中和抗体结合MCP-1对狂犬病暴露后预防研究及嵌合糖蛋白重组狂犬病病毒的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狂犬病是一种致死性的中枢神经嗜性的人兽共患传染病,病原是狂犬病病毒,能感染人和所有温血动物。据世界卫生组织(WHO)报道,每年造成全世界大约26,000~55,000人的死亡,其中绝大多数发生于非洲和亚洲的发展中国家,对人类的公共卫生一直存在着威胁。在亚洲、非洲和拉丁美洲,犬源的狂犬病毒是人类感染狂犬病的主要来源。在美国,犬源的狂犬病通过宠物免疫计划得到控制,而来源于蝙蝠等野生动物感染是引起人狂犬病的主要原因。目前暴露后预防(PEP)主要包括接种疫苗和抗狂犬病免疫球蛋白等措施,尽管许多报道表明一旦出现神经症状,狂犬病是没有办法治疗的。但是如果在暴露后能够及时采取PEP措施,使外周免疫效应因子和抗体进入中枢神经,动物感染病毒后即使到达了脑部,还是可以有效阻止狂犬病的发生。尽管有通过昏迷疗法(Milwaukee Protocol)及其衍生法治疗狂犬病的案例,但该方法的有效性一直存在质疑。
     我们以前的研究表明,表达GM-CSF等免疫刺激因子的重组狂犬病毒(rRABVs)可通过激活、聚集树突状细胞(Dendritic cells,DCs),在中枢神经系统(CNS)诱导表达高水平的趋化因子及细胞因子,增强血脑屏障(BBB)通透性,提高中和抗体(VNA)水平,进而消除CNS中的病毒,致使避免街毒株狂犬病感染的发生;同时MCP-1增强BBB通透性后提高了灭活重组病毒对街毒感染的治疗效果,因此中和抗体与BBB通透性的增强是狂犬病暴露后有效预防的主要因素。为了研究狂犬病病毒中和抗体结合MCP-1对小鼠暴露狂犬病街毒后的预防效果,在ICR小鼠肌肉感染10IMLD50狂犬病街毒株DRV后不同时间点,以静脉注射(i.v.)中和抗体和(或)脑内接种(i.c.)单核细胞趋化蛋白1(MCP-1)进行处理。结果发现,在感染街毒后3d和5d开始处理,中和抗体结合MCP-1的方法均具有显著的保护作用。通过病毒滴定、组织切片、免疫组化等方法检测存活和死亡小鼠脑内的病毒含量,发现存活小鼠中检测不到病毒,死亡小鼠脑内检测到较高的病毒滴度;通过中和实验与ELISA方法检测抗体水平发现,存活小鼠脑内检测到显著升高的中和抗体与IgG水平,死亡小鼠脑内检测不到中和抗体与检测到较低的IgG水平。数据说明,中和抗体结合MCP-1的方法能成功地清除小鼠CNS中的病毒,从而阻止狂犬病感染的发生。
     由于存活的ICR小鼠脑内检测到较高水平的κ轻链mRNA水平(代表B细胞数量),为了研究B细胞在小鼠狂犬病暴露后预防中的作用,我们选取B细胞敲除的C57BL/6J小鼠复制ICR小鼠的实验。在B细胞缺失小鼠肌肉感染DRV后,用中和抗体和MCP-1进行处理。结果发现,小鼠感染后5d开始处理的存活率只有25%,而在5d和7d重复注射MCP-1后的存活率上升到75%。在存活小鼠中检测到显著升高的中和抗体与较高的IgG水平,而检测不到狂犬病病毒;相反在死亡小鼠脑内检测到较高的病毒滴度,而检测不到中和抗体。在存活B细胞敲除小鼠脑内检测不到κ轻链mRNA水平,说明即使在没有分泌抗体B细胞的情况下,只要BBB通透性持续增强,足够的中和抗体进入CNS,中和抗体结合MCP-1的方法就能成功地清除B细胞缺失小鼠CNS中的病毒,从而阻止小鼠感染狂犬病。
     为了研究中和抗体结合MCP-1对狂犬病暴露后预防的保护机制,我们分成未感染与感染DRV两种情况进行探讨。在未感染DRV情况下,中和抗体与MCP-1同时处理后ICR小鼠脑内检测到显著升高的中和抗体,单独处理中和抗体组小鼠脑内检测不到中和抗体水平,说明MCP-1使BBB通透性增高,外周的VNA进入脑组织中,使脑内的中和抗体显著升高;在感染DRV情况下,发现MCP-1处理后脑内BBB通透性在12h后开始上升,36h时达到峰值,处理48h后开始下降,逐渐恢复正常水平,与之前的报道保持一致的趋势。而紧密连接分子(Occludin、Claudin-5和ZO-1)表达量随着NaF吸收量的增加而下调,脑内中和抗体水平随着BBB通透性的升高而增高,病毒含量随着中和抗体水平的升高而降低。这些结果说明,中和抗体结合MCP-1的方法利用MCP-1增强BBB通透性的功能,允许外周的中和抗体进入CNS中,从而达到清除病毒,阻止狂犬病发生的目的,再一次证实了中和抗体与BBB通透性对清除CNS中病毒的必要性。
     研究表明,狂犬病病毒的G蛋白表达量与致病性呈负相关,而强弱毒株(B2C和DRV)G蛋白的表达量存在差异。为了研究G蛋白的跨膜区、膜内区与G蛋白表达量及病毒致病力的相关性,我们利用实验室构建的B2C反向遗传系统,将DRV G蛋白跨膜区(TM)和膜内区(CT)替换B2C G蛋白的相对应区域,成功拯救嵌合病毒并命名为rB2C-(DRV-TM+CT)、rB2C-(DRV-CT)和rB2C-(DRV-TM),构建的嵌合病毒与母本病毒具有相似的复制和增殖水平,关于嵌合病毒G蛋白的表达量及其与病毒致病性的相关性还有待进一步的研究。
     综上所述,只要BBB的通透性持续增高,中和抗体结合MCP-1的方法能够有效的阻止免疫系统完善或B细胞缺陷的小鼠暴露狂犬病后疾病的发生。
Rabies, which is caused by rabies virus, has been known as a deadly neurological zoonosis of bothhumans and other warm-blooded animals and remains a major threat to public health. According to thereport from WHO, rabies causes about26,000to55,000deaths worldwide each year, most of whichoccur in Asia and Africa. Canine rabies is responsible for more than90%of the human cases in Asia,Africa and Latin America. In the United States, dog rabies has been largely brought under controlthrough pet vaccination programs. Most of the human cases in the USA have been associated withrabies virus (RABV) found in wildlife, especially bats. The postexposure prophylaxis (PEP) of rabiesmainly includes vaccination and administration of anti-rabies immunoglobulin. Although it is widelyaccepted that there is no effective treatment and rabies is almost always fatal once neurologicalsymptoms develop, PEP is very effective if it is initiated promptly after exposure, because it permitsimmune effectors and antibodies to enter the central nervous system (CNS) tissues and clear virus fromCNS and prevent the development of rabies even if virus exist in the brain. Although human survivorshave been reported recently after treatment with the Milwaukee Protocol or a modification thereof, theeffectiveness of the method has been questioned.
     Our previous studies revealed that intracerebral administration of rRABV-GMCSF or a combinationof inactivated rRABV and monocyte chemotactic protein-1(MCP-1) can prevent mice from developingrabies by activating and recruiting dentritic cells, stimulating the production of virus neutralizingantibody (VNA), enhancing the BBB permeability, and clearing RABV from the CNS. To investigate ifintravenous administration of VNA together with (MCP-1) can protect mice from RABV infection, ICRmice were infected intramuscularly with10IMLD50(50%mouse intramuscular lethal dose) of a streetRABV (DRV-Mexico) then treated with VNA(i.v.) and (or) MCP-1(i.c.) at different time points afterinfection. It was found that significantly more mice treated with VNA and MCP-1at days3and5afterinfection with DRV were protected from developing rabies than sham-treated mice. No virus could bedetected in the brains of surviving mice, in contrast, high titers of virus were measured in the brains ofdead mice, by virus titration, pathology and immunopathochemestry. On the other hand, no antibodiescould be detected in the brains of dead mice, whereas high titers of VNA and Ig G were measured in thebrains of surviving animals, using FAVN and ELISA testes. The data showed that administration ofVNA and MCP-1can effectively clear virus from the CNS and prevent mice from developing rabies.
     Since high level of κ light chain mRNA was measured in the brains of surviving ICR mice, in orderto exclude the possibility that B cells entering into the CNS are absolutely required to clear RABV fromthe CNS, the experiment as summarized in ICR mice was repeated in B-cell deficient mice. The resultsshowed that only25%B cells k.o. mice survived when treated with MCP-1once at5d.p.i, however, thesurvivorship was significantly enhanced (up to75%) as long as MCP-1was repeatedly treated at day5and7post infection. Similarly, no virus and high level of neutralizing antibodies could be detected inthe brains of surviving mice, whereas no antibodies and high titers of virus was measured in the brains of dead mice. The data showed that administration of VNA and MCP-1can effectively clear virus fromthe CNS and prevent developing rabies in B cells k.o. mice once the blood-brain barrier (BBB)permeability is enhanced, even absence of VNA-producing plasma cells.
     To investigate the protection mechanism of administration of VNA and MCP-1for PEP of rabies,answers can be searched in possible two situations: with infection and without infection of rabies virus.In the case without DRV infection, the significant high neutralizing antibody was detected in the brainsof mice treated with VNA and MCP-1, while no VNA was measured in the VNA only-treated group.The result indicated that MCP-1enhanced the BBB permeability, which allows VNA entering the CNSand increases the level of VNA in the brains. In the case of DRV infection, results demonstrated thatBBB permeability started to increase at12h after MCP-1treatment and peeked at36h, then declined tonormal at48h. The expression of tight junction proteins (Occludin, Claudin-5and ZO-1) was reducedas the level of NaF in the brains increased. On the other hand,increasing BBB permeability enhancedthe level of VNA, and which reduced the titers of virus in the brains. In summary, MCP-1enhanced theBBB permeability, permitted VNA enter the CNS and cleared RABV from the CNS, then prevented thedevelopment of rabies. It is confirmed that it is needed for both VNA and enhanced BBB permeabilityin clearing virus from the CNS.
     Previous studies showed that pathogenicity of rabies virus variants inversely correlates withglycoprotein expression levels. There is an obvious difference in G protein expression levels betweenB2C (low virulent) and DRV (highly virulent) virus strains. To investigate the correlation oftransmembrane anchor (TM) and cytoplasmic domain (CT) of G protein invovled in the glycoproteinexpression levels and pathogenicity of rabies virus, we construct B2C recombinant virus with chimericDRV G protein (TM and CT) using the B2C reverse genetics system. The chimeric viruses wererescued and designated as rB2C-(DRV-TM+CT), rB2C-(DRV-CT) and rB2C-(DRV-TM). It was foundthat no significant difference of virus growth kinetics between the chimeric viruses and parental virus.Further studies need to be conducted to address the virus glycoprotein expression and its correlationwith the viral pathogenicity.
     In conclusion, intravenous administration of virus neutralizing antibodies can clear rabies virus fromthe CNS in both immunocompetent and immunocompromised mice as long as the blood-brain barrierpermeability is enhanced.
引文
1.陈祎招.脑胶质瘤细胞对血脑屏障的作用及其分子机制[博士学位论文].广州:第一军医大学,2003.
    2.董小平,等.血脑屏障细胞组成研究进展[J].中国实验方剂学杂志,2012,18(8):281-284.
    3.贺文琦.川金丝猴源柯萨奇B3病毒的分子特征及其致病性初步研究[博士学位论文].长春:吉林大学,2009.
    4.黄飞.狂犬病弱毒疫苗株SRV9对街毒暴露后免疫保护及其机制初步研究[硕士学位论文].长春:吉林大学,2013.
    5.黄莹.狂犬病病毒CTN株反向遗传系统的建立[博士学位论文].长春:吉林大学,2009.
    6.郏自明. SABC法对伪狂犬病毒鄂A株在仔猪体内的定位研究[硕士学位论文].武汉:华中农业大学,2005.
    7.鞠美芳.狂犬病毒aG株糖蛋白膜外区的原核表达及单克隆抗体的制备[博士学位论文].北京:中国农业科学院,2012.
    8.桑洁,等.血脑屏障分子组成研究进展[J].国际药学研究杂志,2011,38(3):201-205.
    9.孙程龙.狂犬病病毒SRV9株糖蛋白333位氨基酸变异对免疫原性的影响[硕士学位论文].长春:吉林大学,2012.
    10.王育胜.脑胶质瘤动物模型中血脑屏障紧密连接的变化[硕士学位论文].广州:南方医科大学,2009.
    11.王化磊.表达免疫刺激因子的重组狂犬疫苗对狂犬病的暴露前及暴露后预防研究[博士学位论文].长春:吉林大学,2010.
    12.王喜军.表达狂犬病病毒G蛋白重组犬瘟热弱毒疫苗株的研究[博士学位论文].北京:中国农业科学院,2012.
    13.王晓虎.狂犬病病毒荧光抗体病毒中和试验实验室检测方法的建立及应用[硕士学位论文].长春:吉林大学,2007.
    14.温永俊.表达树突状细胞激活因子重组狂犬病病毒的构建及其免疫学研究[博士学位论文].北京:中国农业科学院,2010.
    15.周明.狂犬病毒野毒株的分离鉴定及狂犬病重组弱毒疫苗的研究[博士学位论文].北京:中国农业大学,2013.
    16. Abbott, N.J., et al. Structure and function of the blood-brain barrier[J]. Neurobiology of disease,2010,37:13-25.
    17. Akaike, T., et al. Effect of neurotropic virus infection on neuronal and inducible nitric oxidesynthase activity in rat brain[J]. Journal of neurovirology,1995,1:118-125.
    18. Albertini, A.A., et al. Isolation and crystallization of a unique size category of recombinant Rabiesvirus Nucleoprotein-RNArings[J]. Journal of structural biology,2007,158:129-133.
    19. Albertini, A.A., et al. Crystal structure of the rabies virus nucleoprotein-RNA complex[J]. Science,2006,313:360-363.
    20. Albertini, A.A., et al. Rabies virus transcription and replication. In: Advances in Virus Research(Volume79) Elsevier Inc. France,2011, pp:1-22.
    21. Arai, Y.T., et al. New lyssavirus genotype from the Lesser Mouse-eared Bat (Myotis blythi),Kyrghyzstan[J]. Emerging infectious diseases,2003,9:333-337.
    22. Ballabh, P., et al. The blood-brain barrier: an overview: structure, regulation, and clinicalimplications[J]. Neurobiology of disease,2004,16:1-13.
    23. Baloul, L., et al. Up-regulation of Fas ligand (FasL) in the central nervous system: a mechanism ofimmune evasion by rabies virus[J]. Journal of neurovirology,2004,10:372-382.
    24. Baltazard, M., et al. Prevention of human rabies; treatment of persons bitten by rabid wolves inIran[J]. Bulletin of the World Health Organization,1954,10:797-803.
    25. Barker C.F, et al. Immunologically privileged sites[J].Adv Immunol,1977,25:1-54.
    26. Barr, J.N., et al. G.W. Role of the intergenic dinucleotide in vesicular stomatitis virus RNAtranscription[J]. Journal of virology,1997,7:1794-1801.
    27. Botvinkin, A.D., et al. Novel lyssaviruses isolated from bats in Russia[J]. Emerging infectiousdiseases,2003,9:1623-1625.
    28. Bourhy, H., et al. Complete cloning and molecular organization of a rabies-related virus, Mokolavirus[J]. The Journal of general virology,1989,70(Pt8):2063-2074.
    29. Butowt, R., et al. Connecting the dots: trafficking of neurotrophins, lectins and diverse pathogensby binding to the neurotrophin receptor p75NTR[J]. The European journal of neuroscience,2003,17:673-680.
    30. Byrne, J.A., et al. Biology of cloned cytotoxic T lymphocytes specific for lymphocyticchoriomeningitis virus. I. Generation and recognition of virus strains and H-2b mutants[J]. JImmunol,1984,133:433-439.
    31. Castel, G., et al. Peptides that mimic the amino-terminal end of the rabies virus phosphoproteinhave antiviral activity[J]. Journal of virology,2009,83:10808-10820.
    32. CDC. Use of a Reduced (4-Dose) Vaccine Schedule for Postexposure Prophylaxis to PreventHuman Rabies[J]. MMWR,2010,59.
    33. CDC. Human rabies—Mississippi,2005[J]. MMWR Morb. Mortal. Wkly. Rep.2006,55:207-208.
    34. CDC. Human rabies—Minnesota,2007[J]. MMWR Morb. Mortal. Wkly. Rep.2008a,57:460-462.
    35. CDC. Human rabies prevention-United States,2008. Recommendations of the AdvisoryCommittee on immunization practices[J]. MMWR Morb. Mortal. Wkly. Report.2008b,57(RR-3):1-28
    36. CDC. Presumptive abortive human rabies-Texas,2009[J]. MMWR Morb. Mortal. Wkly. Report.2010,59:185-190.
    37. CDC. Recovery of a patient from clinical rabies--California,2011[J]. MMWR Morb. Mortal. Wkly.Report.2012,61:61-65.
    38. Charlton, et al. The pathogenesis of rabies and other lyssaviral infections: recent studies[J]. Currenttopics in microbiology and immunology,1994,187:95-119.
    39. Chen Y, et al. Overexpression of monocyte chemoattractant protein1in the brain exacerbatesischemic brain injury and is associated with recruitment of inflammatory cells[J]. J Cereb BloodFlow Metab,2003,23:748-55.
    40. Chenik, M., et al. Mapping the interacting domains between the rabies virus polymerase andphosphoprotein[J]. Journal of virology,1998,72:1925-1930.
    41. Cleaveland, S., et al. Canine vaccination-providing broader benefits for disease control[J]. VetMicrobiol,2006,17:43-50.
    42. Constantine, D.G. Geographic translocation of bats: known and potential problems[J]. Emerginginfectious diseases,2003,9:17-21.
    43. Conzelmann, K.K., et al. Rescue of synthetic genomic RNA analogs of rabies virus byplasmid-encoded proteins[J]. Journal of virology,1994,68:713-719.
    44. Curran, J., et al. Nonsegmented negative-strand RNA virus RNA synthesis in vivo[J]. Virology,2008,371:227-230.
    45. Dietrich JB. The adhesion molecule ICAM-1and its regulation in relation with the blood–brainbarrier[J]. J Neuroimmunol,2002,128:58-68.
    46. Dietzschold, B., et al. Differences in cell-to-cell spread of pathogenic and apathogenic rabies virusin vivo and in vitro[J]. Journal of virology,1985,56:12-18.
    47. Dietzschold, B., et al. Characterization of an antigenic determinant of the glycoprotein thatcorrelates with pathogenicity of rabies virus[J]. Proc NatlAcad Sci U SA,1983,80:70-74.
    48. Dietzschold, B., et al. Biological characterization of human monoclonal antibodies to rabiesvirus[J]. Journal of virology,1990a,64:3087-3090.
    49. Dietzschold, B., et al. Structural and immunological characterization of a linear virus-neutralizingepitope of the rabies virus glycoprotein and its possible use in a synthetic vaccine[J]. Journal ofvirology,1990b,64:3804-3809.
    50. Dietzschold, B., et al. Delineation of putative mechanisms involved in antibody-mediatedclearance of rabies virus from the central nervous system[J]. Proc Natl Acad Sci U S A,1992,89:7252-7256.
    51. Dietzschold, B., et al. Pathogenesis of rabies[J]. CTMI,2005,292:45-56.
    52. Ding, H., et al. Crystal structure of the oligomerization domain of the phosphoprotein of vesicularstomatitis virus[J]. Journal of virology,2006,80:2808-2814.
    53. Dyson, H.J., et al. Coupling of folding and binding for unstructured proteins[J]. Current opinion instructural biology,2002,12:54-60.
    54. Emerson, S.U., et al. Location of the binding domains for the RNA polymerase L and theribonucleocapsid template within different halves of the NS phosphoprotein of vesicular stomatitisvirus[J]. Proc NatlAcad Sci U SA,1987,84:5655-5659.
    55. Faber, M., et al. Overexpression of tumor necrosis factor alpha by a recombinant rabies virusattenuates replication in neurons and prevents lethal infection in mice[J]. Journal of virology,2005,79:15405-15416.
    56. Faber, M., et al. Effective preexposure and postexposure prophylaxis of rabies with a highlyattenuated recombinant rabies virus[J]. Proc NatlAcad Sci U SA,2009,106:11300-11305.
    57. Faber, M., et al. Overexpression of the rabies virus glycoprotein results in enhancement ofapoptosis and antiviral immune response[J]. Journal of virology,2002,76:3374-3381.
    58. Fabis, M.J., et al. Blood-brain barrier changes and cell invasion differ between therapeutic immuneclearance of neurotrophic virus and CNS autoimmunity[J]. Proc Natl Acad Sci U S A,2008,105:15511-15516.
    59. Finke, S., et al. Tracking fluorescence-labeled rabies virus: enhanced green fluorescentprotein-tagged phosphoprotein P supports virus gene expression and formation of infectiousparticles[J]. Journal of virology,2004,78:12333-12343.
    60. Finke, S., et al. Ambisense gene expression from recombinant rabies virus: random packaging ofpositive-and negative-strand ribonucleoprotein complexes into rabies virions[J]. Journal ofvirology,1997,71:7281-7288.
    61. Finke, S., et al. Differential transcription attenuation of rabies virus genes by intergenic regions:generation of recombinant viruses overexpressing the polymerase gene[J]. Journal of virology,2000,74:7261-7269.
    62. Finke, S., et al. Rabies virus matrix protein regulates the balance of virus transcription andreplication[J]. The Journal of general virology,2003,84:1613-1621.
    63. Flamand,A., et al. Mechanisms of rabies virus neutralization[J]. Virology,1993,194:302-313.
    64. Flanagan, E.B., et al. Moving the glycoprotein gene of vesicular stomatitis virus topromoter-proximal positions accelerates and enhances the protective immune response[J]. Journalof virology,2000,74:7895-7902.
    65. Fodor I, et al. Nucleotide and deduced amino acid sequences of the glycoprotein gene of rabiesvirus vaccine strain Vnukovo-32Arch[J]. J Virol,1994,135:451.
    66. Fu, Z.F., et al. Neuronal dysfunction and death in rabies virus infection[J]. Journal of neurovirology,2005,11:101-106.
    67. Fu, Z.F., et al. Differential effects of rabies and borna disease viruses on immediate-early-andlate-response gene expression in brain tissues[J]. Journal of virology,1993,67:6674-6681.
    68. Fu, Z.F., et al. Both the N-and the C-terminal domains of the nominal phosphoprotein of rabiesvirus are involved in binding to the nucleoprotein[J]. Virology,1994,200:590-597.
    69. Gastka, M., et al. Rabies virus binding to the nicotinic acetylcholine receptor alpha subunitdemonstrated by virus overlay protein binding assay[J]. The Journal of general virology,1996,77(Pt10):2437-2440.
    70. Ge, P., et al. Cryo-EM model of the bullet-shaped vesicular stomatitis virus[J]. Science,2010,327:689-693.
    71. Gerard, F.C., et al. Unphosphorylated rhabdoviridae phosphoproteins form elongated dimers insolution[J]. Biochemistry,2007,46:10328-10338.
    72. Gerard, F.C., et al. Modular organization of rabies virus phosphoprotein[J]. Journal of molecularbiology,2009,388:978-996.
    73. Gigant, B., et al. Neither phosphorylation nor the amino-terminal part of rabies virusphosphoprotein is required for its oligomerization[J]. The Journal of general virology,2000,81:1757-1761.
    74. Gostonyi G. Reproduction of lyssaviruses[M]: ultrastructural composition of lyssavirus andfunctional aspects of pathogenesis. In: Rupprecht CE, Dietzschold B,Koprowski H (eds)Lyssaviruses. Springer-Verlag, Berlin Heidelberg New York,1994, pp43-68
    75. Green, T.J., et al. Structure of the vesicular stomatitis virus nucleocapsid in complex with thenucleocapsid-binding domain of the small polymerase cofactor, P[J]. Proc Natl Acad Sci U S A,2009,106:11713-11718.
    76. Green, T.J., et al. Structure of thevesicular stomatitis virusus nucleoprotein-RNA complex[J].Science,2006,313:357-360.
    77. Griffin, D.E. Immune responses to RNA-virus infections of the CNS[J]. Nature reviews.Immunology,2003,3:493-502.
    78. Gupta, A.K., et al. The phosphoprotein of rabies virus is phosphorylated by a unique cellularprotein kinase and specific isomers of protein kinase C[J]. Journal of virology,2000,74:91-98.
    79. Gupta, P.K., et al. A DNA vaccine that encodes rabies virus glycoprotein lacking transmembranedomain enhances antibody response but not protection[J].Acta virologica,2006,50:87-92.
    80. Hattwick, M.A., et al. Recovery from rabies. A case report[J]. Annals of internal medicine,1972,76:931-942.
    81. Hemachudha T, et al. Immunologic study of human encephalitic and paralytic rabies.Preliminaryreport of16patients[J].Am J Med,1988,84:673-677.
    82. Hemachudha, T., et al. Failure of therapeutic coma and ketamine for therapy of human rabies[J]. JNeurovirol,2006,12:407-409.
    83. Hampson, K., et al. Transmission dynamics and prospects for the elimination of canine rabies[J].PLoS biology,2009,7: e53.
    84. Hanham, C.A., et al. Evidence from the anti-idiotypic network that the acetylcholine receptor is arabies virus receptor[J]. Journal of virology,1993,67:530-542.
    85. Heinrich, B.S., et al. Protein expression redirects vesicular stomatitis virus RNA synthesis tocytoplasmic inclusions[J]. PLoS pathogens,2010,6: e1000958.
    86. Hosking MP, et al. The role of chemokines during viral infection of the CNS[J]. PLoS Pathog,2010,6: e1000937.
    87. Hooper, D.C., et al. The central nervous system inflammatory response to neurotropic virusinfection is peroxynitrite dependent[J]. J Immunol,2001,167:3470-3477.
    88. Hooper, D.C., et al. Collaboration of antibody and inflammation in clearance of rabies virus fromthe central nervous system[J]. Journal of virology,1998,72:3711-3719.
    89. Hooper, D.C., et al. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNSbarrier permeability changes, and tissue damage in a mouse model of multiple sclerosis[J]. FASEBjournal: official publication of the Federation of American Societies for Experimental Biology,2000,14:691-698.
    90. Hooper, D.C., et al. The production of antibody by invading B cells is required for the clearance ofrabies virus from the central nervous system[J]. PLoS neglected tropical diseases,2009,3: e535.
    91. Human rabies-Minnesota,2007[J]. MMWR. Morbidity and mortality weekly report,2008,57:460-462.
    92. Iseni, F., et al. Characterization of rabies virus nucleocapsids and recombinant nucleocapsid-likestructures[J]. The Journal of general virology,1998,79(Pt12):2909-2919.
    93. Ivanov, I., et al. Structure of the dimerization domain of the rabies virus phosphoprotein[J]. Journalof virology,2010,84:3707-3710.
    94. Jackson,A.C. Rabies pathogenesis[J]. Journal of neurovirology,2002,8:267-269.
    95. Jackson, A.C., et al. Spontaneous recovery from the encephalomyelitis in mice caused by streetrabies virus[J]. Neuropathology and applied neurobiology,1989,15:459-475.
    96. Jackson, A.C., et al. Apoptosis plays an important role in experimental rabies virus infection[J].Journal of virology,1997,71:5603-5607.
    97. Jacob, Y., et al. Cytoplasmic dynein LC8interacts with lyssavirus phosphoprotein[J]. Journal ofvirology,2000,74:10217-10222.
    98. Jacob, Y., et al. Functional interaction map of lyssavirus phosphoprotein: identification of theminimal transcription domains[J]. Journal of virology,2001,75:9613-9622.
    99. Johnson N, et al. Lyssavirus expression in the brain[J]. J Gen Virol,2006,87:2663-2667.
    100. Kean R.B, et al. The peroxynitrite scavenger uric acid prevents inflammatory cell invasion into thecentral nervous system in experimental allergic encephalomyelitis through maintenance ofblood-central nervous system barrier integrity[J]. J Immunol,2000,165:6511-6518.
    101. Kim, J.V., et al. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acuteviral meningitis[J]. Nature,2009,457:191-195.
    102. Kirk J, et al. Tight junctional abnormality in multiple sclerosis white matter affects all calibres ofvessel and is associatedwith blood-brain barrier leakage and active demyelination[J]. J Pathol,2003,201:319-27.
    103. Koprowski, H., et al. Studies on chick-embryo-adapted rabies virus. V. Protection of animals withantiserum and living attenuated virus after exposure to street strain of rabies virus[J]. J Immunol,1954,72:85-93.
    104. Krebs, J.W., et al. Causes, costs, and estimates of rabies postexposure prophylaxis treatments in theUnited States[J]. Journal of public health management and practice: JPHMP,1998,4:56-62.
    105. Kuang Y, et al. Role of chemokines in the enhancement of BBB permeability and inflammatoryinfiltration after rabies virus infection[J]. Virus Res,2009,144:18-26.
    106. Kuzmin, I.V., et al. Phylogenetic relationships of Irkut and West Caucasian bat viruses within theLyssavirus genus and suggested quantitative criteria based on the N gene sequence for lyssavirusgenotype definition[J]. Virus research,2005,111:28-43.
    107. Kuzmin, I.V., et al. Bat lyssaviruses (Aravan and Khujand) from Central Asia: phylogeneticrelationships according to N, P and G gene sequences[J]. Virus research,2003,97:65-79.
    108. Kuzmin, I.V., et al. Complete genomes of Aravan, Khujand, Irkut and West Caucasian bat viruses,with special attention to the polymerase gene and non-coding regions[J]. Virus research,2008,136:81-90.
    109. Lahaye, X., et al. Functional characterization of Negri bodies (NBs) in rabies virus-infected cells:Evidence that NBs are sites of viral transcription and replication[J]. Journal of virology,2009,83:7948-7958.
    110. Levine, B., et al. Antibody-mediated clearance of alphavirus infection from neurons[J]. Science,1991,254:856-860.
    111. Li, J., et al. A conserved motif in region v of the large polymerase proteins of nonsegmentednegative-sense RNA viruses that is essential for mRNA capping[J]. Journal of virology,2008,82:775-784.
    112. Liao, P.H., et al. Sufficient virus-neutralizing antibody in the central nerve system improves thesurvival of rabid rats[J]. Journal of biomedical science,2012,19:61.
    113. Lin, M.T., et al. Antibody prevents virus reactivation within the central nervous system[J]. JImmunol,1999,162:7358-7368.
    114. Lum H, et al. Oxidative stress and endothelial cell dysfunction[J]. Am J Physol Cell Physiol,2001,280: C719–C41.
    115. Mark K.S., et al. Cerebral microvascular changes in permeability and tight junctions induced byhypoxia-reoxygeanation[J].Am J Physiol Heart Circ Physiol,2002,282: H1485-H94.
    116. Marques, C.P., et al. CXCR3-dependent plasma blast migration to the central nervous systemduring viral encephalomyelitis[J]. J Virol,2011,85:6136-6147.
    117. Marston, D.A., et al. Comparative analysis of the full genome sequence of European bat lyssavirustype1and type2with other lyssaviruses and evidence for a conserved transcription terminationand polyadenylation motif in the G-L3' non-translated region[J]. The Journal of general virology,2007,88:1302-1314.
    118. Martinez, L. Global infectious disease surveillance[J]. Int J Infect Dis,2000,4:222-228.
    119. Matsumoto T, et al. Prevention of cerebral edema and infarct in cerebral reperfusion injury by anantibody to interleukin-8[J]. Lab Invest,1997,77:119–25.
    120. Mavrakis, M., et al. Isolation and characterisation of the rabies virus N degrees-P complexproduced in insect cells[J]. Virology,2003,305:406-414.
    121. Mavrakis, M., et al. Structure and function of the C-terminal domain of the polymerase cofactor ofrabies virus[J]. Journal of molecular biology,2004,343:819-831.
    122. Mavrakis, M., et al. Rabies virus chaperone: identification of the phosphoprotein peptide that keepsnucleoprotein soluble and free from non-specific RNA[J]. Virology,2006,349:422-429.
    123. Mebatsion, T. Extensive attenuation of rabies virus by simultaneously modifying the dynein lightchain binding site in the P protein and replacing Arg333in the G protein[J]. Journal of virology,2001,75:11496-11502.
    124. Mebatsion, T., et al. A CXCR4/CD4pseudotype rhabdovirus that selectively infects HIV-1envelope protein-expressing cells[J]. Cell,1997,90:841-847.
    125. Mebatsion, T., et al. Matrix protein of rabies virus is responsible for the assembly and budding ofbullet-shaped particles and interacts with the transmembrane spike glycoprotein G[J]. Journal ofvirology,1999,73:242-250.
    126. Menager, P., et al. Toll-like receptor3(TLR3) plays a major role in the formation of rabies virusNegri Bodies[J]. PLoS pathogens,2009,5: e1000315.
    127. Merrill J.E, et al. Inflammatory events at the blood brain barrier:regulation of adhesion molecules,cytokines, and chemokines by reactive nitrogen and oxygen species[J]. Brain Behav Immun,1997,11:245-263.
    128. McDermid, R.C., et al. Human rabies encephalitis following bat exposure: failure of therapeuticcoma[J]. CMAJ: Canadian MedicalAssociation journal,2008,178:557-561.
    129. MCW. The Milwaukee Rabies Protocol, version3.1. http://www.mcw.edu/FileLibrary/Groups/Pediatrics/InfectiousDiseases/Milwaukee_rabies_protocol_V3_1.pdf.
    130. Menicken F, et al. Chemokines and chemkine receptors in the CNS a possible role inneuroinflammation and patterning[J]. TIPS,1999,20:73-7.
    131. Meslin, F.X., et al. Rationale and prospects for rabies elimination in developing countries[J]. CurrTop Microbiol Immunol,1994,187:1-26.
    132. Messenger, S.L., et al. Emerging pattern of rabies deaths and increased viral infectivity[J]. EmergInfect Dis,2003,9:151-154.
    133. Morimoto, K., et al. Characterization of a unique variant of bat rabies virus responsible for newlyemerging human cases in NorthAmerica[J]. Proc NatlAcad Sci U SA,1996,93:5653-5658.
    134. Morimoto, K., et al. Reinvestigation of the role of the rabies virus glycoprotein in viralpathogenesis using a reverse genetics approach[J]. Journal of neurovirology,2000,6:373-381.
    135. Morimoto, K., et al. Rabies virus quasispecies: implications for pathogenesis[J]. Proc Natl AcadSci U SA,1998,95:3152-3156.
    136. Morimoto, K., et al. Pathogenicity of different rabies virus variants inversely correlates withapoptosis and rabies virus glycoprotein expression in infected primary neuron cultures[J]. Journalof virology,1999,73:510-518.
    137. Murphy F.A. Rabies pathogenesis[J].Arch Virol,1977,54:279-297.
    138. Murphy P.M. The molecular biology of leukocyte chemoattractant receptors[J]. Ann Rev Immunol,1994,12:593-633.
    139. Neuwelt, E.A. Mechanisms of disease: the blood-brain barrier[J]. Neurosurgery,2004,54:131-140;discussion141-132.
    140. Ogino, T., et al. Histidine-mediated RNA transfer to GDP for unique mRNA capping by vesicularstomatitis virus RNA polymerase[J]. Proc NatlAcad Sci U SA,2010,107:3463-3468.
    141. Owens, R.J., et al. Cytoplasmic domain requirement for incorporation of a foreign envelope proteininto vesicular stomatitis virus[J]. Journal of virology,1993,67:360-365.
    142. Patrick, A. K., et al. Differential pathogenesis between mouse strains resistant and susceptible toTheiler’s virusinduced demyelination[J]. Semin. Virol,1990,1:281-288
    143. Peluso, R.W., et al. Viral proteins required for the in vitro replication of vesicular stomatitis virusdefective interfering particle genome RNA[J]. Virology,1988,162:369-376.
    144. Petty M.A., et al. Junctional complexes of the blood–brain barrier: permeability changes inneuroinflammation[J]. Prog Neurobiol,2002,68:311-23.
    145. Phares, T.W., et al. A peroxynitrite-dependent pathway is responsible for blood-brain barrierpermeability changes during a central nervous system inflammatory response: TNF-alpha is neithernecessary nor sufficient[J]. J Immunol,2007,178:7334-7343.
    146. Phares, T.W., et al. Regional differences in blood-brain barrier permeability changes andinflammation in the apathogenic clearance of virus from the central nervous system[J]. J Immunol,2006,176:7666-7675.
    147. Phares, T.W., et al. Intrathecal humoral immunity to encephalitic RNA viruses[J]. Viruses,2013,5:732-752.
    148. Pilder, S., et al. Deletion of the gene encoding the adenovirus5early region1b21,000-molecular-weight polypeptide leads to degradation of viral and host cell DNA[J]. Journalof virology,1984,52:664-671.
    149. Poch, O., et al. Sequence comparison of five polymerases (L proteins) of unsegmentednegative-strand RNA viruses: theoretical assignment of functional domains[J]. The Journal ofgeneral virology,1990,71(Pt5);1153-1162.
    150. Prabhakar, B.S., et al. Recovery from experimental rabies by adoptive transfer of immune cells[J].The Journal of general virology,1981,56:25-31.
    151. Prehaud C, et al. Virus infection switches TLR-3-positive human neurons to become strongproducers of beta interferon[J]. J Virol,2005,79:12893-12904.
    152. Pulmanausahakul, R., et al. Overexpression of cytochrome C by a recombinant rabies virusattenuates pathogenicity and enhances antiviral immunity[J]. Journal of virology,2001,75:10800-10807.
    153. Qanungo, K.R., et al. Two RNA polymerase complexes from vesicular stomatitis virus-infectedcells that carry out transcription and replication of genome RNA[J]. Proc Natl Acad Sci U S A,2004,101:5952-5957.
    154. Rahmeh, A.A., et al. Molecular architecture of the vesicular stomatitis virus RNA polymerase[J].Proc NatlAcad Sci U SA,2010,107:20075-20080.
    155. Ramakrishna, C., et al. Control of central nervous system viral persistence by neutralizingantibody[J]. Journal of virology,2003,77:4670-4678.
    156. Raux, H., et al. Interaction of the rabies virus P protein with the LC8dynein light chain[J]. Journalof virology,2000,74:10212-10216.
    157. Ray, R.B., et al. Suppression of apoptotic cell death by hepatitis C virus core protein[J]. Virology,1996,226:176-182.
    158. Ribeiro, E.A., et al. Solution structure of the C-terminal nucleoprotein-RNA binding domain of thevesicular stomatitis virus phosphoprotein[J]. Journal of molecular biology,2008,382:525-538.
    159. Ribeiro Ede, A., et al. Binding of rabies virus polymerase cofactor to recombinant circularnucleoprotein-RNAcomplexes[J]. Journal of molecular biology,2009,394:558-575.
    160. Rollins B.J. Chemokines[J].1997, Blood,90:909-28.
    161. Rose, J.K. Complete intergenic and flanking gene sequences from the genome of vesicularstomatitis virus[J]. Cell,1980,19:415-421.
    162. Rosenberg G.A., et al. Matrix Mettaloproteinases and TIMPs are associated withblood brain barrieropening after reperfusion in rat brain[J]. Stroke,1998,29:2189-95.
    163. Roy, A., et al. Lethal silver-haired bat rabies virus infection can be prevented by opening theblood-brain barrier[J]. Journal of virology,2007,81:7993-7998.
    164. Roy, A., et al. Immune evasion by rabies viruses through the maintenance of blood-brain barrierintegrity[J]. Journal of neurovirology,2008,14:401-411.
    165. Roy, A., et al. Failure to open the blood-brain barrier and deliver immune effectors to centralnervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection[J].Journal of virology,2007,81:1110-1118.
    166. Schnell, M.J., et al. Infectious rabies viruses from cloned cDNA[J]. The EMBO Journal,1994,13:4195-4203.
    167. Schoehn, G., et al. Structure of recombinant rabies virus nucleoprotein-RNA complex andidentification of the phosphoprotein binding site[J]. Journal of virology,2001,75:490-498.
    168. Schumacher, C.L., et al. Use of mouse anti-rabies monoclonal antibodies in postexposure treatmentof rabies[J]. The Journal of clinical investigation,1989,84:971-975.
    169. Seif, I., et al. Rabies virulence: effect on pathogenicity and sequence characterization of rabiesvirus mutations affecting antigenic site III of the glycoprotein[J]. Journal of virology,1985,53:926-934.
    170. Sikes, R.K., et al. Effective protection of monkeys against death from street virus by post-exposureadministration of tissue-culture rabies vaccine[J]. Bulletin of the World Health Organization,1971,45:1-11.
    171. Sindern E, et al. Differential release of betachemokines in serum and CSF of patients withrelapsing-remitting multiple sclerosis[J].Acta Neurol Scand,2001,104:88-91.
    172. Sorensen T.L., et al. Chemokine CCL2and chemokine receptor CCR2in early active multiplesclerosis[J]. Eur J Neurol,2004,11:445-9.
    173. Spitsin, S.V., et al. Protection of myelin basic protein immunized mice from free-radical mediatedinflammatory cell invasion of the central nervous system by the natural peroxynitrite scavengeruric acid[J]. Neuroscience letters,2000,292:137-141.
    174. Stanimirovic D, et al. Inflammatory mediators of cerebral endothelium:a role in ischemic braininflammation[J]. Brain Pathol,2000,10:113-126.
    175. Stamatovic S.M., et al. Potential role of MCP-1in endothelial cell tight junction ‘opening’:signaling via Rho and Rho kinase[J]. J Cell Sci,2003,116:4615-28
    176. Stamatovic S.M., et al. Monocyte chemoattractant protein-1regulation of blood-brain barrierpermeability[J]. J Cereb Blood Flow Metab,2005,25:593-606.
    177. Stroop WG.Viral pathogenesis. In: McKendall RR, Stroop WG (eds) Handbook of Neurovirology.Marcel Deckker, New York,1995, pp27-54
    178. Sutton, G., et al. Bluetongue virus VP4is an RNA-capping assembly line[J]. Nature structural&molecular biology,2007,14:449-451.
    179. Tawar, R.G., et al. Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex ofrespiratory syncytial virus[J]. Science,2009,326:1279-1283.
    180. Tordo, N., et al. Completion of the rabies virus genome sequence determination: highly conserveddomains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses[J].Virology,1988,165:565-576.
    181. Toriumi, H., et al. Association of rabies virus nominal phosphoprotein (P) with viral nucleocapsid(NC) is enhanced by phosphorylation of the viral nucleoprotein (N)[J]. Microbiology andimmunology,2004,48:399-409.
    182. Tsiang, H. Neuronal function impairment in rabies-infected rat brain[J]. The Journal of generalvirology,1982,61(Pt2):277-281.
    183. Tuffereau, C., et al. Neuronal cell surface molecules mediate specific binding to rabies virusglycoprotein expressed by a recombinant baculovirus on the surfaces of lepidopteran cells[J].Journal of virology,1998a,72:1085-1091.
    184. Tuffereau, C., et al. Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptorfor rabies virus[J]. The EMBO Journal,1998b,17:7250-7259.
    185. Tuffereau, C., et al. Arginine or lysine in position333of ERA and CVS glycoprotein is necessaryfor rabies virulence in adult mice[J]. Virology,1989,172:206-212.
    186. Wang, H., et al. Intracerebral administration of recombinant rabies virus expressing GM-CSFprevents the development of rabies after infection with street virus[J]. PLoS One,2011,6: e25414.
    187. Wang, Z.W., et al. Attenuated rabies virus activates, while pathogenic rabies virus evades, the hostinnate immune responses in the central nervous system[J]. Journal of virology,2005,79:12554-12565.
    188. Weber C. Novel mechanistic concepts for the control of leukocyte transmigration: specialization ofintegrins, chemokines, and junctional molecules[J]. J Mol Med,2003,81:4-19.
    189. Wen, Y., et al. Rabies virus expressing dendritic cell-activating molecules enhances the innate andadaptive immune response to vaccination[J]. Journal of virology,2011,85:1634-1644.
    190. Whelan, S.P., et al. Transcription and replication initiate at separate sites on the vesicular stomatitisvirus genome[J]. Proc NatlAcad Sci U SA,2002,99:9178-9183.
    191. Whitt, M.A., et al. Glycoprotein cytoplasmic domain sequences required for rescue of a vesicularstomatitis virus glycoprotein mutant[J]. Journal of virology,1989,63:3569-3578.
    192. WHO. Expert Committee on Rabies. World Health Organization technical report series,1992,824:1-84.
    193. Wilde, H. Failures of post-exposure rabies prophylaxis[J]. Vaccine,2007,25:7605-7609.
    194. Willoughby, R.E., et al. Survival after treatment of rabies with induction of coma[J]. The NewEngland journal of medicine,2005,352:2508-2514.
    195. Wright, K.E., et al. Antiviral antibodies attenuate T-cell-mediated immunopathology followingacute lymphocytic choriomeningitis virus infection[J]. Journal of virology,1991,65:3001-3006.
    196. Xiang, Z.Q., et al. Immune effector mechanisms required for protection to rabies virus[J]. Virology,1995,214:398-404.
    197. Yadav, A., et al. MCP-1: chemoattractant with a role beyond immunity: a review[J]. Clinicachimica acta; international journal of clinical chemistry,2010,411:1570-1579.
    198. Yousaf, M.Z., et al. Rabies molecular virology, diagnosis, prevention and treatment[J]. VirologyJournal,2012,9:50.
    199. Zhang, X., et al. Role of intermolecular interactions of vesicular stomatitis virus nucleoprotein inRNAencapsidation[J]. Journal of virology,2008,82:674-682.
    200. Zhao, L., et al. The roles of chemokines in rabies virus infection: overexpression may not alwaysbe beneficial[J]. Journal of virology,2009,83:11808-11818.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700