋落物有机碳密度大小顺序是:杉木林(4.48t/hm~2)>温性松林(4.02t/hm~2)>马尾松林(3.53 t/hm~2)>针叶混交林(3.02 t/hm~2)>落叶阔叶林(2.99 t/hm~2)>常绿阔叶林(2.94t/hm~2)>竹林(2.55 t/hm~2)>针阔混交林(2.28 t/hm~2)>柏木林(1.51 t/hm~2)>灌木林(1.30 t/hm~2)>经济林(0.42t/hm~2)。
     (4)三峡库区土壤A层有机碳含量平均值为22.11g/kg,B层为12.57g/kg,土壤A、B层间有机碳含量差异显著。库区植被类型土壤A层有机碳密度平均值为56.3t/hm~2,各植被类型的土壤A层有机碳密度大小顺序为:柏木林>灌木林>落叶阔叶林>温性松林>杉木林>针叶混交林>针阔混交林>常绿阔叶林>马尾松林>竹林>经济林。库区森林土壤B层碳密度平均值为34.7t/hm~2,各植被类型B层有机碳密度大小顺序为:柏木林>杉木林>温性松林>落叶阔叶林>灌木林>经济林>竹林>针叶混交林>针阔混交林>马尾松林>常绿阔叶林;库区土壤有机碳储量总量为2.21×10~8t,其中A层土壤碳储量为1.48×10~8t,B层土壤碳储量0.73×10~8t。
     (5)三峡库区森林生态系统总有机碳储量为285.97×10~6t,系统平均碳密度为117.31 t/hm~2,各森林植被类型系统碳密度大小排序及密度值为:柏木林(144.08t/hm~2)>杉木林(139.02 t/hm~2)>落叶阔叶林(125.89 t/hm~2)>温性松林(125.33 t/hm~2)>竹林(117.85 t/hm~2)>针叶混交林(113.28 t/hm~2)>经济林(112.54 t/hm~2)>常绿阔叶林(110.25 t/hm~2)>马尾松林(107.08 t/hm~2)>针阔混交林(102.23 t/hm~2)>灌木林(92.87 t/hm~2),系统有机碳库储量中,系统内各层次所占比例差异较大。植被层有机碳储量所占比例范围在9.33%-36.02%之间,土壤层在61.32%-89.27%之间,凋落物层在0.37%-3.30%之间。
     (6)对库区马尾松植被类型样地分析发现:系统有机碳密度与土壤养分高低整体上呈一致性;海拔升高与系统碳密度的增加表现为一致性;东西样地有机碳密度差异较小,南北样地有机碳密度差异较大,对不同坡度的样地有机碳密度进行相关分析发现,坡度与系统有机碳密度呈相反趋势。
With the development of the society and economy of the human beings, the environmental problem has become increasingly severe. greenhouse effect, which caused by fossil fuel combustion, has become one of the serious global environment problems. As main part of the terrestrial ecosystem, forests play a decisive role in maintaining ecological balance, protecting ecological safety and preventing ecological crisis. Three Gorges Reservoir Area is an ecologically sensitive area, accurately predicting carbon storage is significant for researching regional carbon cycle and carbon sink. In this study, carbon storage and carbon density of forestry ecosystem in Three Gorges Reservoir Area had been estimated by researching carbon storage and carbon density in three layers of the forestry ecosystem. Masson pine forest, which was the widest in distribution in Three Gorges Reservoir Area, was taken for example, the main factors that influenced the system carbon density were studied. Our results indicated that:
     (1) Vegetation ecosystems in Three Gorges Reservoir Area were divided into 11 types, the biomass density in vegetation layer of diverse vegetation types showed an order : evergreen broad-leaved forest>coniferous-deciduous mixed forest> deciduous broad-leaved forest>Masson pine forest>coniferous mixed forest> Chinese-fir forest >bamboo forest>economic forest> temperate pine forest>Cypress forest>shrubbery. The sequence of NPP was that: bamboo forest>evergreen broad-leaved forest>Chinese-fir forest>Masson pine forest>coniferous-deciduous mixed forest>deciduous broad-leaved forest>coniferous mixed forest>economic forest>temperate pine forest>Cypress forest>shrubbery.
     (2) The mean vegetation layer carbon content rate of diverse vegetation types in Three Gorges Reservoir Area was 0.4903, and tissues carbon content rate were similar among of diverse tree species. The total carbon storage of vegetation layer was 58.70×10~6t, and Masson pine forest was 21.88×10~6t, Cypress forest was 2.11×10~6t, Chinese-fir forest was 1.54×10~6t, temperate pine forest was 0.91×10~6t, coniferous mixed forest was 5.83×10~6t, coniferous-deciduous mixed forest was 6.00×10~6t, evergreen broad-leaved forest was 2.71×10~6t, deciduous broad-leaved forest was 7.72×10~6t, shrubbery was 7.05×10~6t, economic forest was 2.18×10~6t, and bamboo forest was 0.60×10~6t, respectively.
     (3) The biomass density in litter of 11 vegetation types from high to low was that: Chinese-fir forest>temperate pine forest>deciduous broad-leaved forest>evergreen broad-leaved forest>Masson pine forest>coniferous mixed forest>bamboo forest> coniferous-deciduous mixed forest>Cypress forest>shrubbery>economic forest. The total litter biomass of vegetation types in Three Gorges Reservoir Area was 17.55×10~6t. The mean litter carbon content rate of diverse vegetation types was 0.3638, the sequence was that: Masson pine forest>Chinese-fir forest>bamboo forest >temperate pine forest>coniferous mixed forest>coniferous-deciduous mixed forest>Cypress forest>deciduous broad-leaved forest>evergreen broad-leaved forest >shrubbery>economic forest, and the carbon content rate of litter was significant for its organic carbon content. The total litter carbon storage of vegetation types in Three Gorges Reservoir Area was 667.28×10~4t, and Masson pine forest was 265.59×10~4t, Cypress forest was 18.50×10~4t, Chinese-fir forest was 24.92×10~4t, temperate pine forest was 19.60×10~4t, coniferous mixed forest was 64.00×10~4t, coniferous-deciduous mixed forest was 47.36×10~4t, evergreen broad-leaved forest was 20.10×10~4t, deciduous broad-leaved forest was 88.23×10~4t, shrubbery was 105.84×10~4t, economic forest was 4.76×10~4t, and bamboo forest was 8.40×10~4t, respectively. The mean litter carbon density of diverse vegetation types was 2.64 t/hm~2, and Chinese-fir forest(4.48t/hm~2)> temperate pine forest(4.02t/hm~2)>Masson pine forest(3.53t/hm~2)>coniferous mixed forest(3.02t/hm~2)>deciduous broad-leaved forest(2.99t/hm~2)>evergreen broad-leaved forest(2.94t/hm~2)>bamboo forest(2.55 t/hm~2)>coniferous-deciduous mixed forest(2.28t/hm~2)>cypress forest( 1.51 t/hm~2)>shrubbery( 1.30t/hm~2)>economicforest(0.42t/hm~2).
     (4) Carbon content in the soil at two levels(A and B) were various, the mean carbon content of layer A was 22.11g/Kg, and layer B was only 12.57 g/Kg. The mean layer A carbon density of diverse vegetation types was 56.3 t/hm~2, and the sequence of carbon density in layer A of diverse vegetation types was that: cypress forest>shrubbery>deciduous broad-leaved forest>temperate forest>Chinese-fir forest>coniferous mixed forest>coniferous-deciduous mixed forest>evergreen broad-leaved forest>Masson pine forest>bamboo forest>economic forest. The mean layer B carbon density of diverse vegetation types was 34.7 t/hm~2, and the sequence of carbon density in layer B of diverse vegetation types was that: cypress forest>Chinese-fir forest>temperate forest>deciduous broad-leaved forest>shrubbery>economic forest>bamboo forest>coniferous mixed forest>coniferous-deciduous mixed forest>Masson pine forest>evergreen broad-leaved forest. The total soil carbon storage of vegetation types in Three Gorges Reservoir Area was 2.21×10~8t, layer A was 1.48×10~8t and layer B was 0.73×10~8t, respectively.
     (5) The total forestry ecosystem carbon storage of Three Gorges Reservoir Area was 285.97×10~6 t.The mean carbon density of forestry ecosystems was 117.31 t/hm~2, the sequence of diverse vegetation types was that: cypress forest( 144.08 t/hm~2)> Chinese-fir forest(1 39.02 t/hm~2)>deciduous broad-leaved forest(125.89t/hm~2)>temperate pine forest(125.33 t/hm~2)>bamboo forest(117.85 t/hm~2)> coniferous mixed forest(113.28 t/hm~2)>economic forest(112.54 t/hm~2)> evergreen broad-leaved forest(110.25 t/hm~2)> Masson pine forest( 107.08 t/hm~2)>coniferous-deciduous mixed forest( 102.23 t/hm~2)> shrubbery(92.87 t/hm~2). The ratio of diverse layers to system carbon storage were various, vegetation layer ranged from 9.33% to 36.02%, litter layer ranged from 0.37% to 3.30%, and soil layer ranged from 61.32% to 89.27%, respectively.
     (6) Masson pine forest plots were studied, it suggested that system carbon density showed an obverse linear relationship with nutrient, an inverse linear relationship with slope angle, and a weak tendency to increase with altitude. Plot carbon density was similar from East to West, but variously from South to North in Three Gorges Reservoir Area.
引文
1.陈炳浩.长江洪涝灾害的原因及森林水文生态效应机制.林业经济,1998,(5): 12-17
    
    2. 陈亮中.三峡库区主要森林植被类型土壤有机碳研究.[博士学位论文],北京: 北京林业大学,2007
    
    3. 陈书秀,江明喜.三峡地区香溪河流域不同树种叶片凋落物的分解.生态学报, 2006,26(9):2905-2912
    
    4. 陈遐林.华北主要森林类型的碳汇功能研究.北京北京林业大学,2003
    
    5.程金花,张洪江,史玉虎等.三峡库区三种林下地被物出水特性.应用生态学 报,2003,14(11):1 825-1828
    
    6.程励励,文启孝,林心雄.内蒙古自治区土壤中有机碳、全氮和固定态铵的储 量.土壤,1994,5:248-252
    
    7.程瑞梅,肖文发,李建文等.三峡库区森林植被分类系统初探.环境与开发, 1999,14(2):4-7
    
    8.程瑞梅,肖文发,马娟,李建文.三峡库区灌丛群落多样性的研究.林业科学 研究,2000,13(2):129-133
    
    9.程堂仁.甘肃小陇山森林生物量及碳储量研究.[博士学位论文],北京:北京林 业大学,2007
    
    10.丁贵杰,王鹏程.马尾松人工林生物量及生产力变化规律研究Ⅱ不同林龄生物 量及生产力.林业科学研究,2001,15(1):54-60
    
    11.方精云,刘国华,徐嵩龄.中国陆地生态系统的碳库.北京:中国环境科学出 版社,1996a,109-128
    
    12.方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量.生态学报,1996b, 16(5):497-508
    
    13.方精云.全球生态学—气候变化与生态响应.北京:高等教育出版社,海德 堡:施普林格出版社,2000,192-194
    
    14.冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定.林业科学, 1982,18(2):127-134
    
    15.冯宗炜,汪效科,吴刚中国森林生态系统的生物量和生产力.北京:科学出版 社,1999,13-14
    
    16.冯仲科,罗旭,石丽萍.森林生物量研究的若干问题及完善途径世界林业研 究.2005,18(3):25-28
    
    17.甘海华,吴顺辉,范秀丹.广东土壤有机碳储量及空间分布特征.应用生态学 报.2003,14(9):1549-1501
    
    18.耿玉清,王宝平.森林地表枯枝落叶层涵养水源作用的研究.北京林业大学学 报.2000,22(5):49-52
    
    19.郝占庆,王力华.辽东山区主要森林类型林地土壤涵蓄水性能的研究.应用生 态学报,1998,9(3):237-241
    
    20.贺金生,王其兵,胡东.长江三峡地区典型灌丛的生物量及其再生能力.植物 生态学报,1997,21(6):512-520
    
    21.黄雪夏,倪九派,高明,等.重庆市土壤有机碳库的估算及其空间分布特征.水 土保持学报.2005,19(1):54-58
    
    22.吉良龙夫.陆上生态系概论.东京:公立出版社,1976
    
    23.解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分 析.土壤学报,2004,41(1):35-43.
    
    24.金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展.土壤,2000(1): 11-17
    
    25.李海涛,杨柳春,严茂超等.鸡公山自然保护区森林生物量动态模拟及其宏观 价值评估.资源科学,2005,27(4):154-159
    
    26.李铭红,于明坚,陈启嫦等.青冈常绿阔叶林的碳素动态.生态学报,1996, 16(6):645-651
    
    27.李克让.全球气候变化及其影响的研究进展和未来展望.地理学报,1996,51(增 刊):1-14
    
    28.李文华.生物生产力的概念及其研究的基本途径.自然资源,1978,1:71-92
    
    29.李文华,邓坤纹,李飞.长白山主要生态系统生物量的研究.中国科学院长白 山森林生态系统定位研究站.森林生态系统研究,1980,试刊:34-50
    
    30.李文华,邓坤枚,李飞.长白山主要森林生态系统生物量生产量的研究.森林 生态系统研究(试刊),1981,34-50
    
    31.廖军,王新根.森林凋落量研究概述.江西林业科技,2000,1:31-34
    
    32.林开敏,洪伟,俞新妥等.杉木与伴生植物凋落物混合分解的相互作用研究.应 用生态学报,2001,12(3):321-325
    
    33.林雯,曾涛,杨彪.九寨沟不同类型森林群落凋落物分解的研究.四川大学学 报(自然科学版),1121-1126
    
    34.刘长秀,张宏,泽柏.灌丛对川西北高寒草甸土壤资源的影响.山地学报,2006, 3(24):357-365
    
    35.刘国华,傅伯杰,吴刚等.环渤海地区土壤有机碳库及其空间分布格局的研究.应 用生态学报,2003,14(9):1489-1493
    
    36.刘世荣,温远光.杉木生产力生态学.北京:气象出版社,2005,1-5
    
    37.刘文耀.林冠附生物在森林生态系统养分循环中的作用.生态学杂志,19(2): 30-35
    
    38.罗天祥.中国主要森林类型生物生产力格局及其数学模型.[博十学位论文].北 京:中国科学院,1996
    
    39.马钦彦,陈遐林,王娟等.华北主要森林植被类型建群种的含碳率分析.北京 林业大学学报,2002,24(5):96-100
    
    40.倪健,陈仲新,董鸣.中国生物多样性的生态地理区划.植物学报,1998,40 (4):370-382
    
    41.潘维俦,李利村,高正衡.两个不同地域类型杉木林生物产量和营养元素的分 布.中南林业科技,1979,4:1-14
    
    42.彭少麟,张祝平.鼎湖山地带性植被生物量生产力和光能利用率.中国科学(B 辑),1994,24(5):497-502
    
    43.任泳红,曹敏,唐建维等. 西双版纳季节雨林与橡胶多层林凋落物动态的比较 研究.植物生态学报,1999,23(5):418-425
    
    44.阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律. 生态学杂志,1997,16(6):17-21
    
    45.沈海龙,丁宝永,沈国舫.樟子松人工林下针阔叶凋落物分解动态.林业科学, 1996,32(5):393-400
    
    46.屠梦照.鼎湖山南亚热带常绿阔叶林凋落物量.热带亚热带森林生态系统研究, 1984(2):18-21
    
    47.王凤友.森林凋落量研究综述.生态学进展,1989,6(2):82-89
    
    48.王金叶,车克钧,蒋志荣.祁连山青海云杉林碳平衡研究.西北林学院学报, 2000,15(1):9-14
    
    49.王鹏程.三峡库区森林植被水源涵养功能研究.[博士学位论文],北京:中国林 业科学研究院,2007
    
    50.王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349-356
    
    51.王云琦.三峡库区森林里水调洪机理及空间配置研究.[博士学位论文],北京: 北京林业大学,2006
    
    52.翁轰,李志安,屠梦照等.鼎湖山森林凋落物量及营养元素含量研究.植物生 态学报,1993,17(4):299-304
    
    53.吴仲民,李意德,曾庆波等.尖峰岭热带山地雨林素库及皆伐影响的初步研究.应 用生态学报,1998,9(4):341-344
    
    54.肖文发,李建文,于长青,马娟,程瑞梅,刘少英,王金锡,葛继稳.长江三 峡库区陆生动植物生态.重庆:西南师范大学出版社,2000,5-11
    
    55.肖兴威.中国森林生物量与生产力的研究.[博士学位论文],哈尔滨:东北林 业大学,2005
    
    56.解宪丽.基于GIS的国家尺度和区域尺度土壤有机碳库研究.[博士学位论文], 南京:中国科学院土壤研究所
    
    57.邢如楠.带生物泵三维全球海洋碳循环模式.大气科学,2000,24(3):333-340
    
    58.徐艳.中国北方主要农业生态区土壤有机碳储量变化及经济学解释.[博士学位 论文],北京:中国农业大学,2005
    
    59.杨玉盛,陈银秀,何宗明等.福建柏和杉木人工林凋落物性质的比较.林业科 学,2004,40(1):2-10
    
    60.杨万勤,邓仁菊,张健.森林凋落物分解及其对全球气候变化的响应,应用生 态学报,2007,18(12):2889-2895
    
    61.刘纪远,于贵瑞,王绍强等.陆地生态系统碳循环及其机理研究的地球信息科 学方法初探.地理研究,2003,22(4):397-404
    
    62.张雪平,赤子爱胜蚓对森林凋落物的分解效率,生态学报,2005,25,(9):27-33
    
    63.曾曙才,苏志尧,古炎坤等.广州白云山风景名胜区主要林分类型凋落物的研 究.应用生态学报,2003,14(1):154-156
    
    64.曾立雄.三峡库区森林生物量及生产力研究.[硕士学位论文],武汉:华中农业 大学,2007
    
    65.曾永年,冯兆东,曹广超等.黄河源区高寒草地土壤有机碳储量及分布特征.地 理学报,2004,59(4):497-503
    
    66.赵永存,史学正,于东升等.不同方法预测河北省土壤有机碳密度空间分布特征 的研究.土壤学报,42(3):379-385
    
    67.郑征,刘伦辉,和爱军等.西双版纳湿性季节雨林凋落物和叶虫食量研究.植 物学报,1990,32(7):551-557
    
    68.周国模,刘恩斌,佘光辉.森林土壤碳库研究方法进展.浙江林学院学报,2006, 23(2):207-216
    
    69.佐藤大七郎.陆地植物群落的物质生产.聂绍荃,译.北京科学出版社,1986
    
    70. Alentini R, Mattenucci G, Dolman A J, et al. Respiration as the main determinant of carbon balance in European forests . Nature, 2000, 404: 862-864.
    
    71. Alexeyev V , Birdsey R, Stakanov V, Korotkov I. Carbon in vegetation of Russian forests:Methods to estimate storage and geographical distributionf. Water,Air and Soil Pollution, 1995,82:271-282
    
    72. Armentano, T. V. Effects of Increased Wood Energy-Consumption on Carbon Storage in Forests of the United-States. Environmental Management, 1984,8(6):529-538
    73. Bate A.K. Climate in Crisis:The greenhouse effect and what we can do(气候危机:温室效应与我们的对策)[M].苗润生,成志勤译.北京:中国环境科学出版社,1992.
    74. Batjes N H. Total carbon and nitrogen in the soil of the world . European Journal of Soil Science, 1996,47: 151-163.
    75. Birdsey R A. Carbon storage and accumulation in United States forest ecosystems.United States Department of Agriculture Forest Sen}ice[M], General Technical Report WO-59, 1992.
    76. Bockheim J G, Walker D A, Everatt L B, et al. Soil and cryoturbation in moist nonacidic and acidic tundra in the keparuk river basin, Arctic Alaska. Arctic and Alpine Research, 1998, 30: 166-174.
    77. Bohn H L. Estimate of organic carbon in world soils. Soil Science society of America Journal, 1976,40:468-470.
    78. Bolin B.Changes of land biota and their importance for the carbon cycle.Science,1997,196:613-615
    79. Bolin B. The Kyoto negotiation on climate chanfe:a science perspective.Science,1998,279:330-331
    80. Botkin, D. B.,Simpson, L. G.,Nisbet, R. A. Biomass and Carbon Storage of the North-American Deciduous Forest.Biogeochemistry,1993,20(1): 1-17
    81. Brown S,Gillespie A J R, Lugo A E. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Scicence, 1989,35:881-902
    82. Biomass of tropical forests:a new estimate based on forest volumes.Scicence, 1984,223:1290-1293
    83. Butingh P. Otganic carbon in soil of the world.In:Woodwell G M,ed.The role of terrestrial vegetation in the global carbon cycle:measutement by remote sensing.New York: John Wiley&Son, 1984,91 -109
    84. Buringh P. Scope, 1984,23:91-109
    85. Burke I C, Yonkr C M, Partonw J,et al. Texture, climate, and cultivation effects on soil ogranic matter content in U. S. grass-land soils .Soil Sci Soc Am J, 1989,53: 800-805.
    86. Cooper, C. F. Carbon Storage in Managed Forests.Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 1983,13(1): 155-166
    87. Cropper, W. P., Ewel, K. C. A. Regional Carbon Storage Simulation for Large-Scale Biomass Plantations. Ecological Modelling,1987,36(3):171-180
    88. Dewar, R. C.,Cannell, M. G. R.Carbon Sequestration in the Trees, Products and Soils of Forest Plantations - an Analysis Using Uk Examples.Tree Physiology,1992,11(1):49-71
    
    89. Dray J R et al. Litter production in forests of the world. Adv.Eco.Res.1964,2:101 - 157
    
    90. EbermayerE. Die qesam te Lehreder woldeterum it Ruck-sich tauf die chem. ische static woldbaues. Berlin:Jul-ius Springer, 1976:116.5.
    
    91. Eswaran H, Vanden B.E, Reich P. Organic carbon in soils of the world. Soil Science Society of America Journal, 1993, 57:192-194.
    
    92. Fang J Y ,Wang G G, Liu G H,Xu S L. Forest biomass of China:an estimation based on the biomass-volume relationship. Ecological Applications, 1998,8:1084-1091
    
    93. Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001,292:2320-2322
    
    94. Franzmeier D P, Lemme G D, Miles R J. Organic carbon in soils of north central united States. Soil Sci Soc Am J, 1985,49: 702-708.
    
    95. Gower S T,Vogel J G, Norman J M. Carbon distribution and aboveground netprimary production in aspen, jack pine,and black spruce stands in Saskatchewan and Manitoba,Canada.J Geophys Res, 1997,102:29029-29041
    
    96. Guo L B,Sims R E H. Litter production and nutrient return in New Zealand eucalypt short rotation forests: implications Forland management.Agric Ecosyst Environ, 1999,73(1):93-100.
    
    97. Hazel R. Delcourt W. F. Harris. Carbon budget of the southeastern U.S.Biota:analysis of historical change in trend from source to sink. Science,1999,283:1815a
    
    98. Holdridge L R. Determination of world plant formations from simple climatic data.Science, 1947,105:367-368
    
    99. Holdridge L R.Life Zone Ecology.Tropical Science Center, San Jose.Costa Rica, 1967
    100.Houghton R A, Hackler J L, Lawrence K T. The U. S. Carbon Budget: Contributions from land-use change. Science, 1999,285,574-577
    101 .Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis. contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2001.
    102.Houghton J T, Jenkins G J, Ephraums J J. Climate change:the IPCC scientific assessments. Cambridge:Cambridge University Press, 1990
    103.Howarth R W, Steware J W B, Ivanov M V. SCOPE 48,Sulphur Cycling on the continents:Wetlands,Terresttial Ecosystems, and Associated Water Bodies.Chichester: Wiley, 1992
    104.Jenkinson D S, Adams D E, Wild A. Model estimates of CO2, emissions from soil in response to global warming. Nature, 1991,361: 304-306.
    105.Keeling C D,Whorf T P ,Wahlen M,et al .International extremes in rural area of rise atmospheric carbon dioxidesince 1980. Nature, 1995,375:666-670
    106.Kern J S. Spatial patterns of soil organic carbon in the con tiguous United States .Soil Sci Soc Am J, 1994,68: 439-455.
    107.King AW, Emanuel R W, Wullschleger D S, et al. A search of the missing carbon sink: a model of terrestrial biospheric response to land use change and atmospheric CO2.Tellus, 1995,47B: 510-519.
    108.KoopmansCJ, Tietema A, Verstraten J M. Effects of re-duced N deposition on litter decom position and Ncycling in two Nsaturated forests in the Netherlands. Soil Biology And biochemistry,1998,30(2):141-151.
    109.LAL R. Soil organic dynamics in cropland and rangeland.EnvIron Pollut, 2002,116(supp): 353-362.
    110.Lars K, Anette N, Martin H, et al. Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods. Agriculture Ecosystems and Environment,2003,96:19-28.
    111.Leith H. Modeling the primary production of the world.In:Lieth H,Whittaker R H,eds. Primaty Productivity of the Biosphere. New York:Sptinger-Verlag, 1975.237-263
    112.Lieth H F H. Modeling the primary productivity of the world. Nature and Resources, 1972, 8(2): 5-10.
    113.Li, Z. Jiang, X.,Pan, X. Z,.Zhao, Q. G.Organic carbon storage in soils of tropical and subtropical China. Water Air and Soil Pollution,2001,129(1-4):45-60
    114.Leith H. Promary production : terrestrial ecosystem.Human Ecology, 1973,1:303-332
    115.Malhi,Y.,D.D.Baldocchi&P.G.Jarvis. The carbon balance of tropical,temperate and boreal forests.Plant,Cell and Environment, 1999, 22:715-740.
    
    116.APPS M J. Boreal Forests and Tundra. Water,Air,and soil pollution. 1993,70:39-53
    117.Moldan B,Cerny J.eds.SCOPE 51, Biogeochemistry of Small Catchments:A tool for Envitonmental Research.Chichester: Wiley. 1994
    118.Myers, Mittermeier R. A. N., Mittermeier C. G., et al. Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853-858
    119.Odum E P. Organic production and turnover in old field succession. Ecology, 1960,41:34-49
    120.Ovinghton J D, Heitkamp D D, Lawrence D B. Plant biomass and procuctivity of prairie,savanna, Oakwood and maize field ecosystems in central Minnesota.Ecology, 1963,44L52-63
    121.Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in the Great Plains grasslands. Soil Sci Soc Am J, 1987,51: 1 173-1 179.
    122.Parton W J, Mosier A R, Schimel D S. Dynamics of C,N,P,and S in Grassland Soils:a Model.Biogeochemistry, 1988,5:109-131
    123.Paul E S, Jack W. Assessing Brazil's carbon budget: I. Biotic carbon pools. Forest Ecology and Management, 1995, 75: 77-86.
    124.Post W M, Emanuel W R, Zinke P J , et al.Soil carbon pools and world life zones.Nature, 1982,198:156-159
    125.Post W M, Izaurralde R C, Mann L K, et al. Montoring and verifying changes of organic carbon in soil .Clim Change, 2001,51: 73-99.
    126.Raich J W, Schlesinger W H. The globle carbon dioxide fluxin soi lrespiration and its relationship to vegetation and climate. Tellus,1992,44B:81-99.
    127.Reichle D E.eds. Dynamics Prooerties of Forest Ecosystem.International Biological Programme 23,683.CambridgeLCamBridge University Press, 1981
    128.Rollinger J L, Strong T F, Grigal D F. Forested soil carbon storage in landscapes of the northern great lakes region. In: management of carbon sequestration in soil (ed by Lai R et al). CRC press, 1997, 335-350.
    129.Schleisinger W H. Carbon banlance in terrestrial detritus.Ann Rev Ecol Syst, 1977,8:51-81
    
    130.Schleisinger W H. Scope, 1984,23:111-127
    131.Schleisinger W H. Nature, 1990, 348: 232- 234
    132.Schroeder, P. Can Intensive Management Increase Carbon Storage in Forests. Environmental Management, 1991,15(4): 475-481
    133.Schroeder, P. Carbon Storage Potential of Short Rotation Tropical Tree Plantations. Forest Ecology and Management,1992,50(1-2):31-41
    134.Schroeder O S,Brown S, Mo J, et al.Biomass estimation for temperate broadleaf forests of the United States using inventory data.Forest Scicece, 1997,43:424-434
    135.Shao Q W.,Chen H Z.Ji Y L., et al. Carbon storage in northeast china as estimated from vegetation and soil inventories.Environmental Pollution,2002,116:S157-S165
    136.Sharpe, D. M.Johnson, W. C. Land-Use and Carbon Storage in Georgia Forests. Journal of Environmental Management,1981,12(3):221-233
    137.Susan R, Wilma M, Comelis V, et al. Analysis of soil organic carbon and vegetation cover trends along the Botswana Kalahari Transect. Journal of Arid Environments, 1998,38:379-396.
    138.Tatyana P.Kolchugina Ted S.V.俄罗斯森林在全球碳平衡中的作用.朱云辉译.人类环境杂志,1995,24(5):258—264
    
    139.Tatyana P K, Ted S V. Carbon cycle of terrestrial ecosystems of the former Soviet Union . Environmental Science and Policy, 1998, 1: 115-128.
    140.Tiessen H.ed.SCOPE 54, Phosphorus in the Global Environment:Transfers,Cycles and Management.Chichester: Wiley, 1995
    141.Timo Karjalainen et al. Scenarios for carbon balance of Finnish forest and wood products. Environmental Science & Policy,1999,2:165-175
    142.Turner D P,Koepper G J, Harmon M E ,et al.A carbon budget for forests of fordsts of the conterminous United States.Ecological Applications, 1995,5:421-436
    143.UNFCCC. The Kyoto Protocol to the United Nations Framework Convention on Climate change. UNEP: WMO, 1997.
    144.VEMAP Members. Vegetation ecosystem modeling and analysis project:Comparing biogeography and biogeochemistry models in a continent-scale study of terrestrial ecosysterm response to climate change and CO2 doubling,Global Biogeochem.Cycles, 1995,9:407-437
    145.Vogt K A, et al. Production,turnover,and nutrient dynamics of above and belowground detritus of world forests. Adu.Eco.Res.1986,15:33-37
    146.Watson R T, Verardo D J. Land-use change and forestry. Cambridge: Cambridge University Press, 2000
    147.Whittaker R H and Likens G E. The biosphere and man. In: Lieth H and Whittaker R H(ed.)Primarv production of the biosphere. Heidelberg: Springer Verlag. 1975.305-328
    148.Whittaker, R. H., and G. M. Liken. Carbon in the biota [A].In: U.M.Woodwell and E. V.Pecan ed. Carbon and the biosphere[R] , National Technical Information Service, CONF-720510,Springfeild,VA,1975
    149.Wofsy S C,Goulden M L,Munger J W,et al .Net exchange of CO2 in a mid-latitude forest.Science, 1993,260:1314-1317
    150.Yadvinder Malhi and John Grace.Tropical forests and atmospheric carbon dioxide. Tree,2000 15(8):332-337
    151.Yoda K. A Preliminary survey of the forest vegetation of Eastern Nepal. III. Plant biomass in the sample plots chosen from different vegetation zones. J. Coll. Arts and Sci. Chiba Univ, 968, 5: 277-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700