白菜花青苷和黄酮醇苷自然变异及遗传机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白菜类作物(Brassica rapa L.)属于十字花科(Cruciferae)芸薹属(Brassica),包含许多重要的蔬菜和油用作物,在我国农业生产和居民膳食结构中占有举足轻重的地位。伴随着生活水平的逐步提高,人们对蔬菜的营养品质愈加重视。花青苷和黄酮醇苷作为重要的黄酮类植物次生代谢产物,广泛存在于水果和蔬菜中。研究表明这两类物质不仅对于植物的生长发育至关重要,而且具有抗氧化、抗肿瘤和改善心血管等有益于健康的功效。因此富含这两类活性物质的果蔬越来越受到消费者的青睐。研究植物体内花青苷和黄酮醇苷合成的遗传机制以及培育富含这两类物质的果蔬已成为研究热点。
     本研究通过液相色谱和质谱(LC-MS)技术对白菜中花青苷和黄酮醇苷类物质进行定性定量分析,揭示了这两类次生代谢产物在白菜中的自然变异特点;利用比较基因组学的方法对白菜中花青苷和黄酮醇苷合成基因进行鉴定,并在此基础上利用表达谱和定量PCR技术对合成基因在白菜中的表达特性进行研究;利用F2遗传分离群体对紫菜薹花青苷积累基因进行QTL定位;利用构建“超级池”高通量重测序分析的方法定位紫色小白菜叶片紫色基因;通过表达谱与代谢谱数据相关性和全基因组关联分析,鉴定与白菜黄酮醇苷各组分和总量相关的基因。主要研究结果如下:
     1.利用UFLC-UV-Q-Trip-MS和UPLC-Q-TOF-MS技术,分别对紫色白菜叶片中花青苷和95份不同类型白菜材料叶片中黄酮醇苷进行定性定量分析。在三种紫色白菜中共鉴定出23种花青苷,其中紫菜薹和紫色小白菜含有17种不同酰基化取代的矢车菊素-3-双/三葡萄糖苷-5-葡萄糖苷;紫芜菁检测出6种不同酰基化取代的天竺葵素-3-双葡萄糖苷-5-葡萄糖苷。95份不同类型白菜间黄酮醇苷类物质的组成没有差异,共鉴定出27种黄酮醇苷,包括15种山奈酚苷、10种槲皮素苷和2种异鼠李素苷,但不同材料间黄酮醇苷的总量和不同组分的含量均存在显著差异。
     2.在白菜基因组测序的基础上,利用比较基因组学根据拟南芥花青苷和黄酮醇苷生物合成基因在白菜中鉴定出73个同源基因。研究发现,花青苷和黄酮醇苷合成基因在白菜3倍化复制后发生了过保留;白菜花青苷和黄酮醇苷合成结构基因主要通过全基因组和串联重复复制方式扩增,更多的上游结构基因被保留下来;通过比较花青苷和黄酮醇苷合成正调节与负调节基因的扩增与保留情况,发现负调节基因在白菜中扩增与保留的比例更高。
     3.对95份材料花青苷和黄酮醇苷合成基因的表达谱以及代表性材料中主要结构基因qPCR分析发现,花青苷合成特异的后期结构基因主要在紫色材料中表达,绿色材料中花青苷合成负调控基因的表达水平更高。BrF3’H基因在紫菜薹和紫芜菁之间的表达差异解释了这两种紫色材料积累不同类型花青苷的原因。BrFLS1和BrDFR在紫色和绿色材料中的表达差异体现了不同材料中花青苷和黄酮醇苷的含量差异和积累特性。
     4.通过QTL分析在A09连锁群上发现控制紫菜薹花青苷积累的主效QTL位点,定位于1.9Mb的区域内。在定位区域中找到了拟南芥中AtEGL3的共线性基因BrEGL3.1和BrEGL3.2,重测序分析发现BrEGL3.1在亲本间存在较大变异,可能为控制紫菜薹花青苷积累的候选基因。
     5.利用超级池(SuperBSA)高通量重测序的方法成功将紫色小白菜叶片紫色性状基因定位到A03染色体末端1.5Mb的区域,开发优化了一种通过Pooling-sequence进行基因定位的方法。
     6.利用95份不同类型白菜材料的黄酮醇苷定性定量分析的代谢谱数据、基因数字化表达谱数据和全基因组重测序鉴定出的高密度SNP变异结果,通过表达谱与代谢谱相关性分析和全基因组关联分析鉴定了与白菜中黄酮醇苷类物质合成相关的基因,为进一步研究白菜黄酮醇苷合成关键基因和遗传机制奠定基础。
Brassica rapa, comprising a variety of vegetables and oil crops, is one of the most consumedvegetable which plays an important role in people’s daily diets in China and throughout East Asia. Withthe improvement of living standard, people pay more attention to the nutritional qualities of vegetables.Anthocyanins and flavonol glycosides, which are two major groups of flavonoid compounds, performseveral key biological functions in plants as well as play beneficial health roles as potential protectivefactors against cancer and heart disease. Because of the nutritional value and beneficial health effects,vegetables which are rich in these two compounds are increasingly popular and received considerableresearch attention. So it is necessary to characterize the composition and reveal the genetic mechanismof anthocyanins and flavonol glycosides in B. rapa.
     In this study, the profiles and the contents of anthocyanins and flavonol glycosides were identifiedin the leaves of different accessions to reveal the natural variation of these two metabolites in B. rapa.Anthocyanin and flavonol glycoside biosynthetic genes have been identified by comparative genomicanalysis between B. rapa and Arabidopsis thaliana. QTL mapping analysis was conducted for the genescontrolling anthocyanin biosynthesis in Zicaitai (Brassica rapa L. ssp. chinensis var. purpurea). Amethod combining super-BSA and high throughput re-sequence was used to map the gene for purplepigmentation in leaves of purple pakchoi (Brassica rapa L. ssp. chinensis). The candidate genesinvolved in flavonol glycosides biosynthesis of B. rapa were identified by correlation analysis betweenexpression and metabolic profiling, as well as genome-wide association study (GWAS).
     The main results of this dissertation are as follows:
     1. To investigate the metabolic profiles of anthocyanins and flavonol glycosides in the leaves of B.rapa accessions, an analytical method combining UFLC-UV-Q-Trap-MS and UPLC-Q-TOF-MS wasperformed. In total,23anthocyanins were detected and identified in the leaves of Zicaitai, purple turnipand purple pakchoi.17different acylated cyanidin3-di/triglucoside-5-glucosides were detected inZicaitai and purple pakchoi, while six different acylated pelargonidin3-diglucoside-5-glucosides wereidentified in purple turnip.27flavonol glycosides containing15kaempferol glycosides,10quercetinglycosides and two isorhamnetin glycosides were identified in95accessions. The contents of flavonolglycosides were significant difference among the95accessions which accumulated the same27components.
     2. Comparative genomic analyses between A. thaliana and B. rapa on a genome-wide level wasconducted to elucidate the anthocyanin and flavonol glycosides biosynthetic pathway in B. rapa. In total,we identified73genes in B. rapa as orthologs of41biosynthetic genes in A. thaliana. In B. rapa, theanthocyanin and flavonol glycosides biosynthetic genes have expanded and most genes exist in morethan one copy. The anthocyanin biosynthetic structural genes have expanded through whole genome andtandem duplication in B. rapa. More structural genes located upstream of the anthocyanin biosyntheticpathway have been retained than downstream. More negative regulatory genes have been retained than positive ones in the biosynthetic pathway, which may help us to understand the morphologicalcharacteristics and genetic basis of these two metabolites in B. rapa.
     3. The expression profile and qPCR analysis showed that the expression levels of late biosyntheticgenes were higher in purple accessions than in green ones, and the negative regulatory genes ofanthocyanin biosynthesis were expressed higher in green accessions. The different expression patternsof BrF3’H between Zicaitai and purple turnip could explain that different kinds of anthocyanins wereidentified in these two purple cultivars. BrFLS1and BrDFR could reveal the metabolic characteristic ofanthocyanins and flavonol glycosides in puple or green accessions.
     4. To determine the genetic basis controlling anthocyanin accumulation in Zicaitai, we conductedQTL analysis. A major QTL was identified for total anthocyanin content on chromosome A09whichexplained56.7%of phenotypic variation. Two genes, BrEGL3.1and BrEGL3.2, which are syntenicorthologs of AtEGL3, are candidate genes for a key role in the control of anthocyanin accumulation inZicaitai.
     5. Two DNA pools which contained900green lines and200purple lines from a F2populationcrossed by purple pakchoi and green Caixin were resequenced to map the gene for the purplepigmentation of pakchoi leaves. The selected signal was found in a1.5Mb region at the end ofchromosome A03, and two anthocyanin biosynthetic genes were identified.
     6. The candidate genes involved in flavonol glycosides biosynthesis of B. rapa were identified bycorrelation analysis between expression and metabolic profiling, as well as genome-wide associationstudy (GWAS), which will promote the cloning and functional analysis of the genes controlling flavonolglycosides accumulation and the understanding of the biological process of flavonol glycosidesbiosynthesis in B. rapa, as well as offer genetic resources and theoretical foundation for thedevelopment of new varieties with enhanced health-promoting properties by molecular breeding.
引文
1.段岩娇,张鲁刚,何琼,张明科和石姜超.2012.紫心大白菜花青素积累特性及相关基因表达分析.园艺学报.39,2159-2167.
    2.方璐.2012.十字花科植物基因组共线性关系的研究及应用.中国农业科学院.
    3.李长新.2011.紫色小白菜花青素理化性质研究.西北农林科技大学.
    4.刘瑾,汪维红,张德双,于拴仓,张凤兰,赵岫云,余阳俊,徐家炳和卢桂香.2013.控制白菜叶片紫色的pur基因初步定位.华北农学报.49-53.
    5.陆国权和唐忠厚.2006.脚板薯花青素提取及其纯化技术研究.粮油食品科技.14,34-35.
    6.孙日飞,张淑江,章时蕃和李菲.2007.紫红色大白菜种质的创新研究.园艺学报.33,1032-1032.
    7.王兆雨,徐美玲和朱蓓薇.2007.蓝莓花青素的提取工艺条件.大连轻工业学院学报.26,196-198.
    8.张德双,张凤兰,赵岫云,余阳俊,徐家炳,于拴仓和汪维红.2012.大白菜(大白菜×紫色小白菜)叶片紫色性状的遗传分析.中国蔬菜.36-38.
    9.周晓波,白占兵,丁茁荑,吴艺飞,王晓武.2012.利用SSR分析红菜苔的遗传多样性.植物遗传资源学报.13,1088-1092.
    10. Abe, A., Kosugi, S., Yoshida, K., Natsume, S., Takagi, H., Kanzaki, H., Matsumura, H., Yoshida,K., Mitsuoka, C. and Tamiru, M.,2012. Genome sequencing reveals agronomically importantloci in rice using MutMap. Nature Biotechnology30,174-178.
    11. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K.,2003.Arabidopsis AtMYC2(bHLH) and AtMYB2(MYB) function as transcriptional activators inabscisic acid signaling. The Plant Cell15,63-78.
    12. Aharoni, A., De Vos, C., Wein, M., Sun, Z., Greco, R., Kroon, A., Mol, J.N. and O'Connell, A.P.,2001. The strawberry FaMYB1transcription factor suppresses anthocyanin and flavonolaccumulation in transgenic tobacco. The Plant Journal28,319-332.
    13. Andersen, O.M. and Markham, K.R.,2010. Flavonoids: chemistry, biochemistry and applications,CRC Press.
    14. Atwell, S., Huang, Y., Vilhjálmsson, B., Willems, G., Horton, M., Li, Y., Meng, D., Platt, A.,Tarone, A. and Hu, T.,2010. Genome-wide association study of107phenotypes in Arabidopsisthaliana inbred lines. Nature465,627-631.
    15. Austin, M. and Noel, J.,2003. The chalcone synthase superfamily of type III polyketidesynthases. Natural Product Reports20,79-110.
    16. Bassam, B., Caetano-Anolles, G. and Gresshoff, P.,1991. Fast and sensitive silver staining ofDNA in polyacrylamide gels. Analytical Biochemistry196,80-3.
    17. Baudry, A., Heim, M., Dubreucq, B., Caboche, M., Weisshaar, B. and Lepiniec, L.,2004. TT2,TT8, and TTG1synergistically specify the expression of BANYULS and proanthocyanidinbiosynthesis in Arabidopsis thaliana. The Plant journal39,366-380.
    18. Ben-Simhon, Z., Judeinstein, S., Nadler-Hassar, T., Trainin, T., Bar-Ya’akov, I., Borochov-Neori,H. and Holland, D.,2011. A pomegranate (Punica granatum L.) WD40-repeat gene is afunctional homologue of Arabidopsis TTG1and is involved in the regulation of anthocyaninbiosynthesis during pomegranate fruit development. Planta234,865-881.
    19. Bernhardt, C., Lee, M.M., Gonzalez, A., Zhang, F., Lloyd, A. and Schiefelbein, J.,2003. ThebHLH genes GLABRA3(GL3) andENHANCER OF GLABRA3(EGL3) specify epidermal cellfate in the Arabidopsis root. Development130,6431-6439.
    20. Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A. and Lamb, C.,2000. Activation tagging identifiesa conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell12,2383-2393.
    21. Bou-Torrent, J., Roig-Villanova, I., Galstyan, A. and Martínez-García, J.F.,2008. PAR1and PAR2integrate shade and hormone transcriptional networks. Plant Signaling&Behavior3,453-454.
    22. Bradshaw, H. and Schemske, D.W.,2003. Allele substitution at a flower colour locus produces apollinator shift in monkeyflowers. Nature426,176-178.
    23. Broun, P.,2005. Transcriptional control of flavonoid biosynthesis: a complex network ofconserved regulators involved in multiple aspects of differentiation in Arabidopsis. CurrentOpinion in Plant Biology8,272-279.
    24. Brueggemann, J., Weisshaar, B. and Sagasser, M.,2010. A WD40-repeat gene from Malus×domestica is a functional homologue of Arabidopsis thaliana TRANSPARENT TESTAGLABRA1. Plant Cell Reports29,285-294.
    25. Buck, M. and Atchley, W.,2003. Phylogenetic analysis of plant basic helix-loop-helix proteins.Journal of Molecular Evolution56,742-750.
    26. Burdzinski, C. and Wendell, D.,2007. Mapping the anthocyaninless (anl) locus in rapid-cyclingBrassica rapa (RBr) to linkage group R9. BMC Genetics8,64.
    27. Burr, F., Burr, B., Scheffler, B., Blewitt, M., Wienand, U. and Matz, E.,1996. The maizerepressor-like gene intensifier1shares homology with the r1/b1multigene family of transcriptionfactors and exhibits missplicing. The Plant Cell8,1249-1259.
    28. Byamukama, R., Kiremire, B., Andersen,.M. and Steigen, A.,2005. Anthocyanins from fruitsof Rubus pinnatus and Rubus rigidus. Journal of Food Composition and Analysis18,599-605.
    29. Carey, C., Strahle, J., Selinger, D. and Chandler, V.,2004. Mutations in the pale aleurone color1regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to thefunctionally similar TRANSPARENT TESTA GLABRA1gene in Arabidopsis thaliana. ThePlant Cell16,450-464.
    30. Cartea, M., Francisco, M., Soengas, P. and Velasco, P.,2010. Phenolic compounds in Brassicavegetables. Molecules16,251-280.
    31. Chandler, V., Radicella, J., Robbins, T., Chen, J. and Turks, D.,1989. Two regulatory genes of themaize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. ThePlant Cell1,1175-1183.
    32. Chen, F., Sun, Y., Zhao, G., Liao, X., Hu, X., Wu, J. and Wang, Z.,2007. Optimization ofultrasound-assisted extraction of anthocyanins in red raspberries and identification ofanthocyanins in extract using high-performance liquid chromatography–mass spectrometry.Ultrasonics Sonochemistry14,767-778.
    33. Cheng, F., Liu, S., Wu, J., Fang, L., Sun, S., Liu, B., Li, P., Hua, W. and Wang, X.,2011. BRAD,the genetics and genomics database for Brassica plants. BMC Plant Biology11,136.
    34. Cheng, F., Wu, J., Fang, L., Sun, S., Liu, B., Lin, K., Bonnema, G. and Wang, X.,2012a. Biasedgene fractionation and dominant gene expression among the subgenomes of Brassica rapa. PLoSOne7, e36442.
    35. Cheng, F., Wu, J., Fang, L. and Wang, X.,2012b. Syntenic gene analysis between Brassica rapaand other Brassicaceae species. Frontiers in Plant Science3.
    36. Chiu, L.W. and Li, L.,2012. Characterization of the regulatory network of BoMYB2incontrolling anthocyanin biosynthesis in purple cauliflower. Planta236,1153-1164.
    37. Chiu, L.W., Zhou, X., Burke, S., Wu, X., Prior, R.L. and Li, L.,2010. The purple cauliflowerarises from activation of a MYB transcription factor. Plant Physiology154,1470-80.
    38. Chu, Y.H., Chang, C.L. and Hsu, H.F.,2000. Flavonoid content of several vegetables and theirantioxidant activity. Journal of the Science of Food and Agriculture80,561-566.
    39. Cochrane, F.C., Davin, L.B. and Lewis, N.G.,2004. The Arabidopsis phenylalanine ammonialyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry65,1557-1564.
    40. Cone, K.C., Burr, F.A. and Burr, B.,1986. Molecular analysis of the maize anthocyaninregulatory locus C1. Proceedings of the National Academy of Sciences83,9631-9635.
    41. Crozier, A., Jaganath, I.B. and Clifford, M.N.,2006. Phenols, polyphenols and tannins: anoverview. Plant secondary metabolites: Occurrence, structure and role in the human diet,1-24..
    42. Crozier, A., Clifford, M.N. and Ashihara, H.,2008. Plant secondary metabolites: occurrence,structure and role in the human diet, John Wiley&Sons
    43. Dangles, O., Saito, N. and Brouillard, R.,1993. Kinetic and thermodynamic control of flavyliumhydration in the pelargonidin-cinnamic acid complexation. Origin of the extraordinary flowercolor diversity of Pharbitis nil. Journal of the American Chemical Society115,3125-3132.
    44. de Vetten, N., Quattrocchio, F., Mol, J. and Koes, R.,1997. The an11locus controlling flowerpigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, andanimals. Genes&Development11,1422-1434.
    45. Di Paola-Naranjo, R.D., Sánchez-Sánchez, J., González-Paramás, A.M.a. and Rivas-Gonzalo,J.C.,2004. Liquid chromatographic–mass spectrometric analysis of anthocyanin composition ofdark blue bee pollen from Echium plantagineum. Journal of Chromatography A1054,205-210.
    46. Ding, Z., Li, S., An, X., Liu, X., Qin, H. and Wang, D.,2009. Transgenic expression of MYB15confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsisthaliana. Journal of Genetics and Genomics36,17-29.
    47. Dixon, R.A. and Strack, D.,2003. Phytochemistry meets genome analysis, and beyond.Phytochemistry62,815-816.
    48. Dubos, C., Le Gourrierec, J., Baudry, A., Huep, G., Lanet, E., Debeaujon, I., Routaboul, J.M.,Alboresi, A., Weisshaar, B. and Lepiniec, L.,2008. MYBL2is a new regulator of flavonoidbiosynthesis in Arabidopsis thaliana. The Plant Journal55,940-953.
    49. Ehlting, J., Büttner, D., Wang, Q., Douglas, C.J., Somssich, I.E. and Kombrink, E.,1999. Three4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergentclasses in angiosperms. The Plant Journal19,9-20.
    50. Ellegren, H.,2004. Microsatellites: simple sequences with complex evolution. Nature ReviewsGenetics5,435-445.
    51. Escribano‐Bailón, M.T., Alcalde‐Eon, C., Mu oz, O., Rivas‐Gonzalo, J.C. and Santos‐Buelga, C.,2006. Anthocyanins in berries of maqui [Aristotelia chilensis (Mol.) Stuntz].Phytochemical Analysis17,8-14.
    52. Fang, L., Cheng, F., Wu, J. and Wang, X.,2012. The impact of genome triplication on tandemgene evolution in Brassica rapa. Frontiers in Plant Science3.
    53. Fekih, R., Takagi, H., Tamiru, M., Abe, A., Natsume, S., Yaegashi, H., Sharma, S., Sharma, S.,Kanzaki, H. and Matsumura, H.,2013. MutMap+: Genetic Mapping and Mutant Identificationwithout Crossing in Rice. PloS One8, e68529.
    54. Fernandes, F., Valent o, P., Sousa, C., Pereira, J.A., Seabra, R.M. and Andrade, P.B.,2007.Chemical and antioxidative assessment of dietary turnip (Brassica rapa var. rapa L.). FoodChemistry105,1003-1010.
    55. Ferrer, J.L., Jez, J.M., Bowman, M.E., Dixon, R.A. and Noel, J.P.,1999. Structure of chalconesynthase and the molecular basis of plant polyketide biosynthesis. Nature Structural&MolecularBiology6,775-784.
    56. Ferreres, F., Sousa, C., Vrchovská, V., Valent o, P., Pereira, J.A., Seabra, R.M. and Andrade, P.B.,2006. Chemical composition and antioxidant activity of tronchuda cabbage internal leaves.European Food Research and Technology222,88-98.
    57. Ferreres, F., Valent o, P., Llorach, R., Pinheiro, C., Cardoso, L., Pereira, J.A., Sousa, C., Seabra,R.M. and Andrade, P.B.,2005. Phenolic compounds in external leaves of tronchuda cabbage(Brassica oleracea L. var. costata DC). Journal of Agricultural and Food Chemistry53,2901-2907.
    58. Ferreres, F., Valent o, P., Pereira, J.A., Bento, A., Noites, A., Seabra, R.M. and Andrade, P.B.,2008. HPLC-DAD-MS/MS-ESI screening of phenolic compounds in Pieris brassicae L. rearedon Brassica rapa var. rapa L. Journal of Agricultural and Food Chemistry56,844-853.
    59. Francisco, M., Moreno, D.A., Cartea, M.E., Ferreres, F., García-Viguera, C. and Velasco, P.,2009.Simultaneous identification of glucosinolates and phenolic compounds in a representativecollection of vegetable Brassica rapa. Journal of Chromatography A1216,6611-6619.
    60. Freeling, M. and Thomas, B.C.,2006. Gene-balanced duplications, like tetraploidy, providepredictable drive to increase morphological complexity. Genome Research16,805-814.
    61. Furukawa, T., Maekawa, M., Oki, T., Suda, I., Iida, S., Shimada, H., Takamure, I. and Kadowaki,K.i.,2007. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. ThePlant Journal49,91-102.
    62. Galway, M.E., Masucci, J.D., Lloyd, A.M., Walbot, V., Davis, R.W. and Schiefelbein, J.W.,1994.The TTG Gene Is Required to Specify Epidermal Cell Fate and Cell Patterning in theArabidopsisRoot. Developmental Biology166,740-754.
    63. Goff, S.A., Cone, K.C. and Chandler, V.L.,1992. Functional analysis of the transcriptionalactivator encoded by the maize B gene: evidence for a direct functional interaction between twoclasses of regulatory proteins. Genes&Development6,864-875.
    64. Gonzalez, A., Zhao, M., Leavitt, J.M. and Lloyd, A.M.,2008. Regulation of the anthocyaninbiosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings.The Plant Journal53,814-827.
    65. Gonzali, S., Mazzucato, A. and Perata, P.,2009. Purple as a tomato: towards high anthocyanintomatoes. Trends in Plant Science14,237-41.
    66. Graf, B.A., Milbury, P.E. and Blumberg, J.B.,2005. Flavonols, Flavones, Flavanones, andHuman Health: Epidemiological Evidence. Journal of Medicinal Food8,281-290.
    67. Grassi, D., Desideri, G., Croce, G., Tiberti, S., Aggio, A. and Ferri, C.,2009. Flavonoids, vascularfunction and cardiovascular protection. Current Pharmaceutical Design15,1072-1084.
    68. Gratacós-Cubarsí, M., Ribas-Agustí, A., García-Regueiro, J.A. and Castellari, M.,2010.Simultaneous evaluation of intact glucosinolates and phenolic compounds byUPLC-DAD-MS/MS in Brassica oleracea L. var. botrytis. Food Chemistry121,257-263.
    69. Grotewold, E.,2004. The challenges of moving chemicals within and out of cells: insights intothe transport of plant natural products. Planta219,906-909.
    70. Grotewold, E.,2006. The genetics and biochemistry of floral pigments. Annual Reviews of PlantBiology57,761-780.
    71. Harbaum, B., Hubbermann, E., Wolff, C., Herges, R., Zhu, Z. and Schwarz, K.,2007a.Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (Brassicacampestris L. ssp. chinensis var. communis) by HPLC–ESI-MS n and NMR and theirquantification by HPLC–DAD. Journal of Agricultural and Food Chemistry55,8251-8260.
    72. Harbaum, B., Hubbermann, E., Zhu, Z. and Schwarz, K.,2007b. Impact of fermentation onphenolic compounds in leaves of pak choi (Brassica campestris L. ssp. chinensis var. communis)and Chinese leaf mustard (Brassica juncea Coss). Journal of Agricultural and Food Chemistry56,148-157.
    73. Harbaum, B., Hubbermann, E.M., Zhu, Z. and Schwarz, K.,2008. Free and bound phenoliccompounds in leaves of pak choi (Brassica campestris L. ssp. chinensis var. communis) andChinese leaf mustard (Brassica juncea Coss). Food Chemistry110,838-846.
    74. Harborne, J.J.B., Baxter, H. and Moss, G.P.,1999. Phytochemical dictionary: a handbook ofbioactive compounds from plants, CRC Press.
    75. Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R. and Weisshaar, B.,2005. Differentialcombinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLHfactors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesisgenes. Plant Molecular Biology57,155-171.
    76. Hayashi, K., Matsumoto, S., Tsukazaki, H., Kondo, T., Kubo, N. and Hirai, M.,2010. Mapping ofa novel locus regulating anthocyanin pigmentation in Brassica rapa. Breeding science.60,76-80
    77. He, X.,2000. On-line identification of phytochemical constituents in botanical extracts bycombined high-performance liquid chromatographic–diode array detection–mass spectrometrictechniques. Journal of Chromatography A880,203-232.
    78. Heisler, M., Atkinson, A., Bylstra, Y.H., Walsh, R. and Smyth, D.R.,2001. SPATULA, a gene thatcontrols development of carpel margin tissues in Arabidopsis, encodes a bHLH protein.Development128,1089-1098.
    79. Hichri, I., Barrieu, F., Bogs, J., Kappel, C., Delrot, S. and Lauvergeat, V.,2011. Recent advancesin the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of ExperimentalBotany62,2465-2483.
    80. Hichri, I., Heppel, S.C., Pillet, J., Léon, C., Czemmel, S., Delrot, S., Lauvergeat, V. and Bogs, J.,2010. The basic helix-loop-helix transcription factor MYC1is involved in the regulation of theflavonoid biosynthesis pathway in grapevine. Molecular Plant3,509-523.
    81. Hindorff, L.A., Sethupathy, P., Junkins, H.A., Ramos, E.M., Mehta, J.P., Collins, F.S. andManolio, T.A.,2009. Potential etiologic and functional implications of genome-wide associationloci for human diseases and traits. Proceedings of the National Academy of Sciences106,9362-9367.
    82. Hollman, P.C.H. and Arts, I.C.W.,2000. Flavonols, flavones and flavanols-nature, occurrenceand dietary burden. Journal of the Science of Food and Agriculture80,1081-1093.
    83. Holton, T.A. and Cornish, E.C.,1995. Genetics and biochemistry of anthocyanin biosynthesis.The Plant Cell7,1071.
    84. Hrazdina, G., Iredale, H. and Mattick, L.R.,1977. Anthocyanin composition of Brassica oleraceacv. Red Danish. Phytochemistry16,297-299.
    85. Hrazdina, G., Marx, G.A. and Hoch, H.C.,1982. Distribution of Secondary Plant Metabolites andTheir Biosynthetic Enzymes in Pea (Pisum sativum L.) Leaves Anthocyanins and FlavonolGlycosides. Plant Physiology70,745-748.
    86. hu Dong, Y., Mitra, D., Kootstra, A., Lister, C. and Lancaster, J.,1995. Postharvest stimulation ofskin color in Royal Gala apple. Journal of the American Society for Horticultural Science120,95-100.
    87. Huang, J., Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.-H., Yu, J.-Q. and Chen, Z.,2010. Functionalanalysis of the Arabidopsis PAL gene family in plant growth, development, and response toenvironmental stress. Plant Physiology153,1526-1538.
    88. Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., Li, C., Zhu, C., Lu, T. and Zhang, Z.,2010b. Genome-wide association studies of14agronomic traits in rice landraces. NatureGenetics42,961-967.
    89. Hwang, Y.P., Choi, J.H., Han, E.H., Kim, H.G., Wee, J.H., Jung, K.O., Jung, K.H., Kwon, K.I.,Jeong, T.C., Chung, Y.C. and Jeong, H.G.,2011. Purple sweet potato anthocyanins attenuatehepatic lipid accumulation through activating adenosine monophosphate-activated protein kinasein human HepG2cells and obese mice. Nutrition Research31,896-906.
    90. Initiative, A.G.,2000. Analysis of the genome sequence of the flowering plant Arabidopsisthaliana. Nature408,796-815.
    91. Kaku, S., Iwaya-Inoue, M. and Toki, K.,1992. Anthocyanin influence on water proton NMRrelaxation times and water contents in leaves of evergreen woody plants during the winter. Plantand Cell Physiology33,131-137.
    92. Kim, C., Kim, J., Kikuchi, S., Choi, J., Kim, Y., Park, H., Seol, Y., Park, D., Hahn, J. and Kim, Y.,2011. Computational identification of Chinese cabbage anthocyanin-specific genes. BiochipJournal5,184-192.
    93. Kim, C., Park, S., Kikuchi, S., Kwon, S., Park, S., Yoon, U., Park, D., Seol, Y., Hahn, J. and Park,S.,2010. Genetic analysis of gene expression for pigmentation in Chinese cabbage (Brassicarapa). BioChip Journal4,123-128.
    94. Kitamura, S., Shikazono, N. and Tanaka, A.,2004. TRANSPARENT TESTA19is involved inthe accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant journal37,104-114.
    95. Koes, R., Verweij, W. and Quattrocchio, F.,2005. Flavonoids: a colorful model for the regulationand evolution of biochemical pathways. Trends in Plant Science10,236-242.
    96. Kong, J., Chia, L., Goh, N., Chia, T. and Brouillard, R.,2003. Analysis and biological activitiesof anthocyanins. Phytochemistry64,923-933.
    97. Kubo, H., Peeters, A., Aarts, M., Pereira, A. and Koornneef, M.,1999. ANTHOCYANINLESS2,a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. ThePlant Cell11,1217-1226.
    98. Le Marchand, L.,2002. Cancer preventive effects of flavonoids—a review. Biomedicine&Pharmacotherapy56,296-301.
    99. Lee, J., Durst, R.W. and Wrolstad, R.E.,2005. Determination of total monomeric anthocyaninpigment content of fruit juices, beverages, natural colorants, and wines by the pH differentialmethod: Collaborative study. Journal of Aoac International88,1269-1278.
    100. Leivar, P., Monte, E., Oka, Y., Liu, T., Carle, C., Castillon, A., Huq, E. and Quail, P.H.,2008.Multiple phytochrome-interacting bHLH transcription factors repress premature seedlingphotomorphogenesis in darkness. Current Biology18,1815-1823.
    101. Lepiniec, L., Debeaujon, I., Routaboul, J.-M., Baudry, A., Pourcel, L., Nesi, N. and Caboche, M.,2006. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology57,405-430.
    102. Li, H., Sun, J., Xu, Y., Jiang, H., Wu, X. and Li, C.,2007. The bHLH-type transcription factorAtAIB positively regulates ABA response in Arabidopsis. Plant Molecular Biology65,655-665.
    103. Lila, M.A.,2004. Anthocyanins and human health: an in vitro investigative approach. BioMedResearch International2004,306-313.
    104. Lin, L.-Z. and Harnly, J.,2007. A screening method for the identification of glycosylatedflavonoids and other phenolic compounds using a standard analytical approach for all plantmaterials. Journal of Agricultural and Food Chemistry55,1084-1096.
    105. Lin, L.. and Harnly, J.,2009. Identification of the phenolic components of collard greens, kale,and Chinese broccoli. Journal of Agricultural and Food Chemistry57,7401-7408.
    106. Lin, L. and Harnly, J.,2010. Phenolic component profiles of mustard greens, yu choy, and15other Brassica vegetables. Journal of Agricultural and Food Chemistry58,6850-6857.
    107. Lin, L., Sun, J., Chen, P. and Harnly, J.,2011. UHPLC-PDA-ESI/HRMS/MSn Analysis ofAnthocyanins, Flavonol Glycosides, and Hydroxycinnamic Acid Derivatives in Red MustardGreens (Brassica juncea Coss Variety). Journal of Agricultural and Food Chemistry59,12059-12072.
    108. Liu, B., Wang, Y., Zhai, W., Deng, J., Wang, H., Cui, Y., Cheng, F., Wang, X.W. and Wu, J.,2013.Development of InDel markers for Brassica rapa based on whole-genome re-sequencing.Theoretical and Applied Genetics126,231-239.
    109. Liu, X., Feng, C., Zhang, M., Yin, X., Xu, C. and Chen, K.,2013b. The MrWD40-1gene ofChinese bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyaninaccumulation. Plant Molecular Biology Reporter31,1474-1484.
    110. Llorach, R., Espín, J.C., Tomás-Barberán, F.A. and Ferreres, F.,2003a. Valorization ofcauliflower (Brassica oleracea L. var. botrytis) by-products as a source of antioxidant phenolics.Journal of Agricultural and Food Chemistry51,2181-2187.
    111. Llorach, R., Gil-Izquierdo, A., Ferreres, F. and Tomás-Barberán, F.A.,2003b.HPLC-DAD-MS/MS ESI Characterization of Unusual Highly Glycosylated Acylated Flavonoidsfrom Cauliflower (Brassica oleracea L. v ar. botrytis) Agroindustrial Byproducts. Journal ofAgricultural and Food Chemistry51,3895-3899.
    112. Lo Scalzo, R., Genna, A., Branca, F., Chedin, M. and Chassaigne, H.,2008. Anthocyanincomposition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var.capitata) and its stability in relation to thermal treatments. Food Chemistry107,136-144.
    113. Long, T.A., Tsukagoshi, H., Busch, W., Lahner, B., Salt, D.E. and Benfey, P.N.,2010. The bHLHtranscription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. ThePlant Cell22,2219-2236.
    114. Longo, L. and Vasapollo, G.,2006. Extraction and identification of anthocyanins from Smilaxaspera L. berries. Food Chemistry94,226-231.
    115. Lorenzo, O., Chico, J.M., Sánchez-Serrano, J.J. and Solano, R.,2004.JASMONATE-INSENSITIVE1encodes a MYC transcription factor essential to discriminatebetween different jasmonate-regulated defense responses in Arabidopsis. The Plant Cell16,1938-1950.
    116. Lou, P., Wu, J., Cheng, F., Cressman, L.G., Wang, X. and McClung, C.R.,2012. Preferentialretention of circadian clock genes during diploidization following whole genome triplication inBrassica rapa. The Plant Cell24,2415-2426.
    117. Lou, P., Zhao, J., He, H., Hanhart, C., Pino Del Carpio, D., Verkerk, R., Custers, J., Koornneef, M.and Bonnema, G.,2008. Quantitative trait loci for glucosinolate accumulation in Brassica rapaleaves. New Phytologist179,1017-1032.
    118. Ludwig, S.R. and Wessler, S.R.,1990. Maize R gene family: Tissue-specific helix-loop-helixproteins. Cell62,849-851.
    119. Mano, H., Ogasawara, F., Sato, K., Higo, H. and Minobe, Y.,2007. Isolation of a regulatory geneof anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiology143,1252-1268.
    120. Markakis, P.,2012. Anthocyanins as food colors, Elsevier.
    121. Markham, K.R., Gould, K.S., Winefield, C.S., Mitchell, K.A., Bloor, S.J. and Boase, M.R.,2000.Anthocyanic vacuolar inclusions-their nature and significance in flower colouration.Phytochemistry55,327-336.
    122. Marrs, K.A., Alfenito, M.R., Lloyd, A.M. and Walbot, V.,1995. A glutathione S-transferaseinvolved in vacuolar transfer encoded by the maize gene Bronze-2. Nature375,397-400
    123. Mathews, H., Clendennen, S.K., Caldwell, C.G., Liu, X.L., Connors, K., Matheis, N., Schuster,D.K., Menasco, D., Wagoner, W. and Lightner, J.,2003. Activation tagging in tomato identifies atranscriptional regulator of anthocyanin biosynthesis, modification, and transport. The Plant Cell15,1689-1703.
    124. Matsui, K., Umemura, Y. and Ohme‐Takagi, M.,2008. AtMYBL2, a protein with a single MYBdomain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The PlantJournal55,954-967.
    125. Matus, J., Poupin, M., Ca ón, P., Bordeu, E., Alcalde, J. and Arce-Johnson, P.,2010. Isolation ofWDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). PlantMolecular Biology72,607-620.
    126. Mehrtens, F., Kranz, H., Bednarek, P. and Weisshaar, B.,2005. The Arabidopsis transcriptionfactor MYB12is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology138,1083-1096.
    127. Mizutani, M., Ohta, D. and Sato, R.,1997. Isolation of a cDNA and a genomic clone encodingcinnamate4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiology113,755-763.
    128. Moreno, D.A., Pérez-Balibrea, S., Ferreres, F., Gil-Izquierdo, á. and García-Viguera, C.,2010.Acylated anthocyanins in broccoli sprouts. Food Chemistry123,358-363.
    129. Morita, Y., Saitoh, M., Hoshino, A., Nitasaka, E. and Iida, S.,2006. Isolation of cDNAs forR2R3-MYB, bHLH and WDR transcriptional regulators and identification of c and ca mutationsconferring white flowers in the Japanese morning glory. Plant and Cell Physiology47,457-470.
    130. Morohashi, K., Zhao, M., Yang, M., Read, B., Lloyd, A., Lamb, R. and Grotewold, E.,2007.Participation of the Arabidopsis bHLH factor GL3in trichome initiation regulatory events. PlantPhysiology145,736-746.
    131. Mueller, L., Goodman, C., Silady, R. and Walbot, V.,2000. AN9, a petunia glutathioneS-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. PlantPhysiology123,1561-1570.
    132. Mun, J., Kwon, S., Seol, Y., Kim, J., Jin, M., Kim, J., Lim, M., Lee, S., Hong, J. and Park, T.,2010. Sequence and structure of Brassica rapa chromosome A3. Genome Biology11, R94.
    133. Nagaharu, U.,1935. Genome analysis in Brassica with special reference to the experimentalformation of B. napus and peculiar mode of fertilization. Jpn J Bot7,389-452.
    134. Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M. and Lepiniec, L.,2000. The TT8geneencodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genesin Arabidopsis siliques. The Plant Cell12,1863-1878.
    135. Nielsen, J.K., N rb k, R. and Olsen, C.E.,1998. Kaempferol tetraglucosides from cabbageleaves. Phytochemistry49,2171-2176.
    136. Nielsen, J.K., Olsen, C.E. and Petersen, M.K.,1993. Acylated flavonol glycosides from cabbageleaves. Phytochemistry34,539-544.
    137. Nijveldt, R.J., Van Nood, E., Van Hoorn, D.E., Boelens, P.G., Van Norren, K. and Van Leeuwen,P.A.,2001. Flavonoids: a review of probable mechanisms of action and potential applications.The American Journal of Clinical Nutrition74,418-425.
    138. Ohl, S., Hedrick, S.A., Chory, J. and Lamb, C.J.,1990. Functional properties of a phenylalanineammonia-lyase promoter from Arabidopsis. The Plant Cell2,837-848.
    139. Olsen, H., Aaby, K. and Borge, G.I.A.,2010. Characterization, quantification, and yearlyvariation of the naturally occurring polyphenols in a common red variety of curly kale (Brassicaoleracea L. convar. acephala var. sabellica cv.‘Redbor’). Journal of Agricultural and FoodChemistry58,11346-11354.
    140. Owens, D.K., Alerding, A.B., Crosby, K.C., Bandara, A.B., Westwood, J.H. and Winkel, B.S.,2008. Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. PlantPhysiology147,1046-1061.
    141. Pang, Y., Wenger, J.P., Saathoff, K., Peel, G.J., Wen, J., Huhman, D., Allen, S.N., Tang, Y., Cheng,X. and Tadege, M.,2009. A WD40repeat protein from Medicago truncatula is necessary fortissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development.Plant Physiology151,1114-1129.
    142. Park, K.I., Ishikawa, N., Morita, Y., Choi, J.D., Hoshino, A. and Iida, S.,2007. A bHLHregulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyaninbiosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seedtrichome formation. The Plant Journal49,641-654.
    143. Pattanaik, S., Xie, C.H. and Yuan, L.,2008. The interaction domains of the plant Myc-like bHLHtranscription factors can regulate the transactivation strength. Planta227,707-715.
    144. Payne, C.T., Zhang, F. and Lloyd, A.M.,2000. GL3encodes a bHLH protein that regulatestrichome development in Arabidopsis through interaction with GL1and TTG1. Genetics156,1349-1362.
    145. Pelletier, M., Murrell, J. and Shirley, B.,1997. Characterization of flavonol synthase andleucoanthocyanidin dioxygenase genes in Arabidopsis. Further evidence for differentialregulation of "early" and "late" genes. Plant Physiology113,1437-1445.
    146. Pelletier, M. and Shirley, B.,1996. Analysis of flavanone3-hydroxylase in Arabidopsis seedlings(Coordinate regulation with chalcone synthase and chalcone isomerase). Plant Physiology111,339-345.
    147. Petroni, K. and Tonelli, C.,2011. Recent advances on the regulation of anthocyanin synthesis inreproductive organs. Plant Science181,219-229.
    148. Pires, N. and Dolan, L.,2010. Origin and diversification of basic-helix-loop-helix proteins inplants. Molecular Biology and Evolution27,862-874.
    149. Pods dek, A.,2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: Areview. LWT-Food Science and Technology40,1-11.
    150. Poudel, P.R., Goto-Yamamoto, N., Mochioka, R., Kataoka, I. and Beppu, K.,2008. Expressionanalysis of UDP-glucose: flavonoid3-O-glucosyltransferase (UFGT) gene in an interspecifichybrid grape between Vitis ficifolia var. ganebu and Vitis vinifera cv. Muscat of Alexandria. PlantBiotechnology Reports2,233-238.
    151. Price, K.R., Casuscelli, F., Colquhoun, I.J. and Rhodes, M.J.,1998. Composition and content offlavonol glycosides in broccoli florets (Brassica olearacea) and their fate during cooking. Journalof the Science of Food and Agriculture77,468-472.
    152. Prior, R.L. and Wu, X.L.,2006. Anthocyanins: Structural characteristics that result in uniquemetabolic patterns and biological activities. Free Radical Research40,1014-1028.
    153. Quattrocchio, F., Wing, J.F., Leppen, H.T., Mol, J.N. and Koes, R.E.,1993. Regulatory genescontrolling anthocyanin pigmentation are functionally conserved among plant species and havedistinct sets of target genes. The Plant Cell5,1497-1512.
    154. Quattrocchio, F., Wing, J.F., Va, K., Mol, J.N. and Koes, R.,1998. Analysis of bHLH and MYBdomain proteins: species-specific regulatory differences are caused by divergent evolution oftarget anthocyanin genes. The Plant Journal13,475-488.
    155. Rampey, R.A., Woodward, A.W., Hobbs, B.N., Tierney, M.P., Lahner, B., Salt, D.E. and Bartel,B.,2006. An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metalhomeostasis and auxin conjugate responsiveness. Genetics174,1841-1857.
    156. Ramsay, N. and Glover, B.,2005. MYB-bHLH-WD40protein complex and the evolution ofcellular diversity. Trends in Plant Science10,63-70.
    157. Rao, M., Paliyath, G. and Ormrod, D.,1996. Ultraviolet-B-and ozone-induced biochemicalchanges in antioxidant enzymes of Arabidopsis thaliana. Plant Physiology110,125-136.
    158. Rein, M.,2005. Copigmentation reactions and color stability of berry anthocyanins. University ofHelsinki.
    159. Rentzsch, M., Quast, P., Hillebrand, S., Mehnert, J. and Winterhalter, P.,2007. Isolation andidentification of5-carboxy-pyranoanthocyanins in beverages from cherry (Prunus cerasus L.).Innovative Food Science&Emerging Technologies8,333-338.
    160. Riechmann, J., Heard, J., Martin, G., Reuber, L., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.,Samaha, R. and Creelman, R.,2000. Arabidopsis transcription factors: genome-wide comparativeanalysis among eukaryotes. Science290,2105-2110.
    161. Rizzon, C., Ponger, L. and Gaut, B.S.,2006. Striking similarities in the genomic distribution oftandemly arrayed genes in Arabidopsis and rice. PLoS Computational Biology2, e115.
    162. Rochfort, S., Imsic, M., Jones, R., Trenerry, V. and Tomkins, B.,2006. Characterization offlavonol conjugates in immature leaves of pak choi [Brassica rapa L. ssp. chinensis L.(Hanelt.)]by HPLC-DAD and LC-MS/MS. Journal of Agricultural and Food Chemistry54,4855-4860.
    163. Romani, A., Pinelli, P., Galardi, C., Corti, G., Agnelli, A., Vincieri, F. and Heimler, D.,2003.Flavonoids in leaves of black cabbage (Brassica oleracea var. acephala DC. subvar. viridis cv.serotina) grown on different soils and at different elevations. Italian Journal of Food Science15,197-205.
    164. Romani, A., Vignolini, P., Isolani, L., Ieri, F. and Heimler, D.,2006. HPLC-DAD/MScharacterization of flavonoids and hydroxycinnamic derivatives in turnip tops (Brassica rapa L.subsp. sylvestris L.). Journal of Agricultural and Food Chemistry54,1342-1346.
    165. Rubin, G., Tohge, T., Matsuda, F., Saito, K. and Scheible, W.,2009. Members of the LBD familyof transcription factors repress anthocyanin synthesis and affect additional nitrogen responses inArabidopsis. The Plant Cell21,3567-3584.
    166. Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T. andFernie, A.,2013. The flavonoid biosynthetic pathway in Arabidopsis: Structural and geneticdiversity. Plant Physiology and Biochemistry72,21-34
    167. Salvi, S. and Tuberosa, R.,2005. To clone or not to clone plant QTLs: present and futurechallenges. Trends in Plant Science10,297-304.
    168. Sankoff, D. and Nadeau, J.H.,2000. Comparative genomics, Springer.
    169. Saslowsky, D. and Winkel‐Shirley, B.,2001. Localization of flavonoid enzymes in Arabidopsisroots. The Plant Journal27,37-48.
    170. Scalzo, R., Genna, A., Branca, F., Chedin, M. and Chassaigne, H.,2008. Anthocyanincomposition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var.capitata) and its stability in relation to thermal treatments. Food Chemistry107,136-144.
    171. Schaart, J., Dubos, C., Romero De La Fuente, I., Houwelingen, A., Vos, R., Jonker, H., Xu, W.,Routaboul, J.M., Lepiniec, L. and Bovy, A.G.,2013. Identification and characterization of MYB‐bHLH‐WD40regulatory complexes controlling proanthocyanidin biosynthesis in strawberry(Fragaria×ananassa) fruits. New Phytologist197,454-467.
    172. Schijlen, E., Ric de Vos, C., van Tunen, A. and Bovy, A.,2004. Modification of flavonoidbiosynthesis in crop plants. Phytochemistry65,2631-2648.
    173. Schoenbohm, C., Martens, S., Eder, C., Forkmann, G. and Weisshaar, B.,2000. Identification ofthe Arabidopsis thaliana flavonoid3'-hydroxylase gene and functional expression of the encodedP450enzyme. Biological Chemistry381,749-753.
    174. Schranz, M., Lysak, M. and Mitchell-Olds, T.,2006. The ABC's of comparative genomics in theBrassicaceae: building blocks of crucifer genomes. Trends in Plant Science11,535-542.
    175. Séguéla, M., Briat, J., Vert, G. and Curie, C.,2008. Cytokinins negatively regulate the root ironuptake machinery in Arabidopsis through a growth‐dependent pathway. The Plant Journal55,289-300.
    176. Sémon, M. and Wolfe, K.H.,2007. Consequences of genome duplication. Current Opinion inGenetics&Development17,505-512.
    177. Sherma, J.,2003. High-performance liquid chromatography/mass spectrometry analysis ofbotanical medicines and dietary supplements: a review. Journal of AOAC International86,873-881.
    178. Shirley, B., Hanley, S. and Goodman, H.,1992. Effects of ionizing radiation on a plant genome:analysis of two Arabidopsis transparent testa mutations. The Plant Cell4,333-347.
    179. Shirley, B., Kubasek, W., Storz, G., Bruggemann, E., Koornneef, M., Ausubel, F. and Goodman,H.,1995. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. The Plant Journal8,659-671.
    180. Shufflebottom, D., Edwards, K., Schuch, W. and Bevan, M.,1993. Transcription of two membersof a gene family encoding phenylalanine ammonia-lyase leads to remarkably different cellspecificities and induction patterns. The Plant Journal3,835-845.
    181. Sompornpailin, K., Makita, Y., Yamazaki, M. and Saito, K.,2002. A WD-repeat-containingputative regulatory protein in anthocyanin biosynthesis in Perilla frutescens. Plant MolecularBiology50,485-495.
    182. Sorensen, A., Kr ber, S., Unte, U., Huijser, P., Dekker, K. and Saedler, H.,2003. The ArabidopsisABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. The PlantJournal33,413-423.
    183. Sousa, C., Lopes, G., Pereira, D.M., Taveira, M., Valent o, P., Seabra, R.M., Pereira, J.A.,Baptista, P., Ferreres, F. and Andrade, P.B.,2007. Screening of antioxidant compounds duringsprouting of Brassica oleracea L. var. costata DC. Combinatorial Chemistry&High ThroughputScreening10,377-386.
    184. Sousa, C., Valent o, P., Rangel, J., Lopes, G., Pereira, J.A., Ferreres, F., Seabra, R.M. andAndrade, P.B.,2005. Influence of two fertilization regimens on the amounts of organic acids andphenolic compounds of tronchuda cabbage (Brassica oleracea L. var. costata DC). Journal ofAgricultural and Food Chemistry53,9128-9132.
    185. Springob, K., Nakajima, J.-i., Yamazaki, M. and Saito, K.,2003. Recent advances in thebiosynthesis and accumulation of anthocyanins. Natural Product Reports20,288-303.
    186. Steyn, W., Wand, S., Holcroft, D. and Jacobs, G.,2002. Anthocyanins in vegetative tissues: aproposed unified function in photoprotection. New Phytologist155,349-361.
    187. Steyn, W., Wand, S., Holcroft, D. and Jacobs, G.,2002. Anthocyanins in vegetative tissues: Aproposed unifi ed function in photoprotection. New Phytologist155,349-361.
    188. Stintzing, F. and Carle, R.,2004. Functional properties of anthocyanins and betalains in plants,food, and in human nutrition. Trends in Food Science&Technology15,19-38.
    189. Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K. and Weisshaar, B.,2007.Differential regulation of closely related R2R3-MYB transcription factors controls flavonolaccumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal50,660-677.
    190. Stracke, R., Jahns, O., Keck, M., Tohge, T., Niehaus, K., Fernie, A.R. and Weisshaar, B.,2010.Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycosideaccumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12-andMYB111-independent flavonol glycoside accumulation. New Phytologist188,985-1000.
    191. Stracke, R., Werber, M. and Weisshaar, B.,2001. The R2R3-MYB gene family in Arabidopsisthaliana. Current Opinion in Plant Biology4,447-456.
    192. Sun, Y., Li, H. and Huang, J.,2012. Arabidopsis TT19functions as a carrier to transportanthocyanin from the cytosol to tonoplasts. Molecular Plant5,387-400.
    193. Sweeney, M., Thomson, M., Pfeil, B. and McCouch, S.,2006. Caught red-handed: Rc encodes abasic helix-loop-helix protein conditioning red pericarp in rice. The Plant Cell18,283-294.
    194. Syv nen, A.,2001. Accessing genetic variation: genotyping single nucleotide polymorphisms.Nature Reviews Genetics2,930-942.
    195. Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., Uemura, A., Utsushi, H.,Tamiru, M. and Takuno, S.,2013a. QTL-seq: rapid mapping of quantitative trait loci in rice bywhole genome resequencing of DNA from two bulked populations. The Plant Journal74,174-183.
    196. Takagi, H., Uemura, A., Yaegashi, H., Tamiru, M., Abe, A., Mitsuoka, C., Utsushi, H., Natsume,S., Kanzaki, H. and Matsumura, H.,2013b. MutMap-Gap: whole-genome resequencing ofmutant F2progeny bulk combined with de novo assembly of gap regions identifies the rice blastresistance gene Pii. New Phytologist200,276-283.
    197. Tamura, K., Dudley, J., Nei, M. and Kumar, S.,2007. MEGA4: molecular evolutionary geneticsanalysis (MEGA) software version4.0. Molecular Biology and Evolution24,1596-1599.
    198. Tapas, A., Sakarkar, D. and Kakde, R.,2008. Flavonoids as Nutraceuticals: A Review. TropicalJournal of Pharmaceutical Research7,1089-1099.
    199. Tatsuzawa, F., Saito, N., Shinoda, K., Shigihara, A. and Honda, T.,2006. Acylated cyanidin3-sambubioside-5-glucosides in three garden plants of the Cruciferae. Phytochemistry67,1287-1295.
    200. Tian, F., Bradbury, P.J., Brown, P.J., Hung, H., Sun, Q., Flint-Garcia, S., Rocheford, T.R.,McMullen, M.D., Holland, J.B. and Buckler, E.S.,2011. Genome-wide association study of leafarchitecture in the maize nested association mapping population. Nature Genetics43,159-162.
    201. Tohge, T., Nishiyama, Y., Hirai, M., Yano, M., Nakajima, J., Awazuhara, M., Inoue, E., Takahashi,H., Goodenowe, D., Kitayama, M., Noji, M., Yamazaki, M. and Saito, K.,2005. Functionalgenomics by integrated analysis of metabolome and transcriptome of Arabidopsis plantsover-expressing an MYB transcription factor. The Plant journal42,218-235.
    202. Toledo-Ortiz, G., Huq, E. and Quail, P.H.,2003. The Arabidopsis basic/helix-loop-helixtranscription factor family. The Plant Cell15,1749-1770.
    203. V li, ü., Brandstr m, M., Johansson, M. and Ellegren, H.,2008. Insertion-deletionpolymorphisms (indels) as genetic markers in natural populations. BMC Genetics9,8.
    204. Vallejo, F., Tomás-Barberán, F. and Ferreres, F.,2004. Characterisation of flavonols in broccoli(Brassica oleracea L. var. italica) by liquid chromatography–UV diode-arraydetection–electrospray ionisation mass spectrometry. Journal of Chromatography A1054,181-193.
    205. Velasco, P., Francisco, M., Moreno, D.A., Ferreres, F., García-Viguera, C. and Cartea, M.E.,2011. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus bysimultaneous identification of glucosinolates and phenolics. Phytochemical Analysis22,144-152.
    206. Walker, A.R., Davison, P.A., Bolognesi-Winfield, A.C., James, C.M., Srinivasan, N., Blundell,T.L., Esch, J.J., Marks, M.D. and Gray, J.C.,1999. The TRANSPARENT TESTA GLABRA1locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis,encodes a WD40repeat protein. The Plant Cell11,1337-1349.
    207. Wang, H., Wu, J., Sun, S., Liu, B., Cheng, F., Sun, R. and Wang, X.,2011a. Glucosinolatebiosynthetic genes in Brassica rapa. Gene487,135-142.
    208. Wang, X., Lou, P., Bonnema, G., Yang, B., He, H., Zhang, Y. and Fang, Z.,2005. Linkagemapping of a dominant male sterility gene Ms-cd1in Brassica oleracea. Genome48,848-854.
    209. Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.-H., Bancroft, I. andCheng, F.,2011. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics43,1035-1039.
    210. Wang, Y., Sun, S., Liu, B., Wang, H., Deng, J., Liao, Y., Wang, Q., Cheng, F., Wang, X. and Wu,J.,2011. A sequence-based genetic linkage map as a reference for Brassica rapapseudochromosome assembly. BMC Genomics12,239.
    211. Wanner, L.A., Li, G., Ware, D., Somssich, I.E. and Davis, K.R.,1995. The phenylalanineammonia-lyase gene family in Arabidopsis thaliana. Plant Molecular Biology27,327-338.
    212. Winkel-Shirley, B.,2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry,cell biology, and biotechnology. Plant Physiology126,485-493.
    213. Wu, X. and Prior, R.L.,2005. Identification and characterization of anthocyanins byhigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry incommon foods in the United States: vegetables, nuts, and grains. Journal of Agricultural andFood Chemistry53,3101-3113.
    214. Xu, B., Li, J., Zhang, X., Wang, R., Xie, L. and Chai, Y.,2007. Cloning and molecularcharacterization of a functional flavonoid3′-hydroxylase gene from Brassica napus. Journal ofPlant Physiology164,350-363.
    215. Yamasaki, H., Sakihama, Y. and Ikehara, N.,1997. Flavonoid-peroxidase reaction as adetoxification mechanism of plant cells against H2O2. Plant Physiology115,1405-1412.
    216. Yan, M., Liu, X., Liu, Z., Guan, C., Yuan, M. and Xiong, X.,2008. Cloning and ExpressionAnalysis of Dihydroflavonol4-Reductase Gene in Brassica juncea. Acta Agronomica Sinica34,1-7.
    217. Yi, T., Leung, K.S., Lu, G.H., Zhang, H. and Chan, K.,2007. Identification and determination ofthe major constituents in traditional Chinese medicinal plant Polygonum multiflorum Thunb byHPLC coupled with PAD and ESI/MS. Phytochemical Analysis18,181-187.
    218. Yin, R., Messner, B., Faus-Kessler, T., Hoffmann, T., Schwab, W., Hajirezaei, M., von Saint Paul,V., Heller, W. and Sch ffner, A.,2012. Feedback inhibition of the general phenylpropanoid andflavonol biosynthetic pathways upon a compromised flavonol-3-O-glycosylation. Journal ofExperimental Botany63,2465-2478.
    219. Yonekura-Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara,S., Inoue, E., Kuromori, T., Ito, T. and Shinozaki, K.,2012. Two glycosyltransferases involved inanthocyanin modification delineated by transcriptome independent component analysis inArabidopsis thaliana. The Plant Journal69,154-167.
    220. Yonekura-Sakakibara, K., Tohge, T., Matsuda, F., Nakabayashi, R., Takayama, H., Niida, R.,Watanabe-Takahashi, A., Inoue, E. and Saito, K.,2008. Comprehensive flavonol profiling andtranscriptome coexpression analysis leading to decoding gene-metabolite correlations inArabidopsis. The Plant cell20,2160-2176.
    221. Yu, X., Wang, H., Zhong, W., Bai, J., Liu, P. and He, Y.,2013. QTL mapping of leafy heads bygenome resequencing in the RIL population of Brassica rapa. PloS One8, e76059.
    222. Yuan, Y., Chiu, L.-W. and Li, L.,2009. Transcriptional regulation of anthocyanin biosynthesis inred cabbage. Planta230,1141-1153.
    223. Zhang, F., Gonzalez, A., Zhao, M., Payne, C. and Lloyd, A.,2003. A network of redundant bHLHproteins functions in all TTG1-dependent pathways of Arabidopsis. Development130,4859-4869.
    224. Zhang, J., Lu, Y., Yuan, Y., Zhang, X., Geng, J., Chen, Y., Cloutier, S., McVetty, P. and Li, G.,2009. Map-based cloning and characterization of a gene controlling hairiness and seed coat colortraits in Brassica rapa. Plant Molecular Biology69,553-563.
    225. Zhu, H., Fitzsimmons, K., Khandelwal, A. and Kranz, R.,2009. CPC, a single-repeat R3MYB, isa negative regulator of anthocyanin biosynthesis in Arabidopsis. Molecular Plant2,790-802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700