含氮杂环配合物及金属离子液体的合成和电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文合成了68个新的含氮杂环苯并咪唑、三唑和苯并三唑衍生物配体及其金属配合物,125个不同烷基取代的咪唑、苯并咪唑和苯并三唑氯盐离子液体以及相应的含金属离子液体,通过元素分析、红外光谱、核磁共振和X-射线晶体衍射表征结构。研究了这些化合物的电导率、热稳定性、电化学和电催化等性质。
     1.合成了58个新的1-烷基-苯并咪唑配体[C_nH_(2n+1)-bim](n=3、4、5、8和10;bim=苯并咪唑)及相应的金属配合物[M(C_nH_(2n+1)-bim)_2X_2](M=Co、Cu、Zn、Cd和Fe;X=Cl~-、Br~-、NO_3~-和SCN~-),得到了[Co(C_3H_7-bim)_2Br_2]、[Cu_4(C_4H_9-bim)4Cl6O]和[Zn(C_3H_7-bim)2Br2]等9个化合物的单晶并进行了结构分析。在20℃至90℃的范围内,测试了1-烷基-苯并咪唑配合物在不同有机溶剂乙醇、乙腈、丙酮、四氢呋喃和N,N’-二甲基甲酰胺中的电导率,考察了有机溶剂、烷基链和金属盐对电导率的影响。将部分苯并咪唑配合物作为修饰剂制作本体修饰化学碳糊电极,通过循环伏安法测试了修饰电极的电化学性质,详细研究了它们对过氧化氢、亚硝酸根、溴酸根和三氯乙酸的电催化还原作用,对催化机理做了推断,测得了线性范围、检测限以及灵敏度。
     2.合成了10个新的1-烷基-1,2,4-三唑及其配合物[M(C_nH_(2n+1)-taz)_2X_2](n=4和10;M=Co和Cu;X=Cl-、Br-和SCN-;taz=1,2,4-三唑)、1-戊基-1,2,3-苯并三唑及其氯化锌配合物[Zn(C_5H_(11)-bta)_2Cl_2](bta=苯并三唑)、甲基2-吡啶酮肟及其锰配合物{Mn[(2-py)CNOH]_2Cl_2}和{Mn[(2-py)CNOH]2(OAc)2} (py=吡啶)。得到了[Cu4(C_4H_9-taz)4Cl6O]、[Zn(C_5H_(11)-bta)_2Cl_2]和{Mn[(2-py)CNOH]_2Cl_2}等化合物的单晶并进行结构分析。通过循环伏安法研究了这些配合物修饰碳糊电极的电化学以及电催化性质。
     3.合成了一系列119个1-烷基-3-甲基咪唑氯盐离子液体[Cn-mim]Cl(Cn=碳原子数为3、4、8、12、14、16和18的烷基链,mim=3-甲基咪唑)及其相应的含金属离子液体[Cn-mim]MX_m(M=Fe、Co、Cu、Zn、Mn、Cd、La、Ce、Nd和Y,X=Cl~-、NO_3~-和SCN~-)。这部分得到的含金属离子液体熔点都低于100℃。测试了所合成离子液体的电导率,考察了有机溶剂、烷基阳离子以及阴离子中金属离子和酸根对电导率的影响。通过示差扫描热分析(DSC)和热重分析(TG/DTG)研究了含氯化钴和含氯化铜的1-十四烷基、1-十六烷基和1-十八烷基-3-甲基咪唑的热稳定性。将得到的含金属离子液体用于修饰碳糊电极,在电极中含金属离子液体充当了催化剂和导体粘合剂的双重作用。修饰电极对过氧化氢、亚硝酸根、溴酸根、碘酸根和三氯乙酸表现优良的电催化还原作用,灵敏度高,检测限低,重现性好。而且修饰电极制作简便,稳定性好。
     4.合成了含金属1,3-二烷基苯并咪唑离子液体[(C_3H_7)2-bim]2[CdCl4]和[(C10H21)2-bim]2[Cd2Cl6]、1,3-二丁基苯并三唑氯盐[(C_4H_9)2-bta]Cl(bta=苯并三唑)及其含氯化镉离子液体[(C_4H_9)2-bta][(C_4H_9-bta)CdCl3]。对得到的这三个含金属离子液体的晶体结构进行了详细分析。通过热重分析考察了含氯化镉1,3-二癸基苯并咪唑和含氯化镉1,3-二丁基苯并三唑的热稳定性。在DMF溶液中测试了三个含氯化镉离子液体的电导率。通过循环伏安法研究了含氯化镉离子液体修饰电极的电化学行为和电催化性质。
We synthesized 68 kinds of new aromatic N-heterocycles ligands from benzimidazole, triazole and benzotriazole derivatives and their metal complexes, 125 kinds of different alkyl imidazolium, benzimidazolium and benzotriazolium chloride ionic liquids and their corresponding metal-containing ionic liquids (MILs). These compounds were characterized by elemental analysis, IR spectra, NMR spectra and single crystal X-ray diffraction. The conductivities, thermal analysis, electrochemical behaviors and electrocatalysis of these compounds were studied.
     1. 58 kinds of new 1-alkyl-1H-benzo[d]imidazole [C_nH_(2n+1)-bim](n =3, 4, 5, 8 and 10; bim = benzimidazole) and their metal complexes [M(C_nH_(2n+1)-bim)_2X_2] (M = Co, Cu, Zn, Cd and Fe; X = Cl~-, Br~-, NO_3~- and SCN~-) were synthesized. Nine crystal structures, such as [Co(C_3H_7-bim)_2Br_2], [Cu_4(C_4H_9-bim)_4Cl_6O], [Zn(C_3H_7-bim)_2Br_2] and so on were characterized by single crystal X-ray diffraction. In the range of 20℃to 90℃, we investigated the conductivities of [M(C_nH_(2n+1)-bim)_2X_2] in the different solvents, such as ethanol, acetonitrile, tetrahydrofuran, acetone and N,N’-dimethylformamide. And we discussed the impaction of solvent, alkyl chain and metal salts on the conductivity. Some metal complexes were used as bulk modifier to fabricate carbon paste electrodes. The electrochemical behaviors and electrocatalysis of these modified electrodes had been studied by cyclic voltammetry. These modified electrodes showed good electrocatalytic activities toward the reduction of hydrogen peroxide, nitrite, bromate and trichloroacetic acid (TCA). The possible mechanisms were proposed and the linear range, detection limit and sensitivity were measured.
     2. 10 kinds of 1-alkyl-1,2,4-triazole and their metal complexes [M(C_nH_(2n+1)-taz)_2X_2] (n = 4 and 10; M = Co and Cu; X = Cl-, Br- and SCN-; taz = triazole), 1-pentyl-1,2,3-benzotriazole and [Zn(C_5H_(11)-bta)_2Cl_2] (bta = benzotriazole), methyl 2-pyridyl ketone oxime and Mn[(2-py)CNOH]_2Cl_2, Mn[(2-py)CNOH]_2(OAc)_2 (py = pyridine) were synthesized. The crystal structures of [Cu4(C_4H_9-taz)4Cl6O], [Zn(C_5H_(11)-bta)_2Cl_2], Mn[(2-py)CNOH]_2Cl_2 and so on were characterized by single crystal X-ray diffraction. The electrochemical behaviors and electrocatalytic activities of these complexes modified electrodes were characterized by cyclic voltammetry.
     3. 119 kinds of 1-alkyl-3-methylimidazolium chloride ionic liquid [Cn-mim]Cl(Cn = alkyl chain of C_nH_(2n+1), n = 3, 4, 8, 12, 14, 16 and 18) and the corresponding MILs [Cn-mim]MX_m(M = Fe, Co, Cu, Zn, Mn, Cd, La, Ce, Nd and Y; X = Cl~-, NO_3~- and SCN~-) were synthesized. The melting points of these MILs were lower than 80℃. The conductivities of these compounds were measured. We discussed the impaction of solvent, alkyl cation, metal ions and anion on the conductivity. The thermal behaviors of [Cn-mim]_2[CoCl_4] and [Cn-mim]_2[CuCl_4] (n=14, 16 and 18) were examined by differential scanning calorimetry (DSC) and thermogravimetry (TG). The MILs were used as bulk modifier to fabricate carbon paste electrodes (MIL/CPE) and had double functions of a binder and an electrocatalyst. The MIL/CPE showed good electrocatalytic activities toward the reduction of hydrogen peroxide, nitrite, bromate, iodate and trichloroacetic acid. These modified electrodes had good reproducibility, high stability, low detection limit, technical simplicity and possibility of rapid preparation.
     4. The metal-containing ionic liquid of 1,3-dialkylbenzimidazole [(C_3H_7)2-bim]_2[CdCl_4], [(C_(10)H_(21))_2-bim]_2[Cd_2Cl_6] and 1,3-dibutylbenzotriazole chloride ionic liquid and [(C_4H_9)2-bta][(C_4H_9-bta)CdCl_3] (bta = benzotriazole) were synthesized. The crystal structures of three MILs were characterized by single crystal X-ray diffraction. We studied the thermal stability and conductivities of them. They were also used as bulk modifier to fabricate carbon paste electrodes. The electrochemical behaviors and electrocatalytic properties of these modified carbon paste electrodes had been studied by cyclic voltammetry.
引文
[1] Hao P., Chen Y. J., Xiao T. P. F., et al., Iron(III) complexes bearing 2-(benzimidazole)-6-(1- aryliminoethyl)pyridines: synthesis, characterization and their catalytic behaviors towards ethylene oligomerization and polymerization, J. Organomet. Chem., 2010, 695: 90–95.
    [2] Mohamed G. G., Ibrahim N. A., Attia H. A. E., Synthesis and anti-fungicidal activity of some transition metal complexes with benzimidazole dithiocarbamate ligand, Spectrochim. Acta, Part A, 2009, 72: 610–615.
    [3] Xie Y., Xing Y. H., Wang Z., et al., Synthesis, structures and luminescent properties of novel coordination polymers constructed by lanthanide salts and benzimidazole-5,6-dicarboxylic acid, Inorg. Chim. Acta, 2010, 363: 918–924.
    [4] Tarte N. H., Woo S. I., Cui L. Q., et al., Novel non-chelated cobalt(II) benzimidazole complex catalysts: synthesis, crystal structures and cocatalyst effect in vinyl polymerization of norbornene, J. Organomet. Chem., 2008, 693: 729–736.
    [5] Bagihalli G. B., Avaji P. G., Patil S. A., et al., Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases, Eur. J. Med. Chem., 2008, 43: 2639–2649.
    [6] Li D. D., Tian J. L., Gu W., et al., A novel 1,2,4-triazole-based copper(II) complex: synthesis, characterization, magnetic property and nuclease activity, J. Inorg. Biochem., 2010, 104: 171–179.
    [7] Abe T., Kaneko M., pH-dependent electrocatalysis for proton reduction by bis(2,2’:6’,2”-terpyridine) cobalt(II) complex embedded in Nafion membrane, J. Mol. Catal. A: Chem., 2001, 169: 177–183.
    [8] Abe T., Hirano K., Shiraishi Y., et al., Electrocatalysis for proton reduction by polypyridyl platinum complexes dispersed in a polymer membrane, Eur. Polym. J., 2001, 37: 753–761.
    [9] Mbambisa G., Nombona N., Nyokong T., The formation of self-assembled monolayers of thiophthalocyanine complexes of titanium, vanadium and manganese and their use in L-cysteine electrocatalysis, Microchem. J., 2009, 93: 60–66.
    [10] Siswana M. P., Ozoemena K. I., Nyokong T., Electrocatalysis of asulam on cobalt phthalocyanine modified multi-walled carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode, Electrochim. Acta, 2006, 52: 114–122.
    [11] Mayer I., Toma H. E., Araki K., Electrocatalysis on tetraruthenated nickel and cobalt porphyrins electrostatic assembled films, J. Electroanal. Chem., 2006, 590: 111–119.
    [12] Manriquez J., Bravo J. L., Gutierrez-Granados S., et al., Electrocatalysis of the oxidation of alcohol and phenol derivative pollutants at vitreous carbon electrode coated by nickel macrocyclic complex-based films, Anal. Chim. Acta, 1999, 378: 159–168.
    [13] Welton T., Room-temperature ionic liquids. Solvents for synthesis and catalysis, 1999, Chem. Rev., 99: 2071–2083.
    [14] Seddon K. R., Ionic liquids for clean technology, J. Chem. Tech. Biotechnol., 1997, 68: 351–356.
    [15] Rogers R. D., Voth, G. A., Ionic liquids, Acc. Chem. Res., 2007, 40: 1077–1078.
    [16] Liu W. W., Cheng L. Y., Zhang Y. M., et al., The physical properties of aqueous solution of room-temperature ionic liquids based on imidazolium: database and evaluation, J. Mol. Liq., 2008, 140: 68–72.
    [17] Ohno H., Yoshizawa M., Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles, Solid State Ionics, 2002, 154: 303–309.
    [18] Kubisa P., Ionic liquids as solvents for polymerization processes-progress and challenges, Prog. Polym. Sci., 2009, 34: 1333–1347.
    [19] Welton T., Ionic liquids in catalysis, Coord. Chem. Rev., 2004, 248: 2459–2477.
    [20] Bourbigou H. O., Magna L., Morvan D., Ionic liquids and catalysis: recent progress from knowledge to applications, Appl. Catal., A, 2010, 373: 1–56.
    [21] Zhang Z. C., Catalysis in ionic liquids, Advances in Catalysis, 2006, 49: 153–237.
    [22] Studzińska S., Kowalkowski T., Buszewski B., Study of ionic liquid cations transport in soil, J. Hazard. Mater., 2009, 168: 1542–1547.
    [23] Virtanen P., Karhu H., Kordas K., et al.,The effect of ionic liquid in supported ionic liquid catalysts (SILCA) in the hydrogenation ofα,β-unsaturated aldehydes, Chem. Eng. Sci., 2007, 62: 3660–3671.
    [24]李硕,向清祥,陈稼轩等,苯并咪唑大环四胺金属配合物的超分子识别与催化水解作用,化学研究与应用,2009,21:1375–1380。
    [25] Wei Y. Q., Yu Y. F., Wu K. C., Highly stable five-coordinated Mn(II) polymer [Mn(Hbidc)]-(Hbidc=1H-Benzimidazole-5,6-dicarboxylate): crystal structure, antiferromegnetic property, and strong long-lived luminescence, Cryst. Growth Des., 2008, 8: 2087–2089.
    [26] El-Sherif A. A., Jeragh B. J. A., Mixed ligand complexes of Cu(II)-2-(2-pyridyl)- benzimidazole and aliphatic or aromatic dicarboxylic acids: synthesis, characterization and biological activity, Spectrochim. Acta, Part A, 2007, 68: 877–882.
    [27] Singla M., Mathur P., Oxidation of alcohols using a manganese (II) complex based on a pentakis benzimidazole amide ligand, Spectrochim. Acta, Part A, 2009, 74: 536–543.
    [28] Moon D., Kim J., Oh M., et al., Synthesis and characterization of a bis-μ,?1-carboxylate -bridged dinuclear manganese(II) complex containing a tetradentate tripodal ligand, N-(benzimidazol-2-ylmethyl)iminodiacetic acid, Polyhedron, 2008, 27: 447–452.
    [29] Arora V., Rajesh, Mathur P., et al., A M?ssbauer and electrochemical study of mononuclear iron(III) complexes with benzimidazole-based flexible bidentate ligands, Transition Met. Chem., 1999, 24: 92–94.
    [30] Pandiyan T., Hernández J. G., Medina N. T., et al., Geometrical isomers of bis(benzimidazol -2-ylethyl)sulfide)cobalt(II) diperchlorates: synthesis, structure, spectra and redox behavior of pink-[Co(bbes)2](ClO4)2 and blue-[Co(bbes)2](ClO4)2, Inorg. Chim. Acta, 2004, 357: 2570–2578.
    [31] Zhong C. F., He A. H., Guo R. F., et al., Synthesis, characterization and redox behavior of nickel(II) and cobalt(II) polymeric complexes, Synth. Met., 2008, 15: 33–37.
    [32] Amudha P., Akilan P., Kandaswamy M., Synthesis, spectral, electrochemical and magnetic properties of new symmetrical and unsymmetrical dinuclear copper(II) complexes derived from binucleating ligands with phenol and benzimidazole donors, Polyhedron 1999, 18: 1355–1362.
    [33] Xu J., Su Z., Chen M. S., et al., New metal complexes with 5-(1H-imidazol-4-ylmethyl) aminoisophthalic acid: syntheses, structures, electrochemistry and electrocatalysis, Inorg. Chim. Acta 2009, 362: 4002–4008.
    [34] Benzekri A., Cartier C., Latour J. M., et al., Structural and electrochemical studies of dicopper complexes of a binucleating ligand involving sulfides and benzimidazoles, Inorg. Chim. Acta 1996, 252: 413–420.
    [35] Balamurugan R., Palaniandavar M., Gopalan R. S., et al., Copper(II) complexes of new pentadentate bis(benzimidazolyl)-dithioether ligands: synthesis, structure, spectra and redox properties, Inorg. Chim. Acta 2004, 357: 919–930.
    [36] Rajesh, Mathur P., Monomeric Cu(II) complexes with tetradentate bis(benzimidazole) ligand ; synthesis, EPR, spectral and electrochemical studies, Polyhedron, 1998, 17: 2607–2615.
    [37] Leboschka M., Sieger M., Sarkar B., et al., Silver(I), copper(I) and copper(II) complex of the new N,Se-chelate ligand 2-phenylselenomethyl-1H-benzimidazole: electrochemistry and structure, Z. Anorg. Allg. Chem. 2009, 635: 1001–1007.
    [38] Xu H., Xu Z. F., Yue Z. Y., et al., A novel deep blue-emitting Zn(II) complex based on carbazole-modified 2-(2-hydroxyphenyl)benzimidazole: synthesis, bright electroluminescence, and substitution effect on photoluminescent, thermal, and electrochemical properties, J. Phys. Chem. C 2008, 112: 15517–15525.
    [39] Li J. P., Li L. K., Hou H. W., et al., Construction of Cd(II)–ferrocenesuccinate coordination complexes via changing adjuvant ligands and anions, J. Organomet. Chem. 2009, 694: 1359–1368.
    [40] Haasnoot J. G., Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands, Coord. Chem. Rev., 2000, 200: 131–185.
    [41] Olea D., Couceiro U. G., Castillo O., et al., Nanoprocessability of a one-dimensional oxalato -bridged cobalt(II) complex with 1,2,4-triazole, Inorg. Chim. Acta, 2007, 360: 48–54.
    [42] Couceiro U. G., Castillo O., Cepeda J., et al., Structural and magnetic characterization of one- dimensional oxalato-bridged metal(II) complexes with 4-amino-3,5-bis(2-pyridyl)-1,2,4- triazole ligand: A supramolecular open-framework, Inorg. Chim. Acta, 2009, 362: 4212–4218.
    [43] Zhang R. F., Wang Q. F., Li Q. L., et al., Syntheses and characterization of triorganotin(IV) complexes of schiff base derive from 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and 5-amino- 1,3,4-thiadiazole-2-thiol with p-phthalaldehyde, Inorg. Chim. Acta, 2009, 362: 2762–2769.
    [44] Chen J. C., Zhou A. J., Hu S., et al., Synthesis, structure and magnetic property of a new mixed-valence copper(I/II) complex derived from 3,5-bis(pyridin-2-yl)-1,2,4-triazole, J. Mol. Struct., 2006, 794: 225-229.
    [45] Sztanke K., Tuzimski T., Rzymowska J., et al., Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives, Eur. J. Med. Chem., 2008, 43: 404–419.
    [46] Yang H. Y., Hou H. W., Fan Y. T., Syntheses, structures, photoluminescent and electrochemical properties of two ferrocenylthiocarboxylate-containing complexes, Inorg. Chim. Acta, 2009, 362: 2418–2422.
    [47] Gennari M., Giannetto M., Lanfranchi M., et al., Synthesis, structure and electrochemical properties of a nickel complex with the hydrotris[thioxotriazolyl-3-(2-pyridyl)]borate podand ligand, Polyhedron, 2004, 23: 1829–1835.
    [48] Zhou X. L., Meng X. R., Cheng W., et al., Crystal structural, electrochemical and computational studies of two Cu(II) complexes formed by benzotriazole derivatives, Inorg. Chim. Acta, 2009, 360: 3467–3474.
    [49] Wu X. Y., Kuang X. F., Zhao Z. G., et al., A series of POM-based hybrid materials with different copper/aminotriazole motifs, Inorg. Chim. Acta, 2010, 363: 1236–1242.
    [50] Liu G. F., Li L. L., Ren Y. S., et al., Two 1D coordination polymeric isomers with the same chemical formula [Cu(2,2'-bipy)(Htda)]n: synthesis, crystal structures and electrochemical properties, Inorg. Chem. Commun., 2009, 12: 563–565.
    [51] Joly J. P., Beley M., Selmeczi K., et al., A new C2-symmetric diaza-crown ether–Cu(II) mononuclear complex containing 1,2,3-triazole ligands, Inorg. Chem. Commun., 2009, 12: 382–384.
    [52] Asano A., Yang J. F., Kondoh T., et al., Molar absorption coefficient and radiolytic yield ofsolvated electrons in diethylmethyl(2-methoxy)ammonium bis (trifluoromethanesulfonyl)imide ionic liquid, Radiat. Phys. Chem., 2008, 77: 1244–1247.
    [53] Diego T. D., Lozano P., Abad M. A., et al., On the nature of ionic liquids and their effects on lipases that catalyze ester synthesis, J. Biotechnol., 2009, 140: 234–241.
    [54] Matsumoto M., Ueba K., Kondo K., Vapor permeation of hydrocarbons through supported liquid membranes based on ionic liquids, Desalination, 2009, 241: 365–371.
    [55] Angueira E. J., White M. G., Ionic liquid structure effect upon reactivity of toluene carbonylation: 1. Organic cation structure, J. Mol. Catal. A: Chem., 2005, 238: 163–174.
    [56] Ramnarine S. I. L., Castano A., Subramaniam G., et al., Synthesis, characterization and radiolytic properties of bis(oxalato)borate containing ionic liquids, Radiat. Phys. Chem., 2009, 78: 1120–1125.
    [57] Hitchcock P. B., Seddon K. R., Welton T., Hydrogen-bond acceptor abilities of tetra- chlorometalate(II) complexes in ionic liquids, Dalton Trans., 1993, 2639–2643.
    [58] Liu G., Hou M. Q., Song J. Y., et al., Ni2+-containing ionic liquid immobilized on silica: effective catalyst for styrene oxidation with H2O2 at solvent-free condition, J. Mol. Catal. A: Chem., 2010, 316: 90–94.
    [59] Sitze M. S., Schreiter E. R., Patterson E. V. et al., Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations, Inorg. Chem., 2001, 40: 2298–2304.
    [60] Tilve R. D., Alexander M. V., Khandekar, A. C., et al., Synthesis of 2,3-unsaturated glycopyranosides by Ferrier rearrangement in FeCl3 based ionic liquid, J. Mol. Cat. A: Chem., 2004, 223: 237–240.
    [61] Kolle P., Dronskowski R., Hydrogen bonding in the crystal structures of the ionic liquid compounds butyldimethylimidazolium hydrogen sulfate, chloride, and chloroferrate(II,III), Inorg. Chem., 2004, 43: 2803–2809.
    [62] Nguyen M. D., Nguyen L. V., Jeon E. H., et al., Fe-containing ionic liquids as catalysts for the dimerization of bicyclo[2.2.1]hepta-2,5-diene, J. Catal., 2008, 258: 5–13.
    [63] Bica K., Gaertner P., An iron-containing ionic liquid as recyclable catalyst for aryl grignard cross-coupling of alkyl halides, Org. Lett., 2006, 8: 733–735.
    [64] Bolkan S. A., Yoke J. T., Room-temperature fused salts based on copper(I) chloride-1-methyl -3-ethylimidazolium chloride mixtures. 2. Reactions with dioxygen, Inorg. Chem., 1986, 25: 3587–3590.
    [65] Bolkan S. A., Yoke J. T., Room temperature fused salts based on copper(I) chloride-1-methyl -3-ethylimidazolium chloride mixtures. 1. Physical properties, J. Chem. Eng. Data, 1986, 31: 194–197.
    [66] Sun H., Harms K., Sundermeyer J., The crystal structure of a metal-containing ionic liquid: A new octachlorotricuprate(II), Z. Kristallogr., 2005, 220: 42–44.
    [67] Sun G. H., Lia K. X., Sun C. G., Electrochemical performance of electrochemical capacitors using Cu(II)-containing ionic liquid as the electrolyte, Microporous Mesoporous Mater., 2010, 128: 56–61.
    [68] Lee C. K., Peng H. H., Lin I. J. B., Liquid crystals of N,N'-dialkylimidazolium salts comprising palladium(II) and copper(II) ions, Chem. Mater., 2004, 16: 530–536.
    [69] Huang J. F., Sun I. W., Non-anomalous electrodeposition of zinc-iron alloys in an acidic zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquids, J. Electrochem. Soc., 2004, 151: C8–C14.
    [70] Tang S., Mudring A. V., Two cyano-functionalized, cadmium-containing ionic liquids, Eur. J. Inorg. Chem., 2009, 2009: 1145–1148.
    [71] Hsiu S. I., Sun I. W., Electrodeposition behaviour of cadmium telluride from 1-ethyl-3- methylimidazolium chloride tetrafluoroborate ionic liquid, J. Appl. Electrochem., 2004, 34: 1057–1063.
    [72] Ji H. M., Zhu L. D., Liang D. D., et al., Use of a 12-molybdovanadate(V) modified ionic liquid carbon paste electrode as a bifunctional electrochemical sensor, Electrochim. Acta, 2009, 54: 7429–7434.
    [73] Matsumoto K., Tsuda T., Nohira T., et al., Tris(1-ethyl-3-methylimidazolium) hexachlorolanthanate, Acta Cryst. 2002, C58: m186–m187.
    [74] Nockemann P., Thijs B., Postelmans N., et al., Anionic rare-earth thiocyanate complexes as building blocks for low-melting metal-containing ionic liquids, J. Am. Chem. Soc., 2006, 128: 13658–13659.
    [75] Getsis A., Balke B., Felser C., et al., Dysprosium-based ionic liquid crystals: thermal, structural, photo- and magnetophysical properties, Cryst. Growth Des., 2009, 9: 4429–4437.
    [76] Brown R. J. C., Dyson P. J., Ellis D. J., et al., 1-butyl-3-methylimidazolium cobalt tetracarbonyl [bmim][Co(CO)4]: a catalytically active organometallic ionic liquid, Chem. Commun., 2001, 1862–1863.
    [77] Dyson P. J., Mcindoe J. S., Zhao D., Direct analysis of catalysts immobilised in ionic liquids using electrospray ionisation ion trap mass spectrometry, Chem. Commun., 2003, 508–509.
    [78] Keita B., Nadjo L., Electrocatalysis by electrodeposited heteropolyanions and isopolyanions, J. Electroanal. Chem., 1987, 227l: 265–270.
    [79] Dong S. J., Jin G., 1:12 phosphomolybdic anion modified glassy carbon electrode, Chem. Commun., 1987, 1871–1872.
    [80] Keita B., Bouaziz D., Nadjo L., Strategies for entrapping oxometalates iln polymeric matricesl example of polyaniline-s the matrix, J. Electroanal. Chem., 1988, 255: 307–313.
    [81] Agricole C. L. B., Mingitaud C., Gomez-Garcia C. J., Application of the langmuir-hlodgett technique to polyoxometalatest towards new msgnetic films, Angew. Chem. Int. Ed., 1997, 361: 1114–1116.
    [82] Agricole C. L. B., Mingitaud C., Gomez-Garcia C. J., et a1., Toward new organic superlattices Keggin polyoxometalates in langmuir-blodgett films, Langmuir, 1997, 131: 2340–2345.
    [83] Moriguchi I., Fendler J. F., Characterization and electrochromic properties of ultrathin films self-assembled from poly(diallyldimethylammonium) chloride and sodium decstungstate, Chem. Mater., 1998, 10: 2205–2211.
    [84] Ingersoll D., Kulesza P. J., Faulker L. R., Polyoxometallate-based layered composite films on electrodes, J. Electrochem. Soc., 1994, 141: 140–147.
    [85] Kulesza, P. J, Roslonek G., Faulkner L. R., Intercalation of metal complex cations in polyoxometallates formation of composite film with electrocatalytic center, J. Electroanal. Chem., 1990, 280: 233–240.
    [86] Sun C., Zhao J., Xu H., et a1., Fabrication of muhiplayer films containing 1:12 phosphomolybdaic anions on the surface of a gold electrode based on electrostatic interaction and its application as an electrochemical detector in now-injection amperometric detection of hydrogen peroxide, J. Electroanal. Chem., 1997, 435: 63–68.
    [87] Liu S. Q., Tang Z. Y., Wang E. K., et a1., Electrochemical preparation and characterization of silicotungstic heteropolyanion monolayer electrostatically linked aminophenyl on carbon electrode surface, Langmuir, 1999, 15: 7268–7275.
    [88] Liu J. Y., Cheng L., Dong S. J., et a1., Covalent modification of a glassy carbon surface by 4-aminobenzoic acid and its application in fabrication of a polyoxometalates-consisting monolayer and multiplayer films, Langmuir, 2000, 16: 7471–7476.
    [89] Song W., Liu Y., Lu N., et a1., Application of the sol-gel technique to polyoxometalates: towards a new chemically modified electrode, Electrochim. Acta, 2000, 45:1639–1644.
    [90] Kalcker K., Chemically modified carbon paste electrode in vohammetric analysis, Electroanalysis, 1990, 2: 419–433.
    [91] Wang X. L., Lin H. Y., Liu G. C., et al., Synthesis, structures, electrochemistry and electrocatalysis of two novel copper(II) complexes constructed with aromatic polycarboxylates and dipyrido[3,2-d:2',3'-f]quinoxaline, J. Organomet. Chem., 2008, 693: 2767–2774.
    [92] Wang X. L., Zhao H. Y., Lin H. Y., et al., Renewable new copper complex bulk-modified carbon paste electrode: preparation, electrochemistry, and electrocatalysis, Electroanalysis, 2008,20: 1055–1060.
    [93] Wang X. L., Lin H. Y., Bi Y. F., et al., An unprecedented extended architecture constructed from a 2-D interpenetrating cationic coordination framework templated by SiW12O404– anion, J. Solid State Chem., 2008, 181: 556–561.
    [94] Wang X. L., Chen B. K., Liu G. C., et al., Hydrothermal syntheses and structural characterization of two new supramolecular compounds: (H2bbi)2[Mo8O26] and (H2bbi)2 [SiW12O40]·2H2O [bbi=1,1'-(1,4-butanediyl)bis(imidazole)], Solid State Sciences, 2009, 11: 61–67.
    [95] Wang X. L., Kang Z. H., Wang E. B., et al., Inorganic–organic hybrid polyoxometalate nanoparticle modified wax impregnated graphite electrode: preparation, electrochemistry and electrocatalysis, J. Electroanal. Chem., 2002, 523: 142–149.
    [96] Wang X. L., Wang E. B., Lan Y., et al., Renewable PMo12-based inorganic-organic hybrid material bulk-modified carbon paste electrode: preparation, electrochemistry and electrocatalysis, Electroanalysis 2002, 14: 15–16.
    [97] Lin H. Y., Wang X. L., Hu H. L., et al., A novel copper(II) complex constructed with mixed ligands of biphenyl-4,4'-dicarboxylic acid (H2bpdc) and dipyrido[3,2-d:2',3'-f]quinoxaline (Dpq): synthesis, structure, electrochemistry and electrocatalysis, Solid State Sciences, 2009, 11: 643–650.
    [98] Wang X. L., Lin H. Y., Liu G. C., et al., New inorganic-organic hybrid compound containing one dimensional Keggin polyoxometalate [SiW11O39Co]6- chains: preparation, characterization and application in chemically bulk-modified electrode, Chem. Res. Chinese Universities, 2008, 24: 129–134.
    [99] Wu L. Z., Ma H. Y., Han Z. G., et al., Synthesis, structure and property of a new inorganiceorganic hybrid compound [Cu(phen)2][Cu(phen)H2O]2[Mo5P2O23]·3.5H2O, Solid State Sciences, 2009, 11: 43–48.
    [100] Li C. X., Cao R., O’Halloran K. P., et al., Preparation, characterization and bifunctional electrocatalysis of an inorganic-organic complex with a vanadium-substituted polyoxometalate, Electrochim. Acta, 2008, 54: 484–489.
    [101]王秀丽,康振辉,兰阳等,钼钒磷酸四乙胺纳米粒子本体修饰碳糊电极及其对过氧化氢的电催化还原,Chinese Journal of Analytical Chemistry,2003,31:941–944。
    [102] Nigam P., Mohan S., Kundu S., et al., Trace analysis of cefotaxime at carbon paste electrode modified with novel schiff base Zn(II) complex, Talanta, 2009, 77: 1426–1431.
    [103] Siswana M., Ozoemena K. I., Nyokong T., Electrocatalytic behaviour of carbon paste electrode modified with iron(II) phthalocyanine (FePc) nanoparticles towards the detection of amitrole, Talanta, 2006, 69: 1136–1142.
    [104] Shahrokhian S., Ghalkhania M., Aminic M. K., Application of carbon-paste electrodemodified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid, Sens. Actuators, B, 2009, 137: 669–675.
    [105] Shahrokhian S., Karimi M., Voltammetric studies of a cobalt(II)-4-methylsalophen modified carbon-paste electrode and its application for the simultaneous determination of cysteine and ascorbic acid, Electrochim. Acta, 2004, 50: 77–84.
    [106] Abbaspour A., Ghaffarinejad A., Electrocatalytic oxidation of L-cysteine with a stable copper-cobalt hexacyanoferrate electrochemically modified carbon paste electrode, Electrochim. Acta, 2008, 53: 6643–6650.
    [107] Suarez W. T., Marcolino Jr. L. H., Fatibello-Filho O., Voltammetric determination of N-acetylcysteine using a carbon paste electrode modified with copper(II) hexacyanoferrate(III), Microchem. J., 2006, 82: 163–167.
    [108] Abbaspour A., Kamyabi M. A., Electrocatalytic oxidation of hydrazine on a carbon paste electrode modified by hybrid hexacyanoferrates of copper and cobalt films, J. Electroanal. Chem., 2005, 576: 73–83.
    [109] Hamidi H., Shams E., Yadollahi B., et al., Fabrication of bulk-modified carbon paste electrode containingα-PW12O403? polyanion supported on modified silica gel: preparation, electrochemistry and electrocatalysis, Talanta, 2008, 74: 909–914.
    [110] Chen S. M., Bicatalyst electrocatalytic reduction and oxidation of nitrite by Fe(II) and Cu(II) complexes in the same solution, J. Electroanal. Chem. 1998, 457, 23–30.
    [111] Garjonyte R., Malinauskas A., Electrocatalytic reactions of hydrogen peroxide at carbon paste electrodes modified by some metal hexacyanoferrates, Sens. Actuators, B, 1998, 46: 236–241.
    [112] Li C. X., Zhang G. H., Shih H. H., et al., High-efficient phosphorescent iridium(III) complexes with benzimidazole ligand for organic light-emitting diodes: Synthesis, electrochemistry and electroluminescent properties, J. Organomet. Chem., 2009, 694: 2415–2420.
    [113] Arjmand F., Aziz M., Synthesis and characterization of dinuclear macrocyclic cobalt(II), copper(II) and zinc(II) complexes derived from 2,2,2',2'-S,S[bis(bis-N,N-2-thiobenzimidazolyl oxalato-1,2-ethane)]: DNA binding and cleavage studies, Eur. J. Med. Chem., 2009, 44: 834–844.
    [114] Galal S. A., Hegab K. H., Kassab A. S., et al., New transition metal ion complexes with benzimidazole-5-carboxylic acid hydrazides with antitumor activity, Eur. J. Med. Chem., 2009, 44: 1500–1508.
    [115] Baitalik S., Bag P., Nag K., Synthesis, spectroscopic properties and proton-coupled redox activities of mononuclear osmium(II) mixed-chelates derived from pyrazole-3,5-bis (benzimidazole) and 2,2'-bipyridine, Polyhedron, 2002, 21: 2481–2488.
    [116] Gupta M., Upadhyay S. K., Sridhar M. A., et al., Oxidative dealkylation of a hindered phenol catalyzed by copper (II) bis benzimidazole diamide complex, Inorg. Chim. Acta, 2006, 359: 4360–4366.
    [117] Sheldrick G. M., SHELXTL 6.10, Bruker AXS Inc., Madison, Wisconsin, USA, 2000.
    [118] Wilson A. J., International table for X-ray crystallography, V. C, Kluwer Academic Publishers, Dordrecht, 1992.
    [119] Sánchez-Guadarrama O., López-Sandoval H., Sánchez-Bartéz F., et al., Cytotoxic activity, X-ray crystal structures and spectroscopic characterization of cobalt(II), copper(II) and zinc(II) coordination compounds with 2-substituted benzimidazoles, J. Inorg. Biochem., 2009, 103: 1204–1213.
    [120] López-Sandoval H., Londo?o-Lemos M. E., Garza-Velasco R., et al., Synthesis, structure and biological activities of cobalt(II) and zinc(II) coordination compounds with 2-benzimidazole derivatives, J. Inorg. Biochem., 2008, 102: 1267–1276.
    [121] Wan C. Q., Chen X. D., Mak T. C. W., Supramolecular frameworks assembled via intermolecular lone pair-aromatic interaction between carbonyl and pyridyl groups, CrystEngComm, 2008, 475–478.
    [122] Zhou X. P., Zhang X., Lin S. H. et al., Anion-π-interaction-directed self-assembly of Ag(I) coordination networks, Cryst. Growth Des., 2007, 7: 485–487.
    [123] Sureshan K.M., Uchimaru T., Yao Y., et al., Strength from weakness: CH stabilized conformational tuning of benzyl ethers and a consequent co-operative edge-to-face CH network, CrystEngComm, 2008, 493–496.
    [124] Qui?onero D., Garau C., Rotger C., Anion-πinteractions: do they exist?, Angew. Chem. Int. Ed., 2002, 41: 3389–3392.
    [125] Comotti M., Pina C. D., Matarrese R., et al., The catalytic activity of naked gold particles, Angew. Chem. Int. Ed., 2004, 43: 5812–5815.
    [126] Fairchild R. M., Holman K. T., Selective anion encapsulation by a metalated cryptophane with aπ-acidic interior, J. Am. Chem. Soc., 2005, 127: 16364–16365.
    [127] Schottel B. L., Chifotides H. T., Shatruk M., et al., Anion-πinteractions as controlling elements in self-assembly reactions of Ag(I) complexes withπ-acidic aromatic rings, J. Am. Chem. Soc., 2006, 128: 5895–5912.
    [128] Xu G. C., Ding Y. J., Huang Y. Q., et al., Structure diversity and anion exchange property of zinc(II) coordination polymers with flexible tripodal ligand 1,3,5-tris(imidazol-1-ylmethyl) benzene, Microporous Mesoporous Mater., 2008, 113: 511–522.
    [129] García F. J. B., García A. B., Giles F. L., et al., Cobalt(II) and cadmium(II) metal complexesof a 2-aminobenzimidazole-thiazine derivative ligand. Synthesis, characterization and X-ray structure determinations, Polyhedron, 2005, 24: 1764–1772.
    [130] Shan Y. K., Cádiz M. E., Sánchez P. L., et al., Dichlorobis(1-methyl-1H- benzimidazole-N3) cobalt(II), Acta Cryst., 1999, C55: 1262–1263.
    [131] Cai C. X., Tian Y. Q., Li Y. Z., et al., The mononuclear cobalt(II) complex CoII(DMBDIZ)2(NCS)2, where DMBDIZ is 2,6-dimethylbenzo[1,2-d:4,5-d']diimidazole, Acta Cryst., 2002, C58: m459–m460.
    [132] Atria A. M., Vega A., Contreras M., et al., Magnetostructural characterization ofμ4-oxohexa -μ2-chlorotetrakis(imidazole)copper(II), Inorg. Chem., 1999, 38: 5681–5685.
    [133] Duncan P. C. M., Goodgame D. M. L., Hitchman M. A., et al., Structural and spectroscopic studies on 36-membered ring arrays formed by copper(II) halides with 1-(4-picolyl)pyrrolidin-2- one, J. Chem. Soc. Dalton Trans, 1996, 4245–4248.
    [134] Kelly P. F., Man S. M., Slawin A. M. Z., et al., Preparation of a range of copper complexes of diphenylsulfimide: X-ray crystal structures of [Cu(Ph2SNH)4]Cl2 and [Cu4(μ4-O)(μ-Cl)6 (Ph2SNH)4], Polyhedron, 1999, 18: 3173–3179.
    [135] Jones D. H., Sams J. R., Thompson R. C., An isotropic exchange model for the magnetic behavior of tetranuclear copper complexes of the type Cu4OX6L4, J. Chem. Phys., 1983, 79: 3877–3887.
    [136] Jian F. F., Zhao P. S., Wang H. X., et al., Hydrothermal synthesis, crystal structure and EPR property of tetranuclear copper(II) cluster [Cu4OCl6(C14H12N2)4], Bull. Korean Chem. Soc., 2004, 25: 673–675.
    [137] Lu J., Zhao K., Fang Q. R., et al., Synthesis and characterization of four novel supramolecular compounds based on metal zinc and cadmium, Cryst. Growth Des., 2005, 5: 1091–1098.
    [138]徐桂英,王凤平,唐丽娜,碳糊电极和化学修饰碳糊电极的制备及性能综述,化学研究,2008,19:108–112。
    [139]卢小泉,张焱,康敬万等,分析化学中的化学修饰碳糊电极,分析测试学报,2001,20:88–93。
    [140] Li Y. X., Lin X. Q., Jiang C. M., Fabrication of a nanobiocomposite film containing heme proteins and carbon nanotubes on a choline modified glassy carbon electrode: direct electrochemistry and electrochemical catalysis, Electroanalysis 2006, 18: 2085–2091.
    [141] Jiang X. E., Guo L. P., Du X. G., Electrochemistry and electrocatalysis of binuclear cobalt phthalocyaninehexasulfonate/surfactant film modified electrode, Talanta, 2003, 61: 247–256.
    [142] Salimi A., MamKhezri H., Hallaj R., et al., Modification of glassy carbon electrode withmulti-walled carbon nanotubes and iron(III)-porphyrin film: Application to chlorate, bromate and iodate detection, Electrochimica Acta, 2007, 52: 6097–6105.
    [143] Salimi A., Kavosi B., Babaei A., et al., Electrosorption of Os(III)-complex at single-wall carbon nanotubes immobilized on a glassy carbon electrode: application to nanomolar detection of bromate, periodate and iodate, Anal. Chim. Acta, 2008, 618: 43–53.
    [144] Salimi A., Alizadeh V., Hadadzadeh H., Renewable surface sol-gel derived carbon ceramic electrode modified with copper complex and its application as an amperometric sensor for bromate detection, Electroanalysis, 2004, 16: 1984–1991.
    [145] ?ljuki? B., Banks C. E., Crossley A., et al., Lead(IV) oxide–graphite composite electrodes: Application to sensing of ammonia, nitrite and phenols, Anal. Chim. Acta, 2007, 58: 240–246.
    [146] Salimi A., Mamkhezri H., Mohebbi S., Electroless deposition of vanadium-schiff base complex onto carbon nanotubes modified glassy carbon electrode: application to the low potential detection of iodate, periodate, bromate and nitrite, Electrochem. Commun., 2006, 8: 688–696.
    [147] Karyakin A. A., Puganova E. A., Budashov I. A., et al., Prussian blue based nanoelectrode arrays for H2O2 detection, Anal. Chem. 2004, 76: 474–478.
    [148] Wang B. Q., Dong S. J., Sol-gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in nafion film, Talanta, 2000, 51: 565–572.
    [149] Sun N. J., Guan L. H., Shi Z. J., et al., Ferrocene peapod modified electrodes: preparation, characterization, and mediation of H2O2, Anal. Chem. 2006, 78: 6050–6057.
    [150] Xu J., Su Z., Chen M. S., et al., New metal complexes with 5-(1H-imidazol-4-ylmethyl) aminoisophthalic acid: Syntheses, structures, electrochemistry and electrocatalysis, Inorg. Chim. Acta, 2009, 362: 4002–4008.
    [151] Salimi A., Noorbakhsh A., Mamkhezri H., et al., Electrocatalytic reduction of H2O2 and oxygen on the surface of thionin incorporated onto MWCNTs modified glassy carbon electrode: application to glucose detection, Electroanalysis 2007, 19: 1100–1108.
    [152] Liu Y., Shi L. H., Wang M. J., et al., A novel room temperature ionic liquid sol-gel matrix for amperometric biosensor application, Green Chem., 2005, 7: 655–658.
    [153] Zhang Y., Zheng J. B., Direct electrochemistry and electrocatalysis of cytochrome c based on chitosan-room temperature ionic liquid-carbon nanotubes composite, Electrochim. Acta, 2008, 54: 749–754.
    [154] Lu X. B., Zhang Q., Zhang L., Li J. H., A third-generation horseradish peroxidase biosensor based on biocompatible chitosan and room temperature ionic liquid, Electrochem. Commun. 2006, 8: 874–878.
    [155] Ding S. F., Wei W., Zhao G. C., Direct electrochemical response of cytochrome c on a roomtemperature ionic liquid, N-butylpyridinium tetrafluoroborate,modified electrode, Electrochem. Commun., 2007, 9: 2202–2206.
    [156] Zhang Y., Zheng J. B., Direct electrochemistry and electrocatalysis of myoglobin immobilized in hyaluronic acid and room temperature ionic liquids composite film, Electrochem. Commun. 2008, 10: 1400–1403.
    [157] Salimi A., Noorbakhash A., Karonian F. S., Amperometric detection of nitrite, iodate and periodate on glassy carbon electrode modified with thionin and multi-wall carbon nanotubes, Int. J. Electrochem. Sci., 2006, 1: 435–446.
    [158] Casella I. G., Gatta M., Electrochemical reduction of NO3- and NO2- on a composite copper thallium electrode in alkaline solutions, J. Electroanal. Chem., 2004, 568: 183–188.
    [159] Tang Q. Y., Luo X. X., Wen R. M., Construction of a heteropolyanion-containing polypyrrole/carbon nanotube modified electrode and its electrocatalytic property, Anal. Letters, 2005, 38: 1445–1456.
    [160] Huang X., Li Y. X., Chen Y. L., et al., Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode, Sens. Actuators, B, 2008, 134: 780–786.
    [161] Jiang L. Y., Wang R. X., Li X. M., et al., Electrochemical oxidation behavior of nitrite on a chitosan-carboxylated multiwall carbon nanotube modified electrode, Electrochem. Commun., 2005, 7: 597–601.
    [162] Zhang X. C., Liu B., A new 2D coordination polymer from 3-(1,2,4-triazolyl-4-yl)-1H-1,2,4 -triazole: hydrothermal synthesis, structure, and fluorescence, Inorg. Chem. Commun., 2009, 12: 808–810.
    [163] Phillips O. A., Udo E. E., Abdel-Hamid M. E., et al., Synthesis and antibacterial activity of novel 5-(4-methyl-1H-1,2,3-triazole) methyl oxazolidinones, Eur. J. Med. Chem., 2009, 44: 3217–3227.
    [164] Chen P. C., Patil V., Guerrant W., et al., Synthesis and structure-activity relationship of histone deacetylase (HDAC) inhibitors with triazole-linked cap group, Bioorg. Med. Chem., 2008, 16: 4839–4853.
    [165] Kim D. K., Kim J., Park H. J., Design, synthesis, and biological evaluation of novel 2- pyridinyl-[1,2,4]triazoles as inhibitors of transforming growth factorβ1 type 1 receptor, Bioorg. Med. Chem., 2004, 12: 2013–2020.
    [166] Zhai Q. G., Hu M. C., Wang Y., et al., Synthesis and characterizations of a novel dia-type Ag–BPT coordination polymer with tetranuclear motifs as jointing points (BPT=3,5-bis(3-pyridyl) -1,2,4-triazole), Inorg. Chem. Commun., 2009, 12: 286–289.
    [167] Klingele M. H., Brooker S., The coordination chemistry of 4-substituted 3,5-di(2-pyridyl) -4H-1,2,4-triazoles and related ligands, Coord. Chem. Rev., 2003, 241: 119–132.
    [168] Bakir M., Conry R. R., Green O., X-ray crystallographic, spectroscopic, and electrochemical properties of [HgCl2(κ2-N,N'-dpktch)](κ2-N,N'-dpktch=di-2-pyridyl ketone thiophene-2- carboxylic acid hydrazone), J. Mol. Struct., 2009, 921: 51–57.
    [169] Efthymiou C. G., Raptopoulou C. P. , Terzis A., et al., Constantina papatriantafyllopoulou, triangular Ni(II) complexes from the use of 2-pyridyl oximes, Polyhedron, 2010, 29: 627–633.
    [170] Gkioni C., Boudalis A. K., Sanakis Y., et al., 2-Pyridyl ketone oximes in iron(III) carboxylate chemistry: synthesis, structural and physical studies of tetranuclear clusters containing the [Fe4(μ3-O)2]8+‘butterfly’core, Polyhedron, 2009, 28: 3221–3226.
    [171] Papatriantafyllopoulou C., Kostakis G. E., Raptopoulou C. P., et al., Investigation of the MSO4·xH2O (M = Zn, x = 7; M = Cd, x = 8/3)/methyl 2-pyridyl ketone oxime reaction system: A novel Cd(II) coordination polymer versus mononuclear and dinuclear Zn(II) complexes, Inorg. Chim. Acta, 2009, 362: 2361–2370.
    [172] Roubeau O., Lecren L., Li Y. G., et al., Hexa- and nonanuclear manganese clusters based on the chelating ligand 2-pyridinealdoxime, Inorg. Chem. Commun., 2005, 8: 314–318.
    [173] Papatriantafyllopoulou C., Efthymiou C. G., Raptopoulou C. P., et al., Mononuclear versus dinuclear complex formation in nickel(II) sulfate/phenyl(2-pyridyl)ketone oxime chemistry depending on the ligand to metal reaction ratio: Synthetic, spectral and structural studies, Spectrochim. Acta, Part A, 2008, 70: 718–728.
    [174] Afrati T., Zaleski C. M., Dendrinou-Samara C., et al., Di-2-pyridyl ketone oxime in copper chemistry: di-, tri-, penta- and hexanuclear complexes, Dalton Trans., 2007, 2658–2668.
    [175] Stoumpos C. C., Stamatatos T. C., Psycharis V., et al., A new Mn4IIMn4III cluster from the use of methyl 2-pyridyl ketone oxime in manganese carboxylate chemistry: synthetic, structural and magnetic studies, Polyhedron, 2008, 27: 3703–3709.
    [176] Milios C. J., Stamatatos T. C., Kyritsis P., et al., Phenyl 2-pyridyl ketone and its oxime in manganese carboxylate chemistry: synthesis, characterisation, X-ray studies and magnetic properties of mononuclear, trinuclear and octanuclear complexes, Eur. J. Inorg. Chem. 2004, 2885–2901.
    [177] Milios C. J., Kyritsis P., Raptopoulou C. P., et al., Di-2-pyridyl ketone oxime [(py)2CNOH] in manganese carboxylate chemistry: mononuclear, dinuclear and tetranuclear complexes, and partial transformation of (py)2CNOH to the gem-diolate(2-)derivative of di-2-pyridyl ketone leading to the formation of NO3-, Dalton Trans., 2005, 501–511.
    [178] Landers A. E., Phillips D. J., Metal complexes of 2-acetylpyridine n-oxide oxime, InorgChim. Acta, 1982, 59: 41–47.
    [179] Weinberger P., Schamschule R., Mereiter K., et al., Halide-bridged tetranuclear copper(II) complexes: structural, vibrational and magnetic properties of (μ4-oxo)-hexakis(μ2-chloro)-tetrakis [(morpholine)-copper(II)], J. Mol. Struct., 1998, 446: 115–126.
    [180] Bertrand J. A., Kelly J. A., Five-coordinate complexes. II.1trigonal bipyramidal copper(II) in a metal atom cluster, J. Am. Chem. Soc. 1966, 88: 4746–4747.
    [181] N?ther C.,Wriedt M., JeβI., Dibromotetrakis(4-methylimidazole)copper(II), Acta Cryst., 2002, E58: m39–m40.
    [182] Huang Y. Q., Ding B., Gao H. L., et al., Syntheses, structures and characterization of novel cobalt(II) mono- and bi-triazole complexes, J. Mol. Struct., 2005, 743: 201–207.
    [183] Maslejova A., Uhrinova S., Mroziński J., et al., Study of the mutual influence of ligands in cobalt(II) complexes containing thiocyanate and imidazole derivatives, Inorg. Chim. Acta, 1997, 255: 343–349.
    [184] Chen D., Wang D. Z., Zhang J. B., Synthesis, structures of novel zinc and copper compounds based on pyridazino[3,2-c]1,2,4-triazole derivatives, J. Mol. Struct., 2009, 920: 342–349.
    [185] Milios C. J., Piligkos S., Bell A. R., et al., A rare mixed-valence state manganese(II/IV) tetranuclear cage formed using phenyl 2-pyridyl ketone oxime and azide as ligands, Inorg. Chem. Commun., 2006, 9: 638–641.
    [186] Zuo J., Dou J., Li D., et al., Dichlorido[1-(2-pyridyl)ethanone oximato][1-(2-pyridyl) ethanone oxime]manganese(III), 2007, Acta Cryst. E63: m3183–m3184.
    [187] Milios C. J, Raptopoulou C. P, Terzis A., et al., Di-2-pyridyl ketone oxime in 3d-metal carboxylate cluster chemistry: a new family of mixed-valence Mn2IIMn2III complexes, Inorg. Chem. Commun., 2003, 6: 1056–1060.
    [188] Lin I. J. B., Vasam C. S., Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety, J. Organomet. Chem., 2005, 690: 3498–3512.
    [189] Wei G. T., Yang Z., Chen C. J., Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions, Anal. Chim. Acta, 2003, 488: 183–192.
    [190] Zhao Z. K., Yuan B., Qiao W. H., et al., The metal ion modified ionic liquids promoted free-solvent alkylations ofα-methylnaphthalene with long-chain olefins, J. Mol. Catal. A: Chem., 2005, 235: 74–80.
    [191] Babai A., Mudring A. V., Rare-earth iodides in ionic liquids: Crystal structures of [bmpyr]4[LnI6][Tf2N] (Ln = La, Er), J. Alloys Compd., 2006, 418: 122–127.
    [192]卢泽湘,袁霞,吴剑等,咪唑类离子液体的合成和光谱表征,化学世界,2005,3:148–150。
    [193]石家华,孙逊,杨春和,离子液体研究进展,化学通报,2002,4:243–250。
    [194]李汝雄,绿色溶剂—离子液体的合成与应用,化学工业出版社,2004,25–78。
    [195] Hirao M., Sugimoto H., Ohno H., Preparation of novel room-temperature molten salts by neutralization of amines, J. Electrochem. Soc., 2000, 147: 4168–4172.
    [196] Tian L., Liu L., Chen L., et al., Fabrication of amorphous mixed-valent molybdenum oxide film electrodeposited on a glassy carbon electrode and its application as a electrochemistry sensor of iodate, Sens. Actuat. B, 2005, 105: 484–489.
    [197] Lee C. K., Hsu K. M., Tsai C. H. et al., Liquid crystals of silver complexes derived from simple 1-alkylimidazoles, Dalton Trans., 2004, 1120–1126.
    [198] Chiou J. Y. Z., Chen J. N., Lei J. S., et al., Ionic liquid crystals of imidazolium salts with a pendant hydroxyl group, J. Mater. Chem., 2006, 16: 2972–2977.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700