表面活性剂聚集体的性质及作药物载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂分子可以形成多种缔合结构,溶致液晶和微乳液是近年来应用较为广泛两种表面活性剂分子聚集体。溶致液晶具有相态丰富、结构可调控等特殊的优点,因而在食品、药品、材料合成、家具产品等领域受到越来越多的关注;微乳液是由表面活性剂、油、助表面活性剂和水形成的各向同性,外观透明或半透明的热力学稳定体系。微乳液具有粒径小、透皮能力强、良好的增溶性和靶向性,因而被广泛应用于制药工程、纳米材料的制备、农药喷洒、燃料、化妆品及三次采油等领域。本论文从扩展溶致液晶和微乳液在药物载体方面应用角度出发,首先,选取了几种低毒性的非离子表面活性剂和大分子嵌段共聚物,并研究了这几类表面活性剂以及其复配体系的溶血性,在此基础上分别绘制了三个溶致液晶体系和三个微乳液体系的拟三元相图。其次,利用偏光显微镜和流变学方法等手段考察了C_(12)APG/油酸/0.9%生理盐水体系、C_(12)APG/油酸/水体系以及C_(12)APG/0.9%生理盐水/香叶醇体系三个溶致液晶体系溶致液晶的形成、动态流变性质、稳态流变性质以及体系的相态展开研究,得到创新性结果;利用电导率法和循环伏安法等手段考察了Tween80/异丙醇/丁酸乙酯/生理盐水体系和Tween80/EPE/异丙醇/丁酸乙酯/生理盐水体系以及Tween80/C_(12)APG/异丙醇/丁酸乙酯/生理盐水体系的相行为及其相结构转变。进一步研究了以上体系作为药物载体在药物控释方面的应用。以上工作在表面活性剂的实际应用和基础理论方面具有重要的参考价值和指导意义。论文包括如下五章内容:
     1.表面活性剂聚集体溶致液晶和微乳液的性质
     本章中系统的阐述了溶致液晶(立方状、六角状和层状)和微乳液(油包水型、双连续型和水包油型)的性质和应用以及表面活性剂的复配。烷基糖苷类和聚氧乙烯类表面活性剂已成为药物传输系统的重要成分,但是以药物载体为目标的烷基糖苷类溶致液晶和聚氧乙烯类微乳液的报道相对较少,因此在论文的三、四章我们展开了对烷基糖苷类溶致液晶和聚氧乙烯类微乳液的相态及性质的研究。
     2.表面活性剂溶血作用以及低溶血表面活性剂体系的探索
     本章首先介绍了各类表面活性剂的溶血作用,介绍了具体的溶血试验和溶血机理以及抗溶血和降溶血,然后通过具体的实验以新鲜的兔血为对象研究了烷基糖苷类和聚氧乙烯类表面活性剂及其复配体系的溶血作用。实验结果表明:1、相同浓度下吐温80和大分子嵌段共聚物都使烷基糖苷的溶血性数值降低,但从总的溶血趋势看,吐温使烷基糖苷的溶血作用趋于平和而大分子嵌段共聚物使烷基糖苷的溶血趋势更加明显;2、当吐温和大分子嵌段共聚物同时作用于烷基糖苷时,吐温对烷基糖苷的影响起主导作用;3、C_(12)APG、EPE(Al-4)以及吐温80在低浓度下溶血活性都相对较低,并且都属于非离子类型的表面活性剂,因此可以考虑将C_(12)APG、EPE(Al-4)以及吐温80或者其复配体系应用于制药工业。
     3.非离子表面活性剂烷基糖苷体系的液晶相行为及流变性质
     本章以香叶醇油酸为药物辅料,开展了对C_(12)APG/油酸/0.9%生理盐水体系、C_(12)APG/油酸/水体系以及C_(12)APG/0.9%生理盐水/香叶醇体系三个溶致液晶体系相态和流变性质的研究。
     首先在37℃绘制了C_(12)APG/油酸/0.9%生理盐水体系、C_(12)APG/油酸/水体系以及C_(12)APG /0.9%生理盐水/香叶醇体系三个溶致液晶体系拟三元相图,然后通过流变技术和偏光显微镜对三个体系展开了流变性质的研究。研究表明三个体系所形成的溶致液晶都为层状液晶。
     4.非离子表面活性剂Tween80体系的微乳相行为及其相结构
     本章以丁酸乙酯为油相以异丙醇为助表面活性剂,开展了对Tween80/异丙醇/丁酸乙酯/生理盐水体系和Tween80/EPE/异丙醇/丁酸乙酯/生理盐水体系以及Tween80/C_(12)APG/异丙醇/丁酸乙酯/生理盐水体系三个微乳液体系相行为及其相结构转变的研究。
     首先在37℃绘制了Tween80/异丙醇/丁酸乙酯/生理盐水体系和Tween80/EPE/异丙醇/丁酸乙酯/生理盐水体系以及Tween80/C_(12)APG/异丙醇/丁酸乙酯/生理盐水体系三个拟三元相图,然后通过电导率法和循环伏安法对其相结构转变进行了研究。研究表明:微乳结构在较低盐水浓度下形成油包水型微乳,在中等盐水浓度转变为双连续型结构,在高盐水浓度连续转变为水包油型结构。
     5.姜黄素在烷基糖苷液晶体系以及Tween80微乳体系中的释放行为
     溶致液晶和微乳液体系具有热力学稳定,生物可降解性,类似于生物膜,包封和缓释药物并且能够保护被包封的药物等优点,因此,它们作为药物载体的研究引起越来越多的人们的大关注。本章中我们分别用三种溶致液晶和三种微乳液作为药物载体,以姜黄素作为被载药物进行了药物载体方面的研究。研究表明:六种体系都对姜黄素产生了不同程度的缓释。
Surfactant molecules can form a variety of associative structure, lyotropic liquid crystalline phase (LLC) and microemulsions are widely used in recent years. As the abundant of structures, LLC is studied widely and applied in several fields, such as synthesis, houseproduction, foods, pharmaceutics, and so on. Microemulsions are clear, thermodynamically stable, isotropic mixtures of oil, water and surfactant, frequently in combination with a cosurfactant. Microemulsions which have small particle size, penetration ability, good solubilization and targeting, are widely used in pharmaceutical engineering, nano-materials preparation, pesticide spraying, fuel, cosmetics and enhanced oil recovery and other fields. In order to expand the application of LLC and microemulsions as the drug delivery system, we select several non-ionic surfactants and block copolymer molecules which have low toxicity, and then studied the hemolytic of these types of surfactants and their compounded system. On this basis, the pseudo-ternary phase diagram of the three lyotropic liquid crystalline systerms and the three microemulsions systerms was drawn based on experimental data. In order to study the steady and dynamic rheological properties of lyotropic crystalline phases, the three lyotropic liquid crystalline phase systerms of C12APG/oleic acid/physiological saline, C12APG/oleic acid/water and C12APG/physiological saline/gernaniol have been observed, with the aid of polarizing optical microscopy and rheological techniques. The structural transformation of the Tween80/isopropanol/ethyl butyrate/physiological saline system, Tween80/EPE/isopropanol/ethyl butyrate/physiological saline system and the Tween80/C12APG/isopropanol/ethyl butyrate/physiological saline system were studied by cyclic voltammetric and conductivity measurements. Furthermore, application in drug carrier study of these systerms has been investigation. All these results will enrich the surfactant researches both theoretically and practically. In details, the thesis includes five chapters as following:
     1. Properties of lyotropic liquid crystalline and microemulsions.
     The properties and applications of lyotropic liquid crystals, lamellar, hexagonal and cubic phases are summarized. The structure and applications of microemulsion were also overviewed. Significance and various types of mixed surfactants systems were introduced Study on lyotropic liquid crystals and microemulsions of alkypolyglucosides and polyoxyethylene surfactants for drug delivery system purpose is rather limited. Therefore, the main properties of lyotropic liquid crystals and microemulsions systems have been studied in the third, fourth parts of the thesis.
     2. Hemolytic Action of Surfactants and the exploration of low-hemolytic systerms.
     In this chapter we first introduce the hemolytic action of various surfactants and the hemolysis test, the mechanism of hemolysis, the resistance to hemolysis and the descending to hemolysis. We studied the hemolytic action of alkypolyglucosides and polyoxyethylene surfactants using fresh rabbit blood. The results show: First, at the same concentration, both Tween80 and EPE can reduce the hemolytic action of APG, but from the general trend, Tween80 makes the hemolytic action to be calm, and EPE makes the hemolytic action to be clear. Second, when Tween80 and EPE were coexist, Tween80 plays a leading role. Tween80, EPE and APG are all nonionic surfactant, at low concentration, they all play low hemolysis activity, so we can consider to use them in pharmaceutical industry.
     3. Phase behavior and rheological properties of liquid crystalline phases formed in nonionic surfactant APG systems.
     In this chapter the Phase behavior and rheological properties of the three lyotropic liquid crystalline phase systerms of C12APG/oleic acid/physiological saline, C12APG/oleic acid/water and C12APG/physiological saline/gernaniol have been observed using oleic acid and gernaniol as accessories. The pseudo-ternary phase diagrams of C12APG/oleic acid/physiological saline, C12APG/oleic acid/water and C12APG/physiological saline/gernaniol systerms were drawn at 37oC, and then they were studied by the aid of polarizing optical microscopy and rheological techniques. The results show that the three lyotropic liquid crystallines were all lamellar.
     4. Phase behavior and the structural transformation of microemulsions in nonionic surfactant Tween80 systems.
     In this chapter the Phase behavior and the structural transformation of the three microemulsions of Tween80/isopropanol/ethyl butyrate/physiological saline system, Tween80/EPE/isopropanol/ethyl butyrate/physiological saline system and the Tween80/C12APG/isopropanol/ethyl butyrate/physiological saline system have been observed. The pseudo-ternary phase diagrams of Tween80/isopropanol/ethyl butyrate/physiological saline system, Tween80/EPE/isopropanol/ethyl butyrate/physiological saline system and the Tween80/C12APG/isopropanol/ethyl butyrate/physiological saline system were drawn at 37oC, then the structural transformation of them were studied by cyclic voltammetric and conductivity measurements. The results show that the structural transition from a water-in-oil microemulsion at low brine content to a bicontinuous structure at intermediate brine content and a structure of oil-in-water at high brine content happened completely continuously.
     5. The release kinetics of curcumin in APG lyotropic liquid crystals and Tween80 microemulsions.
     Both lyotropic liquid crystals and microemulsions have many characteristics: thermodynamic stability, similarity to bio-membrane, embedding and long-time releasing drugs, protecting the drugs in it and so on. so they have attracted increasing interests as drug carrier. The studies on lyotropic liquid crystals and microemulsions as drug delivery systems are involved in this chapter. The results show that both the lyotropic liquid crystals and microemulsions as carriers produced sustained release to curcumin.
引文
[1]李彦,张庆敏,黄福志,顾镇南.表面活性剂溶致液晶体系研究进展[J].大学化学,2000:15(1):5-9.
    [2]苑世领,蔡政亭,徐桂英.表面活性剂在溶液中聚集形态的动力学模拟[J].化学学报,2002:60(20):241-245.
    [3] M. Melinda, C. Erzsebet, D Imre, N. Zsolt, E. Istvan. Structural properties of nonionic surfactant/glycerol/paraffin lyotropic liquid crystals[J]. Colloid Polymer Sci, 2003, 281: 839-844.
    [4] X. L. Wei, S. Z. Fu, B. L. Yin, Q. Sang, D. Z. Sun, J. L. Dou, Z. N. Wang, L. S. Chen. Phase behaviors of Gemini cationic surfactants/n-butanol/water systems[J]. Fluid Phase Equilibria, 2010, 287: 146-150.
    [5] Montalvo G, Valiente M, Rodenas E. Rheological properties of the L phase and the Hexagonal, Lamellar and Cubic liquid crystals of the CTAB/Benzyl Alcohol/Water system[J]. Langmuir, 1996, 12: 5202-5208.
    [6]冯尚华,王红霞,张高勇,谢新玲.表面活性剂溶致液晶的流变学性质[J].化学进展, 2004, 16(5): 687-694.
    [7] Hoffmann H, Yhunig C, Schmiedel P, Munkert U. Surfactant systems with charged multilamellar vesicles and their rheological properties[J]. Langmuir, 1994, 10: 3972-3981.
    [8] Nakamura N, Tagawa T, Kihara K, Tobita I, Kunieda H. Phase transition between microemulsion and lamellar liquid crystal[J]. Langmuir, 1997, 13: 2001-2006.
    [9] Savic S, Lukic M, Jaksic I, Reichl S, Tamburic S, Goymann C M. An alkyl polyglucoside -mixed emulsifier as stabilizer of emulsion systems: The influence of colloidal structure on emulsions skin hydration potential[J]. Journal of Colloid and Interface Science, Accepted Date: 18 February 2011, Accepted Manuscript.
    [10] Wang Z, Diao Z, Liu F, Li G, Zhang G. Microstructure and rheological properties of liquid crystallines formed in Brij97/Water/IPM /System [J]. Colloid Interface Sci, 2006, 297: 813-818.
    [11] Wang Z, Zhou W. Lamellar liquid crystals of Brij97 aqueous solutions containing different additives[J]. Solution Chem, 2009, 38: 659-668.
    [12] Mishraki T, Libster D, Aserin A, Garti N. Lysozyme entrapped within reverse hexagonal mesophases: Physical properties and structural behavior[J]. Colloids and Surfaces B: Biointerfaces, 2010, 75: 47-56.
    [13] Mishraki T, Libster D, Aserin A, Garti N. Temperature-dependent behavior of lysozyme within the reverse hexagonal mesophases (HII)[J]. Colloids and Surfaces B: Biointerfaces, 2010, 75: 391-397.
    [14] Libster D, Aserin A, Garti N. Interactions of biomacromolecules with reverse hexagonal liquid crystals: Drug delivery and crystallization applications[J]. Journal of Colloid and Interface Science, 2011, 356: 375-386.
    [15] Siddig M A, Radiman S, Jan L S, Muniandy S V. Rheological behaviours of the hexagonal and lamellar phases of glucopone (APG) surfactant[J]. Colloids Surf A, 2006, 276: 15-21.
    [16] Matsumoto Y, Alam M M, Aramaki K. Phase behavior, formation, and rheology of cubic and hexagonal phase based gel emulsions in water/tetraglyceryl lauryl ether/oil systems[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 341: 27-32.
    [17] D’Errico G, Paduano L, Ortona O, Mangiapia G, Coppola L, Celso F L. Temperature and concentration effects on supramolecular aggregation and phase behavior for poly(propylene oxide)-b-poly(ethylene oxide)-b-poly(propylene oxide) copolymers of different concentration in aqueous mixtures, 2[J]. Journal of Colloid and Interface Science, Accepted Date: 26 February 2011.
    [18] Alam M M, Aramaki K. Effect of molecular weight of triglycerides on the formation and rheological behavior of cubic and hexagonal phase based gel emulsions[J]. Journal of Colloid and Interface Science, 2009, 336: 329–334.
    [19] Alam M M, Sugiyama Y, Watanabe K, Aramaki K. Phase behavior and rheology of oil-swollen micellar cubic phase and gel emulsions in nonionic surfactant systems[J]. Journal of Colloid and Interface Science, 2010, 341: 267-272.
    [20] Wang Z N, Liu F, Gao Y N, Zhuang W C, Xu L M, Han B X, Li G Z, Zhang G Y. Hexagonal liquid crystalline phases formed in ternary systems of Brij97/water/ionic liquids[J]. Langmuir, 2005, 21: 4931-4937.
    [21] Lindma B, Danielson L, The definition of microemulsion [J]. Colloids and Surfaces 1981, 3: 391-392.
    [22] Hoar T P, Schulman J H, Transparent water in oil dispersions oleophatics hydromicelle[J]. Nature, 1943, 152 :102.
    [23]王延平,孙新波,赵德智.微乳液的结构及应用进展[J].辽宁化工, 2004, 33(2): 96-98.
    [24]Hoho H C, Sheu M T, Preparation of microemulsions using polyglycerin fatty acid ester sd surfactant for the delivery of protein drug[J]. J Pharm Sci, 1996, 85(2): 138-143.
    [25]Schechter R S , Bourrel M, Microemulsions and Related Systems[M]. New York: Marcel Dekker.1998: 160 - 185.
    [26] Prince L M , Microemulsion,Theory and Practice[M], New York: Academic Press, 1977.
    [27] Bowcott J E , and Schulman J H, EmUlsions-control of droplet size and phase continuity in transparent oil-water dispersions stabilized with soap and alcohol[J]. Z. Elektrochem., 1955, 59: 283 - 290.
    [28]Robbins M L, Micellization Solubilization and Microemulsion[M]. New York: Plenum Press. 1977.
    [29] Mitchell D J, Ninham B W, Curvature elasticity of charged membranes[J]. Langmuir, 1989, 5(4): 1121-1123.
    [30]俞鹏勇,王树华,詹晓力,等,氨基硅油柔软剂微乳液的制备及其稳定机理模型,化学通报[J].2002,65(9):w68.
    [31] Bourrel M and Schechter R S, in "Microemulsion and Related systems: Fomulation, Solvency and Physical ProPerties", Chapter l, Surfaetant Seienee Series Vol. 30, Marcel Dekker, Inc., New York and Base. 1988, 1.
    [32]王仲妮,李干佐,张高勇.表面活性剂缔合结构作为药物载体的研究进展-微乳液、囊泡体系[J].自然科学进展, 2004, 14 (11): 1209-1214.
    [33] Bruno F B S, Eduardo F M, Olsson U, et al., Size, Shape, and Charge of Salt-Free Catanionic Microemulsion Droplets:A Small-Angle Neutron Scattering and Modeling Study [J]. J.Phys.Chem.B, 2009, 113: 10230 - 10239.
    [34] Debdurlav N, Mitra K R, Paul B K, Phase behavior of the mixtures of poly (oxyethylene) (10) stearyl ether (Brij-76), 1-butanol, isooctane, and mixed polar solvents II. Water and ethylene glycol (EG) or tetraethylene glycol (TEG) [J]. J.Colloid Interface Sci., 2007, 310: 229-239.
    [35] Najjar R, Stubenrauch C, Phase diagrams of microemulsions containing reducing agents and metal salts as bases for the synthesis of metallic nanoparticles[J]. J.Colloid Interface Sci., 2009, 331:214-220.
    [36] Wilk A K, Katarzyna Z, Agnieszka H D, et al., Biocompatible microemulsions of dicephalic aldonamide-type surfactants:Formulation, structure and temperature influence[J]. J.Colloid Interface Sci., 2009, 334 :87-95.
    [37] Chai J L, Li G Z, Zhang G Y, et al., Middle-phase microemulsions of green surfactant alkyl polyglucosides[J]. Science in China(Series B), 2003, 46(1):25-34.
    [38] Kunieda H, Shinoda K, Solution behavior and hydrophile-lipophile balance temperature in the aerosol OT-isooctane-brine system:correlation between microemulsions and ultralow interfacial tensions[J]. J.Colloid Interface Sci.1980, 75: 601-606.
    [39] Penders M H G M, Strey R, Phase behavior of the quaternary system H2O/n-octane /C8E5 / n-octanol: role of the alcohol in microemulsions[J]. J.Phys.Chem.1995, 99:10313-10318.
    [40] Yamaguchi S, Kunieda H, Determination of a Three-Phase Tie Triangle (the Hydrophile-Lipophile Balance Plane) in a Composition Tetrahedron: Evaluation of the Composition of Adsorbed Mixed-Surfactant and the Monomeric Solubilities of Short-Chain Surfactant[J]. Langmuir, 1997, 13:6995-7002.
    [41] Yamaguchi S, Correlation between the Mixing Ratio of Surfactants and the Water/Oil Ratio in Middle Microemulsions in Water/Mixed Surfactant/Hydrocarbon Systems[J]. Langmuir, 1998, (14): 7183-7188.
    [42] Chai J L, Li G Z, Diao Z Y, et al., Studies on phase behavior of alkyl polyglucoside based on microemulsion with modified fishlike phase diagram[J]. Chineae Chemical Letter, 2004, 15(3): 361-364.
    [43] Yang X D, Li H L, Chai J L, et al., Phase behavior studies of quaternary systems containing N-lauroyl-N-methylglucamide/alcohol/alkane/water[J]. J.Colloid Interface Sci., 2008, 320 :283-289.
    [44] Clausse M, Zradba A, Morgantini L N, in: H.L. Rosano,M. Clausse (Eds.), Microemulsion Systems[M]. Dekker, New York, 1987:387-425.
    [45] Bumajdad A, Eastoe J, Conductivity of water-in-oil microemulsions stabilized by mixed surfactants [J]. J.Colloid Interface Sci., 2004, 274:268-276.
    [46] Zhang X G, Dong J F, Zhang G Y, et al.,The effect of additives on the water solubilization capacity and conductivity in n-pentanol microemulsions[J]. J.Colloid Interface Sci., 2005, 285 :336-341.
    [47] Bauduin P , Touraud D , Kunz W, et al., The influence of structure and composition of a reverse SDS microemulsion on enzymatic activities and electrical conductivities[J]. J.Colloid Interface Sci., 2005, 292 :244-254.
    [48] Gao Y N, Wang S Q, Zheng L Q, et al., Microregion detection of ionic liquid microe muls- ions[J]. J.Colloid Interface Sci., 2006, 301 :612-616.
    [49] Freiberger N, Moitzi C, An attempt to detect bicontinuity from SANS data [J]. J.Colloid Interface Sci., 2007, 312: 59-67.
    [50] Glatter O, Orthaber D, Stradner A, et al., M.Fanun,N.Garti,et al.,Sugar-Ester Nonionic Microemulsion: Structural Characterization[J]. J.Colloid Interface Sci., 2001, 241: 215- 225.
    [51] Mendon C R B, Silva Y P, Bkel W J, et al., Role of the co-surfactant nature in soybean w/o microemulsions[J]. J.Colloid Interface Sci., 2009, 337: 579-585.
    [52] Kasuba M, Mcknight D, Connah M T, et al., Measuring sub nanometre sizes using dynamic light scattering[J]. J. Nanopart. res., 2008, 10: 823-829.
    [53] Behera K, Pandey S, Interaction between ionic liquid and zwitterionic surfactant: A comparative study of two ionic liquids with different anions[J]. J.Colloid Interface Sci., 2009, 331:196-205.
    [54] Roberto R, Pedro L O, L-Tryptophan transport through a hydrophobic liquid membrane using AOT micelles: Dynamics of the process as revealed by small angle X-ray scattering [J]. J.Colloid Interface Sci., 2008, 318: 59-67.
    [55] Note C, Koetz J, Kosmella S, Structural changes in poly(ethyleneimine) modified microemulsion[J]. J.Colloid Interface Sci., 2006, 302: 662-668.
    [56] Baier J, Koetz J, Kosmella S, et al., Olyelectrolyte-Modified Inverse Microemu- lsions and Their Use as Templates for the Formation of Magnetite Nanoparticles[J]. J. Phys. Chem. B, 2007, 111: 8612-8618.
    [57] Rojas O, Koetz J, Kosmella S, et al, Structural studies of ionic liquid-modified microemu-lsions[J]. J.Colloid Interface Sci., 2009, 333: 782-790.
    [58] Olsson U, Shinoda K, Lindman B, Change of the structure of microemulsions with the hydrophile lipophile balance of nonionic surfactant as revealed by NMR self-diffusion studies[J]. J Phys Chem 1986, 90: 4083-4088.
    [59] Lindman B, Stilbs P, Mosely M E , Fourier-transform NMR self-diffusion and microem-ulsion structure[J]. J.Colloid Interface Sci., 1981, 83: 569-582.
    [60] Rozner S, Aserin A, Garti N, Competitive solubilization of cholesterol and phytosterols in nonionic microemulsions studied by pulse gradient spin-echo NMR[J]. J.Colloid Interface Sci., 2008, 321: 418-425.
    [61] Kataoka H, Ueda T, Ichimei D,et al., Evaluation of nanometer-scale droplets in a ternary o/w microemulsion using SAXS and 129Xe NMR[J]. Chem Phys Lett. 2007, 441: 109-114.
    [62] Mehta S K , Kaur K, Rishu, Bhasin K K, Mixed anionic and zwitterionic surfactant based microemulsions as vehicles for solubilizing organodiselenides[J]. J.Colloid Interface Sci., 2009, 336: 322-328.
    [63] Calandra P, Giordano C, Ruggirello A, et al., Physicochemical investigation of acrylamide solubilization in sodium bis(2-ethylhexyl)sulfosuccinate and lecithin reversed micelles[J]. J.Colloid Interface Sci., 2004, 277: 206-214.
    [64] Falcone R D, Correa N M, Biasutti M A, et al., SilberAcid?Base and Aggregation Processes of Acridine Orange Base in n-Heptane/AOT/Water Reverse Micelles [J]. Langmuir, 2002, 18: 2039-2047.
    [65] Harada M, Kimura Y, Saijo K, et al., Photochemical synthesis of silver particles in Tween 20/water/ionic liquid microemulsions[J]. J.Colloid Interface Sci., 2009, 339: 373-381.
    [66] Gounili G, Bobbitt J M, Rusling J F, Electron Transfer between Amphiphilic Ferrocenes and Electrodes in a Bicontinuous Microemulsion[J]. Langmuir, 1995, 11: 2800-2805.
    [67] Sripriya R , Raj K M, Santhosh G, et al., The effect of structure of oil phase, surfactant and co-surfactant on the physicochemical and electrochemical properties of bicontinuous microemulsion[J]. J.Colloid Interface Sci., 2007, 314: 712-717.
    [68] Chhatre A S, Kulkarni B D, The phase behavior of microemulsion systems containing kerosene[J]. J.Colloid Interface Sci., 1992, 150:528-534.
    [69] Chhatre A R, Joshi R A, Kulkarni B D, Microemulsions as media for organic synthesis: selective nitration of phenol to ortho-nitrophenol using dilute nitric acid[J]. J.Colloid Interface Sci., 1993, 158:183-187.
    [70] Lawremce M J, REFS G D, Micmenadsion-based media as novel drug delivery systems [J]. Adv. Drug Deliver Revi., 2000, 45: 89-121.
    [71]刘杰,刘少杰,吕峰峰,等.,微乳液体系作为药物载体的研究进展[J].日用化学工业, 2004, 34:100-104.
    [72] Boutonnet M, king J, Tennis P, et al., The preparation of monodisperse colloidal metal particles from microemulsions[J]. Colloid and Interfaces, 1982, 5:209-225.
    [73] Palaniraj W R, Sasthav M, Cheung H M, Polymeriration of single-phase microemul- sions dependence of polymer morphology on microemulsion structure[J]. Polymer, 1995, 36: 2637.
    [74] A. K. Poulsen, L. Arleth, K. Almdal, et al., Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions[J]. J.Colloid Interface Sci., 2007, 306:143-153.
    [75] Garcia A, Llusar M, Sorli S , et al., Effect of the surfactant and precipitant on the synthesis of pink coral by a microemulsion method[J]. J. Eur Ceram Soc., 2003, 23(11): 1829- 1838.
    [76]甘孟瑜,揭芳芳,微乳液技术及其在涂料中的应用[J].涂料工业,2007,37:51-54.
    [77] Bergmann, Wolfgang, Bees, et al., Hair treating microemulsion composition and method of preparing and using the same[P]. US 507740, 1991:12-13.
    [78] Doan T, Acosta E, Scamehorn J F, et al., Formulating middlephase microemulsions using mixed anionic and cationic surfactant systems[J]. J Surfactants Deterg., 2003, 6(3): 215-223.
    [79] Tongcumpou C, Acosta E J, Quencer L B, Microemulsion formation and detergency with oily soil:Ⅱ. detergeny formation and performance[J]. J Surfactants Deterg., 2003, 6(3):205-213.
    [80]钟涛,乐长高,微乳液在萃取分离中的应用研究[J].化工时刊,2008, 22:56-58.
    [81] Mashavan V, John M V, Role of the interface in protein extractions using nonionic microemulsions[J]. J.Colloid Interface Sci., 1997, 186:185-192.
    [82] Dantas T N C, Neto A A, Moura M C P A, et al., Heavy metals extraction by microemuls- ions[J]. Water research, 2003, 37:2709-2717.
    [83] Dantas T N C, Neto M H D L, Neto A A D, et al., New surfactant for gallium and aluminum extraction by microemulsion[J]. Ind. Eng. Chem. Res., 2005, 44(17): 6784-6788.
    [84] Bourrel M, Bernard D, Graciaa A, Properties of binary mixtures of anionic and cationic surfactants: micellization and microemulsion [J]. Tenside Deter, 1984, 21: 311-318.
    [85] Cates M E, Andelman D, Safran S, et al.. Theory of microemulsions:comprison with exper- imental behavior [J]. Langmuir, 1988, 4: 802-806.
    [86] Binks B P, Meunier J, Abillon O, et al.. Measurement of film rigidity and interfacial tensions in several ionic surfactant-oil-water microemulsion systems[J]. Langmuir, 1989, 5: 415-421.
    [87] Mitra K R, Paul K B, Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants(AOT+Brij-35)and butanol[J]. J.Colloid Interface Sci., 2005, 283 :565-577.
    [88] A. K. Poulsen, L.Arleth, K.Almdal, et al., Unusually large acrylamide induced effect on the droplet size in AOT/Brij30 water-in-oil microemulsions. [J]. J.Colloid Interface Sci., 2007, 306: 143-153.
    [89] Mitra K R, Paul K B, Moulik P S, Phase behavior, interfacial composition and thermody-namic properties of mixed surfactant (CTAB and Brij-58) derived w/o microemulsions with 1-butanol and 1-pentanol as cosurfactants and n-heptane and n-decane as oils[J]. J. Colloid Interface Sci., 2006, 300 :755-764.
    [90] Holmberg K, Surfactant-templated nanomaterials synthesis[J]. J.Colloid Interface Sci., 2004, 274:355-364.
    [91]吕玲,黄志宇,邹长军,姚伟宁.三次采油用石油磺酸盐体系的界面张力及其影响因素[J].内蒙古石油化工.2006, 06:122.
    [92]黄国平,温其标,罗志刚,微乳技术在食品化学中的应用[J].食品科技,2003, 01:7-10.
    [93]邹利宏,方云,阴-阳离子表面活性剂复配研究与应用[J].日用化学工业, 2001, 5: 37-38.
    [94]王世荣,李祥高,刘东志等,表面活性剂化学[M].北京:化学工业出版社,2005:209
    [95] Sharma S C, Durga P A, Aramaki K, Viscoelastic Micellar Solutions in a Mixed Nonionic Fluorinated Surfactants System and the Effect of Oils[J]. Langmuir 2007, 23: 5324-5330.
    [96] Blin L J, Henzel N, StébéM, Mixed fluorinated–hydrogenated surfactant-based system: Preparation of ordered mesoporous materials[J]. J.Colloid Interf. Sci., 2006, 302: 643-650.
    [1] Noudeh G D, Khazaeli P. Study of the effects of polyethylene glyol sorbitan esters surfactants group on biological membranes[J]. Int J Pharmacol, 2008, 4(1): 27-33.
    [2] Porter C J, Pouton C W, Cuine J F. Enhancing intestinal drug solubilisation using lipid-based delivery systems[J]. Adv Drug Deliv Rev, 2008, 60(6): 673-691.
    [3] Jim J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery[J]. Adv Drug Deliv Rev, 2008, 60(15): 1663-1673.
    [4] Gould F A. Mitigation of surfactant erythrocyte toxicity by egg phosphatidylcholine[J]. J Pharm Pharmacol, 2008, 52: 1203-1209.
    [5] Buggins T R, Dickinson P A , Taylor G. The effects of pharmaceutical excipients on drug disposition[J]. Adv Drug Deli Rev, 2007, 59(15): 1482-1503.
    [6] Filardo G, Blasi M D, Galia A, et al. Peracetylatedβ-cyclodextrin as solubilizer of arylphosphines in supercritical carbon dioxide[J]. J of Supercriicalt Fluids, 2006, 36(3): 173-181.
    [7] Górnicki A. The hemolysis kinetics of psoriatic red blood cells[J]. Blood Cell Mol Dis, 2008, 41(2): 154-157.
    [8] PierigèF, Serafini S, Rossi L, et al. Cell-based drug delivery[J]. Adv Drug Deliver Rev, 2008, 60: 286-295.
    [9] Savi? S, Weber C, Savi? M M, et al. Natural surfactant-based topical vehicles for two model drugs: Influence of different lipophilic excipients on in vitro/in vivo skin performance[J]. Int J Pharm, 2009, 381(2): 220-230.
    [10] Bandyopadhyay P, Neeta N S. Evidence for vesicle formation from 1:1 nonionic surfactant span 60 and fatty alcohol mixtures in aqueous ethanol: Potential delivery vehicle composition[J]. Colloid Surface B, 2007, 58(2): 305-308.
    [11] Vinardell M P. Characteristics of interaction between amphiphiles and membranes[J]. Trends Comp Biochem Physiol, 1996, 2: 73-82.
    [12] Groot R D, Rabone K L, et al. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants[J]. Biophys J, 2001, 81: 725-736.
    [13] Shalel S, Streichman S, Marmur A. The mechanism of hemolysis by surfactants:effect of solution composition[J]. J Colloid Interf Sci, 2002, 252: 66-76.
    [14] Lichtenberg D, Opatowski E, Koslov M, et al. Phase boundaries in mixtures of membrane-forming amphiphiles and micelle-forming amphiphiles[J]. BBA-Biomembranes, 2000, 1508: 1-19.
    [15] Sánchez L, Martínez V, Infante M R, et al. Hemolysis and antihemolysis induced by amino acid-based surfactants[J]. Toxicol Lett, 2007, 169(2): 177-184.
    [16] Wvon Rybinski , K Hill. Alkyl polyglycosides-progerties and applica-tions of a new class of surfactants[J]. Angew Chem, 1998, 37 : 1329-1345.
    [17] D Balzer. Alkylpolyglucosides, their physico-chemical properties and their uses[J]. Tenside Surf Det , 1991, 28 : 419-427.
    [18] D Balzer. Cloud point phenomena in the phase behavior of alkyl polyglu-cosides in water[J]. Langmuir, 1993, 9 : 3375-3384.
    [19] M Kahlweit, R Strey. Phase behavior of ternary systems of the type H2O-oil-nonionic amphiphile microemulsions [J]. Angew Chem, 1985 , 97 : 655-661.
    [20] G Phatz, J Policke, Chr Thunig, et al. Phase behavior, lyotropic phase, and flow properties of alkyl glycosides in aqueous solution.[J] .Langmuir, 1995, 11 : 4250-4255.
    [21] L D Ryan. Role of oxygenated oils in n-Alkylβ-d-monoglucoside microemulsions[J]. Langmuir, 1997, 13 : 5222-5228.
    [22] L D Ryan, E W Kaler. Microstructure properties of alkyl polyglucoside microemulsions[J]. Langmuir, 1999, 15 : 92-101.
    [23] K Fukuda, O Soderman, B Lindman, et al. Microemulsions formed by alkyl polyglucoside and an alkyl glycerol ether[J]. Langmuer, 1993, 9 : 2921-2925.
    [24] D Nickel, C Nitsch, C P Kurzendorfef, et al. Interfacial properties of surfactant mixtures with alkyl polyglycosides[J]. Progr Colloid Polymer Sci, 1992, 89 : 249-252.
    [25] ML Sierra, M Svensson. Mixed micelles containing alkylglycosides effect of the chain length and the polar head group [J]. Langmuir, 1999, 15 : 2301-2306.
    [26] TenTije AJ, Verweij J, Loos WJ, et al. Pharmacological effects of formulation vehicles:implications for cancer chemotherapy[J]. Clin Pharmacokinet, 2003, 42: 665-685.
    [27] Sun W, Xie C, Wang H, et al. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain; Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain[J]. Biomaterials, 2004, 25: 3065-3071.
    [28] Dehghan G, Noudeh, Khazaeli P, Rahmani P. Study of the effects of polyethylene glycol sorbitan esters surfactants group on biological membranes[J]. International Journal of Pharmacology, 2008, 4(1): 27-33.
    [29] Rosen M J, Zhou Q. Surfactant-surfactant interactions in mixed monolayer and mixed micelle formation[J]. Langmuir, 2001, 17: 3532-3537.
    [30] Holland P M, Rubingh D N. Nonideal multlcomponent mixed micell model[J]. J. Phys Chem.B, 1983, 87: 1984-1990.
    [1]苑世领,蔡政亭,徐桂英.表面活性剂在溶液中聚集形态的动力学模拟[J].化学学报,2002:60(20):241-245.
    [2]李彦,张庆敏,黄福志,顾镇南.表面活性剂溶致液晶体系研究进展[J].大学化学,2000:15(1):5-9.
    [3] C. Tanford, Micelle shape and size[J]. Phys. Chem, 1972, 76(21): 3020-3024.
    [4] Zs. Nemeth, L. Halasz, J. Palinkas, A. Bota, T. Horanyi. Rheological behavior of a lamellar liquid crystalline surfactant-water system[J]. Colloids surfaces A, 1998, 145(1): 107-119.
    [5] O. Robles-Vasquez, S. Corona-Galvan, J.F. A. Soltero, J.E. Puig, S.B. Tripodi, E. Valles, O. Manero. Rheology of lyotropic liquid crystals of aerosol OT:ⅡHigh concentration regime[J]. Colloid Interface Sci, 1993, 160(1): 65-71.
    [6]冯尚华,王红霞,张高勇,谢新玲.表面活性剂溶致液晶的流变学性质[J].化学进展,2004, 16(5): 687-694.
    [7] H. Hoffmann, C. Yhunig, P. Schmiedel, U. Munkert. Surfactant systems with charged multilamellar vesicles and their rheological properties[J]. Langmuir, 1994, 10: 3972-3981.
    [8] J. Bergenholtz, N. J. Wagner. Formation of AOT/Brine multilamellar vesicles[J]. Langmuir, 1996, 12: 3122-3126.
    [9] J. Zipfel, P. Lindner, M. Tsianou, P. Alexandridis, W. Richter. Shear-Induced formation of multilamellar vesicles (“onions”) in block copolymers[J]. Langmuir, 1999, 15:2599-2602.
    [10] M. Bergmeier, M. Gradzielski, H. Hoffmann, K. Mortensen. Behavior of a charged vesicle system under the influence of a shear gradient: A microstructural study[J]. Phys. Chem. B, 1998, 102: 2837-2840.
    [11] Wang Z, Diao Z, Liu F, Li G, Zhang G. Microstructure and rheological properties of liquid crystallines formed in Brij97/Water/IPM /System [J]. Colloid Interface Sci, 2006, 297: 813-818.
    [12] Wang Z, Zhou W. Lamellar liquid crystals of Brij97 aqueous solutions containing different additives[J]. Solution Chem, 2009, 38: 659-668.
    [13] Alam M M, Aramaki K. Effect of molecular weight of triglycerides on the formation and rheological behavior of cubic and hexagonal phase based gel emulsions[J]. Journal of Colloid and Interface Science, 2009, 336: 329–334.
    [14] Alam M M, Sugiyama Y, Watanabe K, Aramaki K. Phase behavior and rheology of oil-swollen micellar cubic phase and gel emulsions in nonionic surfactant systems[J].Journal of Colloid and Interface Science, 2010, 341: 267-272.
    [15] Wang Z N, Liu F, Gao Y N, Zhuang W C, Xu L M, Han B X, Li G Z, Zhang G Y. Hexagonal liquid crystalline phases formed in ternary systems of Brij97/water/ionic liquids[J]. Langmuir, 2005, 21: 4931-4937.
    [16] G. Montalvo, M. Valiente, A. Khan. Shear-induced topology changes in liquid crystals of the soybean lecithin/DDAB/water system[J]. Langmuir, 2007, 23: 10518-10524.
    [27] M.C. Alfaro, A.F. Guerrero, J. Munoz. Dynamic viscoelasticity and flow behavior of a polyoxyethylene glycol nonylphenyl ether/toluene/water system [J]. Langmuir, 2000, 16: 4711-4719.
    [1] Lindma B, Danielson L, The definition of microemulsion [J]. Colloids and Surfaces 1981, 3: 391-392.
    [2] Hoar T P, Schulman J H, Transparent water in oil dispersions oleophatics hydromicelle[J]. Nature, 1943, 152 :102.
    [3]王延平,孙新波,赵德智.微乳液的结构及应用进展[J].辽宁化工, 2004, 33(2): 96-98.
    [4] Clausse M, Zradba A, Morgantini L N, in: H.L. Rosano,M. Clausse (Eds.), Microemulsion Systems[M]. Dekker, New York, 1987:387-425.
    [5] Bumajdad A, Eastoe J, Conductivity of water-in-oil microemulsions stabilized by mixed surfactants [J]. J.Colloid Interface Sci., 2004, 274:268-276.
    [6] Zhang X G, Dong J F, Zhang G Y, et al.,The effect of additives on the water solubilization capacity and conductivity in n-pentanol microemulsions[J]. J.Colloid Interface Sci. ,2005, 285 :336-341.
    [7] Bauduin P , Touraud D , Kunz W, et al., The influence of structure and composition of a reverse SDS microemulsion on enzymatic activities and electrical conductivities[J]. J.Colloid Interface Sci., 2005, 292 :244-254.
    [8] Gao Y N, Wang S Q, Zheng L Q, et al., Microregion detection of ionic liquid microe muls- ions[J]. J.Colloid Interface Sci., 2006, 301 :612-616.
    [9] Paul D I F . Andrew M H, Brian H R, The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion [J]. J. Chem. Soc., Faraday Trans. 1987, 83(1): 985-1006.
    [10] Amarnath M, Charlly M, Manoj V, Closed and open structure aggregates in microemu- lsions and mechanism of percolative conduction[J]. J. Phys. Chem. 1990, 94(13) :5290-5292.
    [11]莫春生,邬实华,十六烷基三甲基溴化铵/正丁醇/正庚烷/水四组份体系的相行为及微乳结构研究。江西师范大学学报(自然科学版) , 2001, 25(2):145-149.
    [12] Gounili G, Bobbitt J M, Rusling J F, Electron Transfer between Amphiphilic Ferrocenes and Electrodes in a Bicontinuous Microemulsion[J]. Langmuir, 1995, 11: 2800-2805.
    [13] Mo C S, Li X L. Microstructure and structural transition in coconut oil microemulsion using semidifferential electroanalysis[J]. J Colloid Interface Sci, 2007, 312: 355-362.
    [14] Mo C S, Zhong M H, Zhong Q. Investigation of structure and structural transition in microemulsion systems of sodium dodecyl sulfonate+n-heptane+n-butanol+water by cyclic voltammetric and electrical conductivity measurements[J]. J Electroanal Chem, 2000, 493:100-107.
    
    [1] J.C. Shah, Y. Sadhale, D. M. Chilukuri. Cubic phase gels as drug delivery systems[J]. Adv. Drug Delivery Rev, 2001, 47(2-3): 229-250.
    [2] C.L. Stevenson, D.B. Bennett, D. L. Ballesteros. Pharmaceutical liquid crystals: the relevance of partially ordered systems[J]. J. Pharm. Sci, 2005, 94(4): 1861-1880.
    [3] K. Larsson. Aqueous dispersion of cubic lipid-water phases[J]. Current Opin in Colloid Interface Sci, 2000, 5(1): 64-69.
    [4] S.Z. Mohammady, M. Pouzot, R. Mezzenga. Oleoylethanolamide-based lyotropic liquid crystals as vehicles for delivery of amino acids in aqueous environment[J]. Biophysical Journal, 2009, 96: 1537-1546.
    [5] L. Saturni, F. Rustichelli, G.M. Di Gregorio, L. Cordone, P. Mariani. Sugar-induced stabilization of monoolein Pn3m bicontinuous cubic phase during dehydration[J]. Phys. Rev. E Stat. Nonlin. Soft Matter Phys, 2001, 64: 040902.
    [6] P. Mariani, F. Rustichelli, L. Saturni, L. Cordone. Stabilization of monoolein Pn3m cubic structure on trehalose glasses[J]. Eur. Biophys. J, 1999, 28: 294-301.
    [7] R. Mezzenga, M. Grigorov, Z. Zhang, C. Servais, L. Sagolowicz, A.I. Romoscanu, V. Khanna, C. Meyer. Polysaccharide-induced order-order transitions in lyotropic liquid crystals[J]. Langmuir, 2005, 21: 6165-6169.
    [8] M. Scherlund, A. Brodin, M. Malmsten. Nonionic cellulose ethers as potential drug delivery systems for periodontal anesthesia[J]. Colloid Interface Sci, 2000, 229(2): 365-374.
    [9] K. Osth, M. Paulsson, E. Bjork, K. Edsman. Evaluation of drug release from gels on pig nasal mucosa in a horizontal using chamber[J]. Control release, 2002, 83(3): 377-388.
    [10] M.C. Chin, R. Bodmeier. Effect of dissolution media and additives on the drug release from cubic phase delivery systems[J]. Control release, 1997, 46(3): 215-222.
    [11] M.C. Chin, R. Bodmeier. Low viscosity monoglyceride-based drug delivery systems transforming into a highly viscous cubic phase [J]. Int .J .Pharm, 1998, 173: 51-60.
    [12] Lawremce M J, REFS G D, Micmenadsion-based media as novel drug delivery systems [J]. Adv. Drug Deliver Revi., 2000, 45: 89-121.
    [13]刘杰,刘少杰,吕峰峰,等.,微乳液体系作为药物载体的研究进展[J].日用化学工业, 2004, 34:100-104.
    [14]吴雪梅,张晶,许建华,等.姜黄素自微乳化给药系统的体内外评价[J].福建医科大学学报,2010, 44(3) : 172-177.
    [15]刘少杰,王连成,张晋,等.立方液晶作为药物载体的研究[J].山东大学学报,2004,40(3): 95-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700