掺Yb~(3+)双包层光子晶体光纤激光器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺Yb3+光子晶体光纤激光器(PCFL)是较常规光纤激光器更优秀的光子源,它在诸多科技领域有着广阔的应用前景。本论文概述了双包层光子晶体光纤激光器的发展状况及发展前景。从光纤中Yb3+的激光能级结构和光谱特性、双包层PCF的基本结构、PCF激光器的基本结构和功率传输方程等方面讨论了掺Yb3+双包层PCFL的基本工作原理。依据速率方程理论,建立了掺Yb3+双包层光子晶体光纤激光器的理论模型,并利用Rounge-Kutta(龙格—库塔)算法编程,分别对未考虑Raman效应和考虑Raman效应两种情况下激光器的输出特性进行了数值模拟。未考虑Raman效应时,得出了PCFL光学腔内传输功率的分布情况、阈值泵浦功率、输出功率与PCF长度和输出镜反射率的关系以及泵浦功率与输出功率的关系;分析了考虑Raman效应时,PCF长度、纤芯横截面积、纤芯有效吸收系数及泵浦方式对双包层PCFL输出特性的影响,找到了减小Raman效应提高激光输出功率的途径。对掺Yb3+双包层PCFL的功率特性和光谱特性进行了实验研究。采用单端输出方式时,得到的最大激光功率为3.63W,光—光转换效率为30.0%,斜效率为35.1%,输出光谱呈现多波长的特性;采用前后向双端输出时,获得的最大输出功率为4.245W,光—光转换效率为35.1%,斜效率为44.1%,获得了单个波长输出,峰值位于1067.560nm左右。利用闪耀光栅对掺Yb3+双包层PCFL进行了外腔调谐,在近76.3nm (1035.425-1111.770nm)波长范围内实现了连续调谐激光输出;另外,对外腔调谐PCFL的偏振度进行了测量,发现不同泵浦功率下的激光偏振度均大于0.87。
Yb3+-doped photonic crystal fiber lasers (PCFLs) are more excellent photon sources than conventional fiber lasers, and they have very wide promising applications in a good many technological fields. The developments and the prospects of double-clad PCFLs are reviewed in this paper. The principle of Yb3+ doped double-clad PCFLs are discussed in many aspects, such as the specific laser energy structure and spectrum characteristics of Yb3+doped in fibers, the basic structure of double-clad photonic crystal fiber and PCFL, and the power transmission equations. The theoretical models of Yb3+-doped double-clad PCFLs are developed based on rate equations, and the characteristics of Yb3+-doped double-clad PCFLs, considering Raman Effect and without Raman Effect, are numerically studied using a standard Rounge-Kutta method with MATLAB. Without considering Raman effect, the relationship between the parameters and the output characteristics of the fiber laser are investigated, which conclude the distribution of transmission power in the laser's cavity, threshold pump power, the relation between output power and photonic crystal fiber length, the relation between output power and mirror reflectivity, and the relation between pump power and output power. Considering Raman Effect, the influences of photonic crystal fiber length, cross section of the fiber core, effective absorption coefficient of fiber core and pumping mode on the output characteristics of double-clad PCFLs are given, and the method of reducing Raman Effect to advance output power is found. The experimental study on the output power and spectra of Yb3+-doped double-clad PCFLs has been made. In the single end output manner, the maximum output is 3.63W, light-light efficiency is 30.0%, slope efficiency is 35.1%, and the output spectrum shows itself multi-wavelength. In the double ends output manner, the maximum output is 4.245W, the light-light efficiency is 35.1%, the slope efficiency is 44.1%, and single wavelength with a peak value at about 1067.560nm is obtained. Wavelength tunable output with a range up to 76.3nm(1035.425~1111.770nm) is realized in a Yb3+-doped double-clad PCFL based on an external cavity of Littrow configuration. In addition, the output polarization of the tunable Yb3+-doped double-clad PCFL is also studied, and the measured polarizations with different pumping power are all more than 0.87.
引文
[1]关铁梁.光子晶体光纤[J].激光与光电子学进展2002,39(10):41-48.
    [2]Birks T A,Mogilevtsev D,Knight J C,et al..Dispersion compensation using single-material fibers [J].IEEE Photonics Technology Letters,1999,11:674-676.
    [3]Stig Barkou Liborijes Broeng.Erik Knudsen,et al..High-birefringent photonic crystal fibers [A]. OFC 2001[C].2001.
    [4]H. Lim, F.O. Ilday, F. W. Wisel. Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control [J]. Opt. Express,2002, 10(25):1497-1502.
    [5]E.Snitzer. Optical maser action of Nd3+ in a Barium crown glass [J].Phys. Lett.,1961,7 (12):444-449.
    [6]Y. Jeong, J. K. Sahu, D. N. Payne, et al.. Ytterbium-doped large-core fiber laser with 1.36kW continuous-wave output power [J]. Opt. Express,2004,12:6088-6092.
    [7]Y. Jeong, J. K. Sahu, D. N. Payne, et al.. Ytterbium-doped large-core fiber laser with 1 kW of continuous-wave output power, Electron. Lett.2004,40:470-471.
    [8]I.Kelson,A.A.Hardy. Strongly pumped fiber lasers [J].IEEE J.Quantum Electron.1998,34(9):1570-1577.
    [9]闫培光,阮双琛,吕可诚.折射率引导型光子晶体光纤[J].激光与光电子学进展,2002,39(12):41-45.
    [10]武自录,陈国夫,王贤华等.掺Yb3+双包层光纤激光器的数值分析[J].光子学报,2002,31(3):332-336.
    [11]黄琳,刘永智,代志勇,大功率双包层光纤激光器[J].光电子技术,2005,25(2):133-137.
    [12]岳从建,琚爱堂,大功率光纤激光器的研究发展[J].运城学院学报,2004,22(5):12-13.
    [13]王彦,崔一平,光纤激光器技术[J]电子器件2004,27(2):342-347.
    [14]肖瑞,侯静,姜宗富,光纤激光器的相干合成技术[J].激光技术,2005,29(5):516-518.
    [15]C.Kerbage, B.J.Eggleton. Manipulating light by microfluidic motion in microstructured optical fibers[J]. Opt.Fiber Technol.,2004,10(2):133-149.
    [16]W.J.Wadsworth, Knight, J.C. Reeves et al.. Yb3+doped photonic crystal fiber laser [J]. Electron Lett., 2000,36(17):1452-1454.
    [17]W.J.Wadsworth, Knight, J.C. Russell et al.. Large mode area photonic crystal fiber laser, Conference on Lasers and Electro-Optics,2001,319.
    [18]K.Furusawa, Monro, T.M. Petropoulos et al.. Mode-locked laser based on ytterbium doped holey fiber [J]. Electronics Letters,2001,37(9):560-561.
    [19]W.J.Wadsworth, R. Percival, G. Bouwmans, et al.. High power air-clad photonic crystal fiber laser [J].Optics Express,2003,11(1):48-53.
    [20]J. Limpert, T. Schreiber, S. Nolte, et al.. High-power air-clad large-mode-area photonic crystal fiber laser [J]. Optics Express,2003,11(7):818-823.
    [21]J. Limpert. Air-clad large-mode-area holey-fiber laser yields high power [J]. Laser Focus World,2003, 39(7):13-13.
    [22]Abedin, K.S.Kubota, F.Commun. Actively mode-locked fiber laser employing a highly nonlinear photonic crystal fiber for intracavity nonlinear pulse compression, Optical Fiber Communication Conference,2004. OFC 2004,2:3.
    [23]J. Limpert, N. Deguil-Robin, I. Manek-Honninger,et al.. High-power rod-type photonic crystal fiber laser[J]. Opt. Express,2005,13:1055-1058.
    [24]J. Limpert, N. Deguil-Robin, S. Petit, et al.. High power Q-switched Yb3+-doped photonic crystal fiber laser producing sub-10 ns pulses.[J]. Applied Physics B:Lasers and Optics,2005,81(1):19-21.
    [25]L.J.Cooper, P.Wang, R. B. Williams, et al.. High-power Yb3+-doped multicore ribbon fiber laser [J]. Opt Lett.,2005,30(21):2906-2908.
    [26]J. Limpert, O. Schmidt, J. Rothhardt, et al.. Extended single-mode photonic crystal fiber lasers [J]. Opt. Express,2006,14,:2715-2720.
    [27]M. Laroche, H. Gilles, et al., Nanosecond pulse generation in a passively Q-switched Yb3+-doped fiber laser by Cr/sup 4+/:YAG saturable absorber [J]. Photonics Technology Letters, IEEE,2006,18 (6):764-766.
    [28]阮双琛,杨冰,朱春艳等.2.2W掺Yb3+双包层光子晶体光纤激光器[J].光子学报,2004,33(1):15-16.
    [29]阮双琛,杨冰,朱春艳.3.4W光子晶体光纤激光器的研究[J].光子学报,2004,33(1):89.
    [30]阮双琛,杜晨林,杨冰等.15W光子晶体光纤激光器的研究[J].光子学报,2004,33(10):1156-1157.
    [31]K. Li, Y. Wang, W. Zhao, et al., High-power double-clad large-mode-area photonic crystal fiber laser [J]. Chin. Opt. Lett.,3:457-45.
    [32]D.C.Hanna, R.M.Percival, I.R.Ferry, et al.. An ytterbium-doped monomode fiber laser:broadly tunable operation from 1.010μm to 1.162μm and three-level operation at 974nm, Journal of Modern Optics,1990,37(4):517-525.
    [33]R.Paschotta, J.Nilsson, A.C.Tropper, et al.. Ytterbium-doped fiber amplifiers, Journal of Quantum Electronics,1997,33(7):1049-1056.
    [34]付成鹏,李乙钢,刘伟伟等.双包层光纤激光器的研制,中国科技期刊文摘(科技快报),2000,6(12):1503-1504.
    [35]宁鼎,王文涛,阮灵等.掺Yb3+双包层石英光纤的研制及其激光特性,中国激光,2000,A27(11):987-991.
    [36]G.A.Ball, W.H.Glenn. Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors, J. of Lightwave Technology,1992,10(10):1338-1343.
    [37]D.B.Mortimore. Fiber loop reflectors, J.Lightwave Technol.,1988,6(7):1217-1224.
    [38]A.Hideur, T.Charier, C.Ozkul. All-fiber tunable yetterbium-doped double-clad fiber ring laser, Optics Letters,2001,26(14):1054-1056.
    [39]M.Nakazawa, K.Suzuki, H.Kubato, et al.. Self-Q-swithing and mode locking in a 1.53μm fiber ring laser with saturable absorption in erbium-doped fiber at 4.2K, Optics letters,1993,18(8):613-615.
    [40]V.Dominic, S.MacCormack, R.Waarts, et al.. 110W fiber laser, Electron. Lett.,1999,35(14): 1158-1160.
    [41]Th.Weber, W.Luthy, H.P.Weber, et al.. A longitudinal and side-pumped single transverse mode double-clad fiber laser with a special silicone coating, Optics Communications,1995,115:99-104.
    [42]V.Gapontsev, W.Krupke. Fiber lasers grow in power, Laser focus world,2002,38(8):83-87.
    [43]P.K.Jefrrey,WM.Sean et al.. A New Method for Side Pumping of Double-Clad Fiber Sources, IEEE Journal of Quantum Electronics,2003,39(4):529-539.
    [44]D.C.Hanna, R.M.Percival, I.R.Perry et al.. An ytterbium-doped monomode fiber laser:broadly tunable operation from 1.010μm to 1.162μm and three-level operation at 974nm, Journal of Modern Optics, 1990,37(4):517-525.
    [45]陈柏,陈兰荣,范薇等.掺Yb3+双包层光纤激光器波长调谐输出,光子学报,1999,28(9):835-837.
    [46]J.K.Sahu, C.C.Renaud, K.Furusawa et al.. Jacketed air-clad cladding pumped ytterbium-doped fiber laser with wide tuning range, Electronics Letters 2001,37(18):1116-1117.
    [47]Ammar Hideur, Thierry Chartier, Cafer Ozkul. All-fiber tunable ytterbium-doped double-clad fiber ring laser, Optics Letters 2001,26(14):1054-1056.
    [48]M.Auerbach, D.Wandt, C.Fallnich et al.. High-power tunable narrow line width ytterbium-doped double-clad fiber laser, Optics Communication,2001,195:437-441.
    [49]郭曙光.南开大学博士研究生学位论文,紧凑光子源研究,2001:10-50.
    [50]Michael GLittman. Single-mode operation of grazing-incidence pulsed dye laser, Optics Letters,1978, 3(4):138-140.
    [51]I. Shoshan, U.P. Oppenheim. The use of a diffraction grating as a beam expander in a dye laser cavity. Optics Communication,1978,25(3):375-378.
    [52]D.Wandt, M.Laschek, A.Tunnermann et al.. Continuously tunable external-cavity diode laser with a double-grating arrangement, Optics Letters,1997,22(6):390-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700