流产布鲁氏菌毒力基因筛选鉴定及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布鲁氏菌病是一种重要的人畜共患病,其病原布鲁氏菌是一种兼性胞内寄生的革兰氏阴性菌,感染后,主要引起动物流产和人的波状热。布鲁氏菌无经典的毒力因子,如质粒,外毒素,溶细胞素,荚膜或内毒素特性的脂多糖分子,其毒力主要体现在入侵宿主细胞并在胞内存活的能力,基于此,布鲁氏菌能感染宿主建立慢性感染,较难被清除,因此研究布鲁氏菌建立慢性感染和胞内存活所需的基因对于阐明布鲁氏菌的致病机制具有重要意义。本研究主要采用信号标签转座子随机突变技术和基因芯片技术分别筛选鉴定布鲁氏菌建立慢性感染和胞内存活所需基因,为研究布鲁氏菌致病机制提供理论研究资料。
     本研究中,我们通过逐步施压的方法,诱导流产布鲁氏菌S2308产生萘啶酸抗性(Nal)作为筛选标记,以抗性菌株为亲本,构建含8个信号标签的转座子随机突变库,共含有突变株3759株,以BABL/c小鼠为动物模型,共筛选2048株突变株,获得89株减毒株。通过步移PCR鉴定了24株减毒株的插入失活基因,其中获得一株粗糙型布鲁氏菌,鉴定为rfbE基因失活,rfbE基因为布鲁氏菌O-抗原转运系统ATP结合蛋白,为进一步研究该基因的功能,我们通过定向缺失技术构建流产布鲁氏菌rfbE基因缺失株,命名为rfbE,经结晶紫染色和热凝集试验确定rfbE为粗糙表型,生长曲线测定发现rfbE在平台期以后生长略慢于野生株,细胞感染试验发现rfbE缺失株提高了入侵巨噬细胞的能力,但明显减弱其胞内存活的能力,通过形态学分析和荧光染色发现rfbE诱导细胞肿胀坏死。通过对BABL/c小鼠模型致病性分析发现rfbE缺失株明显出现减毒现象,不能在小鼠模型上建立慢性感染。此研究表明,rfbE基因参与LPS合成,是布鲁氏菌毒力所必需的。
     为深入研究rfbE缺失株的特性,我们通过基因芯片筛选rfbE缺失株差异转录基因,发现asp24基因在rfbE中出现明显的上调转录,随后,通过荧光定量PCR和免疫印迹试验表明Asp24上调表达不是粗糙型布鲁氏菌共有的特征,而是与O-抗原ABC转运子缺失引起O-抗原胞内聚集相关,发现一种新的Asp24上调机制。荧光染色试验表明Asp24不是粗糙型布鲁氏菌致死巨噬细胞的原因,酸诱导性试验表明Asp24确实能在酸性条件下被诱导表达,然而Asp24并不是布鲁氏菌抵抗酸性环境所必需的组分。进一步研究发现,Asp24蛋白在胞内环境下被精确调控表达对于布鲁氏菌胞内存活来说是必不可少的。
     布鲁氏菌能在宿主体内建立慢性感染与其胞内存活的特性是分不开的,因此鉴定布鲁氏菌胞内存活所需基因对于理解其胞内存活机制非常重要,后续试验中我们通过基因芯片技术筛选鉴定了布鲁氏菌在巨噬细胞内存活状态下差异转录基因,发现7.82%的基因上调转录,5.4%的基因下调转录,荧光定量PCR验证芯片差异大于5倍的基因,共发现14明显差异转录基因,分别为:AraC转录调控子(AraC),DnaA结构域蛋白(Ddp),雌烯醇转录调控子(EryD),碱性磷酸酶(Alp),鞭毛基因棒状蛋白(FlgF),四型分泌系统VirB9组分(VirB9),原儿茶酸2,3双加氧酶(Hpcd),醛脱氢酶家族蛋白(ALDH),主要推动家族转运子(MFS),镍离子转运透化酶和四个假定蛋白基因(BruAb1_1814,BruAb1_0475,BruAb1_1926,BruAb1_0292),分别参与执行各种不同的功能,本研究表明,布鲁氏菌通过调控多种基因的表达来适应胞内存活的条件,是一个复杂的调控过程。
     流产布鲁氏菌胞内诱导ddp基因,编码一个DNA结合域蛋白,该基因缺失株表现粗糙型布鲁氏菌的特征,但不能被结晶紫染色,免疫印迹试验分析发现, ddp缺失株仅能合成部分O抗原。粘附入侵试验发现ddp缺失株明显提高了入侵巨噬细胞和上皮样细胞的能力,约为S2308株的10-20倍,另外, ddp缺失株与粗糙型布鲁氏菌相似也能诱导巨噬细胞死亡,减弱在巨噬细胞内的复制能力,与S2308相比,明显激活巨噬细胞辅助抗原递呈分子CD40、CD80、CD86和细胞因子IL-6,IL-10和TNF-α的转录。动物试验显示, ddp缺失株不能在小鼠体内建立慢性感染,减弱对小鼠的致病力。本研究表明ddp基因是布鲁氏菌重要的致病基因,是布鲁氏菌毒力所必需的。
     总之,本论文通过信号标签随机突变技术和基因芯片技术筛选鉴定了布鲁氏菌建立慢性感染和胞内存活时所需要的基因,研究了布鲁氏菌rfbE基因的功能,发现了一种新的Asp24上调机制,探讨布鲁氏菌胞内存活的诱导基因,研究了胞内诱导ddp基因的功能,为布鲁氏菌致病机制研究提供了理论研究资料。
Brucellosis is an important zoonotic disease worldwide, and the causative agent is Brucella spp.,which is a species of facultative, intracellular, Gram-negative bacteria that induces abortion and causessterility in domesticated mammals and chronic undulant fever in humans. Brucella has no classicalvirulence factors including plasmid, exotoxins, cytolysins, capsules or endotoxic lipopolysaccharide(LPS) molecules. Virulence of the Brucella species depends on their survival and replication in hostcells, based on this property, Brucella can establish chronic infection in host and it is difficult to beeliminated in vivo, so it is great of significance to identify genes necessary for chronic infection andintracellular survival in Brucella. In this study, signature-tagged mutagenesis (STM) and DNAmicroarray was used to identify the related genes in chronic infection and intracellular survival,respectively, which provide theoretical research materials for Brucella pathogenesis.
     In this study, Brucella abortus strain S2308was induced to resist nalidixic acid (Nal) by graduallyincreasing antibiotic concentration, random mutant libraries with8different tags were constructed usingthe Nal resistance strain as a receptor, including a total of3,759mutants. Among these,2,048mutantswere screened in BABL/c mouse model and89mutants were attenuated for mouse. Inactivated genes of24attenuated mutants were identified by genome waking PCR, of these, one mutant showed roughphenotype with disrupted rfbE gene which encodes O-antigen export system ATP-binding protein. Tofurther study the function of rfbE gene, B. abortus rfbE gene deletion strain was constructed byhomologous recombination, designated as rfbE strain, which rough phenotype was confirmed by violetstaining and heat agglutination. The growth curve showed that rfbE strain has a slightly weaker growththan wild-type strain after the stationary phase. Cell infection assay revealed that rfbE strain enhancedthe ability to invade into macrophages, but reduced intracellular survival, furthermore, rfbE straininduce macrophage oncosis and necrosis by morphological observation and fluorescent staining. Mouseinfection assay showed that rfbE strain cannot establish chronic infection in BABL/c mouse. Theseresults indicated that rfbE gene is involved in LPS synthesis and is necessary for Brucella virulence tomouse.
     To further study the properties of rfbE mutant strain, DNA microarray was used to indentifydifferentially transcripts between rfbE and wild-type (wt) strain, showing that asp24gene issignificantly upregulated in rfbE mutant, qRT-PCR and western blotting confirmed that the Asp24upregulation is not associated with rough phenotype, but associated with O-antigen intracellularsynthesis due to disruption of O-antigen export system, indicating that a novel mechanism of Asp24regulation is found. However, fluorescent staining showed that Asp24upregulation is not the cause ofrough Brucella-induced macrophage death, and although Asp24is induced in acid condition, it is notnecessary for Brucella to resist acidified environment. In the further study, we confirmed that Asp24accurately regulation in intracellular environment plays an indispensable role in survival for Brucella.
     Brucella establishing chronic infection in host is associated with the ability to intracellular survival, so identifying genes necessary for intracellular survival may hold the key to understanding Brucellainfection. In the present study, a microarray assay was used to identify genes differentially expressed inBrucella within RAW264.7cells. The results show that7.82%of Brucella genes were up-regulated and5.40%were down-regulated. qRT-PCR analysis further verified that the levels of14Brucella geneswere up-regulated more than5-fold, including AraC transcriptional regulator (AraC), DnaA domainprotein (Ddp), erythritol transcriptional regulator,(EryD) alkaline phosphatase (Alp), flagellar basalbody rod protein (FlgF), and type IV secretion system protein VirB9(VirB9), homoprotocatechuate2,3-dioxygenase (Hpcd), aldehyde dehydrogenase family of proteins (ALDH), major facilitator familytransporters (MFS), nickel transporter permease (NikC), and four hypothetical proteins, encoded byBruAb1_1814, BruAb1_0475, BruAb1_1926, and BruAb1_0292, which14genes play different roles inbiological pathway. These results revealed that Brucella adapts to intracellular environment under thecontrol of extensive genes regulation, which is a complex process.
     The ddp gene is induced expression in intracellular environment which encode a DNA bindingdomain, B. abortus ddp gene deletion mutant shows the characteristics of rough-type strain, but cannotbe stained purple by crystal violet. Western blotting showed that ddp strain reduced O-antigensynthesis compared to wt strain. Adherence and invasion assay showed that ddp strain enhanced theability to adhere to and invade into macrophages and epithelioid cells, thus increased of>10-20fold.Moreover, as same as the rough-type strains, ddp strain can also induce macrophage death and reducedintracellular survival within macrophages. Compared to S2308strain, ddp strain induced upregulationof antigen presenting related molecules CD40, CD80, CD86and pro-inflammatory cytokines IL-6,IL-10and TNF-α. Additionally, ddp strain cannot establish chronic infection in BABL/c mouse. Allthe results indicated that ddp gene is a virulent-related factor and it is necessary for Brucella to establishchronic infection.
     In summary, the paper identifies Brucella genes necessary for establishing chronic infection andintracellular survival using the technologies of STM and DNA microarray. The works included studyingthe function of rfbE gene, discovering a novel mechanism of Asp24upregulation, identifying genesinduced in intracellular environment and clarifying the function of ddp gene, which provide the novelinformation for Brucella pathogenesis research.
引文
1.曹小安,邱昌庆,秦天达.布鲁氏菌毒力基因的研究状况[J].中国人兽共患病学报2009,25:689-693.
    2.陈建东.霍乱弧菌体内诱导及在海水中生物膜形成相关基因的筛选与鉴定[D]:南京农业大学,2008.
    3.陈建东,张竞,阚飙,钟增涛,朱军.运用体内表达技术筛选霍乱弧菌感染成年小鼠体内诱导表达基因[J].南京农业大学学报2010:103-107.
    4.陈静.利用SCOTS技术筛选肠炎沙门菌在不同源巨噬细胞内的转录序列[D]:扬州大学,2013.
    5.单雪芹,韩先干,张敏,宋军,刘海文,田明星,潘玲,等.实时荧光定量PCR检测RAW264.7巨噬细胞中Th1/Th2型细胞因子转录水平方法的建立及初步应用[J].细胞与分子免疫学杂志2013,29:430-433.
    6.丁家波,程君生,牟巍,毛开荣,张尔利,蒋玉文.布鲁氏菌S2WboA基因缺失株的构建及免疫效果[J].中国农业科学2008,41:2448-2453.
    7.赫明雷,刘思国.信号标签诱导技术的研究进展[J].畜牧兽医科技信息2008:5-7.
    8.胡军勇. SCOTS技术的建立及在副猪嗜血杆菌功能基因筛选中的应用[D]:华中农业大学,2008.
    9.宦海霞,周琼,赵李祥,高崧,刘秀梵.应用DNA芯片技术研究体外表达禽致病性大肠杆菌可能致病基因[J].微生物学报2008,48:103-111.
    10.黎银军.我国布鲁氏菌病时空分布及风险预测研究[D]:中国人民解放军军事医学科学院,2013.
    11.孟江萍,尹一兵,张雪梅,黄远帅,蓝锴.肺炎链球菌体内诱导基因的筛选及初步鉴定[J].微生物学报2006:537-541.
    12.商霖,李薇,李良军,黎璐,张四化,李婷婷,李耀坤,等.胸膜肺炎放线杆菌萘啶酸抗性菌株的选育和信号标签突变株的构建[J].微生物学报2008,48:73-79.
    13.王芳. Ⅱ型猪链球菌体内诱导基因的筛选及鉴定[D]:贵州大学,2009.
    14.徐伟文,李文全.高通量药物靶位基因筛选的策略与方法[J].中国药学杂志2002,37:241-244.
    15.郑娟.利用SCOTS技术筛选鸭疫里氏杆菌体内外差异表达的基因[D]:华中农业大学,2008.
    16.朱寅玉.鸭疫里默氏杆菌转座子突变库的构建以及生物被膜形成相关基因的筛选[D]:扬州大学,2011.
    17. Allen CA, Adams LG, Ficht TA. Transposon-derived Brucella abortus rough mutants are attenuatedand exhibit reduced intracellular survival[J]. Infection and immunity1998,66:1008-1016.
    18. Anderson ES, Paulley JT, Roop RM. The AraC-like transcriptional regulator DhbR is required formaximum expression of the2,3-dihydroxybenzoic acid biosynthesis genes in Brucella abortus2308in response to iron deprivation[J]. Journal of bacteriology2008,190:1838-1842.
    19. Anderson J, Smith H. The metabolism of erythritol by Brucella abortus[J]. Journal of generalmicrobiology1965,38:109-124.
    20. Arellano-Reynoso B, Lapaque N, Salcedo S, Briones G, Ciocchini AE, Ugalde R, Moreno E, et al.Cyclic β-1,2-glucan is a Brucella virulence factor required for intracellular survival[J]. Natureimmunology2005,6:618-625.
    21. Ariza J, Bosilkovski M, Cascio A, Colmenero JD, Corbel MJ, Falagas ME, Memish ZA, et al.Perspectives for the treatment of brucellosis in the21st century: the Ioannina recommendations[J].PLoS Medicine2007,4: e317.
    22. Arocena GM, Sieira R, Comerci DJ, Ugalde RA. Identification of the quorum-sensing target DNAsequence and N-Acyl homoserine lactone responsiveness of the Brucella abortus virB promoter[J].Journal of bacteriology2010,192:3434-3440.
    23. Audic S, Lescot M, Claverie JM, Scholz HC. Brucella microti: the genome sequence of anemerging pathogen[J]. BMC Genomics2009,10:352.
    24. Badger JL, Wass CA, Kim KS. Identification of Escherichia coli K1genes contributing to humanbrain microvascular endothelial cell invasion by differential fluorescence induction[J]. Molecularmicrobiology2000,36:174-182.
    25. Badwey JA, Karnovsky ML. Active oxygen species and the functions of phagocytic leukocytes[J].Annual review of biochemistry1980,49:695-726.
    26. Beaman L, Beaman BL. The role of oxygen and its derivatives in microbial pathogenesis and hostdefense[J]. Annual reviews in microbiology1984,38:27-48.
    27. eck BL, Tabatabai LB, Mayfield JE. A protein isolated from Brucella abortus is a copper-zincsuperoxide dismutase[J]. Biochemistry1990,29:372-376.
    28. Bellaire BH, Roop RM, Cardelli JA. Opsonized virulent Brucella abortus replicates withinnonacidic, endoplasmic reticulum-negative, LAMP-1-positive phagosomes in human monocytes[J].Infection and immunity2005,73:3702-3713.
    29. Benov LT, Fridovich I. Escherichia coli expresses a copper-and zinc-containing superoxidedismutase[J]. Journal of Biological Chemistry1994,269:25310-25314.
    30. Bohin JP. Osmoregulated periplasmic glucans in Proteobacteria1[J]. FEMS microbiology letters2000,186:11-19.
    31. Bricker BJ, Tabatabai L, Judge B, Deyoe B, Mayfield J. Cloning, expression, and occurrence of theBrucella Cu-Zn superoxide dismutase[J]. Infection and immunity1990,58:2935-2939.
    32. Briones G, Inon de Iannino N, Roset M, Vigliocco A, Paulo PS, Ugalde RA. Brucella abortus cyclicβ-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication inHeLa cells[J]. Infect Immun2001,69:4528-4535.
    33. Briones G, Steinberg M, Ugalde RA. Periplasmic cyclic1,2--glucan in Brucella spp. is notosmoregulated[J]. Microbiology1997,143:1115-1124.
    34. Bronner DN, O'Riordan MX, He Y. Caspase-2mediates a Brucella abortus RB51-induced hybridcell death having features of apoptosis and pyroptosis[J]. Frontiers in celluar and infectionmicrobiology2013,3:83.
    35. Buchmeier N, Libby S, Xu Y, Loewen P, Switala J, Guiney D, Fang F. DNA repair is moreimportant than catalase for Salmonella virulence in mice[J]. Journal of clinical investigation1995,95:1047.
    36. Cardoso PG, Macedo GC, Azevedo V, Oliveira SC. Brucella spp. noncanonical LPS: structure,biosynthesis, and interaction with host immune system[J]. Microbial cell factories2006,5:13.
    37. Caro-Hernández P, Fernández-Lago L, de Miguel M-J, Martín-Martín AI, Cloeckaert A, Grilló M-J,Vizcaíno N. Role of the Omp25/Omp31family in outer membrane properties and virulence ofBrucella ovis[J]. Infection and immunity2007,75:4050-4061.
    38. Caroff M, Bundle D, Perry M, Cherwonogrodzky J, Duncan J. Antigenic S-type lipopolysaccharideof Brucella abortus1119-3[J]. Infection and immunity1984,46:384-388.
    39. Cascales E, Christie PJ. The versatile bacterial type IV secretion systems[J]. Nature ReviewsMicrobiology2003,1:137-149.
    40. Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. Brucella evadesmacrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum[J].Journal of experimental medicine2003,198:545-556.
    41. Celli J, Gorvel JP. Organelle robbery: Brucella interactions with the endoplasmic reticulum[J].Current opinion in microbiology2004,7:93-97.
    42. Celli J, Salcedo SP, Gorvel JP. Brucella coopts the small GTPase Sar1for intracellular replication[J].Proceedings of the National Academy of Sciences2005,102:1673-1678.
    43. Chen F, Ding X, Ding Y, Xiang Z, Li X, Ghosh D, Schurig GG, et al. Proinflammatorycaspase-2-mediated macrophage cell death induced by a rough attenuated Brucella suis strain[J].Infection and immunity2011,79:2460-2469.
    44. Chen F, He Y. Caspase-2mediated apoptotic and necrotic murine macrophage cell death induced byrough Brucella abortus[J]. PLoS One2009,4: e6830.
    45. Chou HT. L-lysine decarboxylase and cadaverine gamma-glutamylation pathways in Pseudomonasaeruginosa PAO1[D].2011.
    46. Cloeckaert A, Verger JM, Grayon M, Paquet JY, Garin-Bastuji B, Foster G, Godfroid J.Classification of Brucella spp. isolated from marine mammals by DNA polymorphism at the omp2locus[J]. Microbes and infection2001,3:729-738.
    47. Comerci DJ, Altabe S, de Mendoza D, Ugalde RA. Brucella abortus synthesizesphosphatidylcholine from choline provided by the host[J]. Journal of bacteriology2006,188:1929-1934.
    48. Corbeil L, Blau K, Inzana T, Nielsen K, Jacobson R, Corbeil R, Winter A. Killing of Brucellaabortus by bovine serum[J]. Infection and immunity1988,56:3251-3261.
    49. Cucarella C, Solano C, Valle J, Amorena B, Lasa í, Penadés JR. Bap, a Staphylococcus aureussurface protein involved in biofilm formation[J]. Journal of bacteriology2001,183:2888-2896.
    50. Davies K, Lin S, Pacifici R. Protein damage and degradation by oxygen radicals. IV. Degradation ofdenatured protein[J]. Journal of biological chemistry1987,262:9914-9920.
    51. de Bagüés MPJ, Gross A, Terraza A, Dornand J. Regulation of the mitogen-activated proteinkinases by Brucella spp. expressing a smooth and rough phenotype: relationship to pathogeninvasiveness[J]. Infection and immunity2005,73:3178-3183.
    52. De Jong MF, Sun YH, Den Hartigh AB, Van Dijl JM, Tsolis RM. Identification of VceA and VceC,two members of the VjbR regulon that are translocated into macrophages by the Brucella type IVsecretion system[J]. Molecular microbiology2008,70:1378-1396.
    53. De Tejada GM, Pizarro-Cerda J, Moreno E, Moriyon I. The outer membranes of Brucella spp. areresistant to bactericidal cationic peptides[J]. Infection and immunity1995,63:3054-3061.
    54. Deb D, Dahiya P, Srivastava K, Srivastava R, Srivastava B. Selective identification of newtherapeutic targets of Mycobacterium tuberculosis by IVIAT approach[J]. Tuberculosis2002,82:175-182.
    55. Delrue RM, Deschamps C, Léonard S, Nijskens C, Danese I, Schaus JM, Bonnot S, et al. Aquorum-sensing regulator controls expression of both the type IV secretion system and the flagellarapparatus of Brucella melitensis[J]. Cellular microbiology2005,7:1151-1161.
    56. Delrue RM, Martinez‐Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, De Bolle X, et al.Identification of Brucella spp. genes involved in intracellular trafficking[J]. Cellular microbiology2001,3:487-497.
    57. DelVecchio VG, Kapatral V, Redkar RJ, Patra G, Mujer C, Los T, Ivanova N, et al. The genomesequence of the facultative intracellular pathogen Brucella melitensis[J]. Proceedings of theNational Academy of Sciences2002,99:443-448.
    58. Edmonds M, Cloeckaert A, Hagius S, Samartino L, Fulton W, Walker J, Enright F, et al.Pathogenicity and protective activity in pregnant goats of a Brucella melitensis Δomp25deletionmutant[J]. Research in veterinary science2002,72:235-239.
    59. Edmonds MD, Cloeckaert A, Booth NJ, Fulton WT, Hagius SD, Walker JV, Elzer PH. Attenuationof a Brucella abortus mutant lacking a major25kDa outer membrane protein in cattle[J]. Americanjournal of veterinary research2001,62:1461-1466.
    60. Edmonds MD, Cloeckaert A, Elzer PH. Brucella species lacking the major outer membrane proteinOmp25are attenuated in mice and protect against Brucella melitensis and Brucella ovis[J].Veterinary microbiology2002,88:205-221.
    61. Egland PG, Gibson J, Harwood CS. Benzoate-coenzyme A ligase, encoded by badA, is one of threeligases able to catalyze benzoyl-coenzyme A formation during anaerobic growth ofRhodopseudomonas palustris on benzoate[J]. J Bacteriol1995,177:6545-6551.
    62. Eisenschenk F, Houle J, Hoffmann E. Serum sensitivity of field isolates and laboratory strains ofBrucella abortus[J]. American journal of veterinary research1995,56:1592-1598.
    63. Endley S, McMurray D, Ficht TA. Interruption of the cydB Locus in Brucella abortus attenuatesintracellular survival and virulence in the mouse model of infection[J]. Journal of bacteriology2001,183:2454-2462.
    64. Eskra L, Mathison A, Splitter G. Microarray analysis of mRNA levels from RAW264.7macrophages infected with Brucella abortus[J]. Infection and immunity2003,71:1125-1133.
    65. Fernandez-Prada CM, Zelazowska EB, Nikolich M, Hadfield TL, Roop II RM, Robertson GL,Hoover DL. Interactions between Brucella melitensis and human phagocytes: bacterial surfaceO-polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis[J].Infection and immunity2003,71:2110-2119.
    66. Forestier C, Deleuil F, Lapaque N, Moreno E, Gorvel J-P. Brucella abortus lipopolysaccharide inmurine peritoneal macrophages acts as a down-regulator of T cell activation[J]. The journal ofimmunology2000,165:5202-5210.
    67. Forestier C, Moreno E, Pizarro-Cerda J, Gorvel J-P. Lysosomal accumulation and recycling oflipopolysaccharide to the cell surface of murine macrophages, an in vitro and in vivo study[J]. Thejournal of immunology1999,162:6784-6791.
    68. Foster G, Osterman BS, Godfroid J, Jacques I, Cloeckaert A. Brucella ceti sp. nov. and Brucellapinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts[J].International journal of systematic and evolutionary microbiology2007,57:2688-2693.
    69. Freer E, Moreno E, Moriyon I, Pizarro-Cerda J, Weintraub A, Gorvel J-P. Brucella-Salmonellalipopolysaccharide chimeras are less permeable to hydrophobic probes and more sensitive tocationic peptides and EDTA than are their native Brucella sp. counterparts[J]. Journal ofbacteriology1996,178:5867-5876.
    70. Fretin D, Fauconnier A, K hler S, Halling S, Leonard S, Nijskens C, Ferooz J, et al. The sheathedflagellum of Brucella melitensis is involved in persistence in a murine model of infection[J].Cellular microbiology2005,7:687-698.
    71. Fridovich I. Superoxide radical and superoxide dismutases[J]. Annual review of biochemistry1995,64:97-112.
    72. Frota CC, Papavinasasundaram K, Davis EO, Colston MJ. The AraC family transcriptionalregulator Rv1931c plays a role in the virulence of Mycobacterium tuberculosis[J]. Infection andimmunity2004,72:5483-5486.
    73. Garin-Bastuji B, Bowden RA, Dubray G, Limet JN. Sodium dodecyl sulfate-polyacrylamide gelelectrophoresis and immunoblotting analysis of smooth-lipopolysaccharide heterogeneity amongBrucella biovars related to A and M specificities[J]. Journal of clinical microbiology1990,28:2169-2174.
    74. Gee JM, Kovach ME, Grippe VK, Hagius S, Walker JV, Elzer PH, Roop II RM. Role of catalase inthe virulence of Brucella melitensis in pregnant goats[J]. Veterinary microbiology2004,102:111-115.
    75. Gee JM, Valderas MW, Kovach ME, Grippe VK, Robertson GT, Ng W-L, Richardson JM, et al.The Brucella abortus Cu, Zn superoxide dismutase is required for optimal resistance to oxidativekilling by murine macrophages and wild-type virulence in experimentally infected mice[J].Infection and immunity2005,73:2873-2880.
    76. Goldman RC, Leive L. Heterogeneity of antigenic-side‐chain Length in Lipopolysaccharide fromEscherichia coli0111and Salmonella typhimurium LT2[J]. European journal of biochemistry1980,107:145-153.
    77. Gorvel JP, Moreno E. Brucella intracellular life: from invasion to intracellular replication[J].Veterinary microbiology2002,90:281-297.
    78. Graham JE, Clark-Curtiss JE. Identification of Mycobacterium tuberculosis RNAs synthesized inresponse to phagocytosis by human macrophages by selective capture of transcribed sequences(SCOTS)[J]. Proceedings of the National Academy of Sciences1999,96:11554-11559.
    79. Grompone G, Bidnenko V, Ehrlich SD, Michel B. PriA is essential for viability of the Escherichiacoli topoisomerase IV parE10(Ts) mutant[J]. Journal of bacteriology2004,186:1197-1199.
    80. Gross A, Terraza A, Ouahrani-Bettache S, Liautard J-P, Dornand J. In vitro Brucella suis infectionprevents the programmed cell death of human monocytic cells[J]. Infection and immunity2000,68:342-351.
    81. Guzman-Verri C, Manterola L, Sola-Landa A, Parra A, Cloeckaert A, Garin J, Gorvel J-P, et al. Thetwo-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expressionof outer membrane proteins with counterparts in members of the Rhizobiaceae[J]. Proceedings ofthe National Academy of Sciences2002,99:12375-12380.
    82. Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li L-L, Kapur V, et al.Completion of the genome sequence of Brucella abortus and comparison to the highly similargenomes of Brucella melitensis and Brucella suis[J]. Journal of bacteriology2005,187:2715-2726.
    83. Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, Taylor RK, et al. Use of invivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during humaninfection with Vibrio cholerae[J]. Proceedings of the National Academy of Sciences2003,100:8508-8513.
    84. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han C-G, et al. Completegenome sequence of enterohemorrhagic Eschelichia coli O157: H7and genomic comparison with alaboratory strain K-12[J]. DNA research2001,8:11-22.
    85. He Y, Vemulapalli R, Zeytun A, Schurig GG. Induction of specific cytotoxic lymphocytes in micevaccinated with Brucella abortus RB51[J]. Infection and immunity2001,69:5502-5508.
    86. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. Simultaneous identification ofbacterial virulence genes by negative selection[J]. Science1995,269:400-403.
    87. Hong PC, Tsolis RM, Ficht TA. Identification of genes required for chronic persistence of Brucellaabortus in mice[J]. Infection and immunity2000,68:4102-4107.
    88. Hong PC, Tsolis RM, Ficht TA. Identification of genes required for chronic persistence of Brucellaabortus in mice[J]. Infection and immunity2000,68:4102-4107.
    89. Horiuchi T, Horiuchi S, Mizuno D. A possible negative feedback phenomenon controllingformation of alkaline phosphomonoesterase in Escherichia coli[J]. Infection and immunity1959,183:1529-1530.
    90. Hornback ML, Roop RM,2nd. The Brucella abortus xthA-1gene product participates in baseexcision repair and resistance to oxidative killing but is not required for wild-type virulence in themouse model[J]. Journal of bacteriology2006,188:1295-1300.
    91. Hu Q, Han X, Zhou X, Ding S, Ding C, Yu S. Characterization of biofilm formation by Riemerellaanatipestifer[J]. Veterinary microbiology2010,144:429-436.
    92. Hudson P, Gorton T, Papazisi L, Cecchini K, Frasca S, Geary S. Identification of avirulence-associated determinant, dihydrolipoamide dehydrogenase (lpd), in Mycoplasmagallisepticum through in vivo screening of transposon mutants[J]. Infection and immunity2006,74:931-939.
    93. Jiang X, Baldwin CL. Effects of cytokines on intracellular growth of Brucella abortus[J]. Infectionand immunity1993,61:124-134.
    94. Jiménez de Bagüés M, Marin C, Barberan M, Blasco J. Evaluation of vaccines and of antigentherapy in a mouse model for Brucella ovis[J]. Vaccine1993,11:61-66.
    95. Jubier-Maurin V, Boigegrain R-A, Cloeckaert A, Gross A, Alvarez-Martinez M-T, Terraza A,Liautard J, et al. Major outer membrane protein Omp25of Brucella suis is involved in inhibition oftumor necrosis factor alpha production during infection of human macrophages[J]. Infection andimmunity2001,69:4823-4830.
    96. Jubier-Maurin V, Rodrigue A, Ouahrani-Bettache S, Layssac M, Mandrand-Berthelot M-A, K hlerS, Liautard J-P. Identification of the nik gene cluster of Brucella suis: regulation and contribution tourease activity[J]. Journal of bacteriology2001,183:426-434.
    97. K hler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M, Liautard J-P. Theanalysis of the intramacrophagic virulome of Brucella suis deciphers the environment encounteredby the pathogen inside the macrophage host cell[J]. Proceedings of the National Academy ofSciences2002,99:15711-15716.
    98. Kahl-McDonagh MM, Arenas-Gamboa AM, Ficht TA. Aerosol infection of BALB/c mice withBrucella melitensis and Brucella abortus and protective efficacy against aerosol challenge[J]. InfectImmun2007,75:4923-4932.
    99. Kahl-McDonagh MM, Elzer PH, Hagius SD, Walker JV, Perry QL, Seabury CM, den Hartigh AB,et al. Evaluation of novel Brucella melitensis unmarked deletion mutants for safety and efficacy inthe goat model of brucellosis[J]. Vaccine2006,24:5169-5177.
    100. Kahl-McDonagh MM, Ficht TA. Evaluation of protection afforded by Brucella abortus andBrucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/cmice[J]. Infection and immunity2006,74:4048-4057.
    101. Kim J-a, Sha Z, Mayfield JE. Regulation of Brucella abortus catalase[J]. Infection and immunity2000,68:3861-3866.
    102. Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, Chung SS, et al. Characterization andpathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemicpatients[J]. Infection and immunity2003,71:5461-5471.
    103. Kizy AE, Neely MN. First Streptococcus pyogenes signature-tagged mutagenesis screen identifiesnovel virulence determinants[J]. Infection and immunity2009,77:1854-1865.
    104. Lapaque N, Moriyon I, Moreno E, Gorvel J-P. Brucella lipopolysaccharide acts as a virulencefactor[J]. Current opinion in microbiology2005,8:60-66.
    105. Lavigne J-P, Patey G, Sangari FJ, Bourg G, Ramuz M, O'Callaghan D, Michaux-Charachon S.Identification of a new virulence factor, BvfA, in Brucella suis[J]. Infection and immunity2005,73:5524-5529.
    106. Lestrate P, Dricot A, Delrue RM, Lambert C, Martinelli V, De Bolle X, Letesson JJ, et al.Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acutephase of infection in mice[J]. Infection and immunity2003,71:7053-7060.
    107. Li X, He Y. Caspase-2-dependent dendritic cell death, maturation, and priming of T cells inresponse to Brucella abortus infection[J]. PLoS One2012,7: e43512.
    108. Lin J, Ficht TA. Protein synthesis in Brucella abortus induced during macrophage infection[J].Infection and immunity1995,63:1409-1414.
    109. Lochmeyer C, Koch J, Fuchs G. Anaerobic degradation of2-aminobenzoic acid (anthranilic acid)via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium[J].Journal of bacteriology1992,174:3621-3628.
    110. Lowry J, Goodridge L, Vernati G, Fluegel A, Edwards W, Andrews G. Identification of Brucellaabortus genes in elk using in vivo-induced antigen technology (IVIAT) reveals novel markers ofinfection[J]. Veterinary microbiology2010,142:367-372.
    111. Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specificallyinduced in host tissues[J]. Science1993,259:686-688.
    112. Manterola L, Guzmán-Verri C, Chaves-Olarte E, Barquero-Calvo E, de Miguel M-J, Moriyón I,Grilló M-J, et al. BvrR/BvrS-controlled outer membrane proteins Omp3a and Omp3b are notessential for Brucella abortus virulence[J]. Infection and immunity2007,75:4867-4874.
    113. Marchesini MI, Herrmann CK, Salcedo SP, Gorvel JP, Comerci DJ. In search of Brucella abortustype IV secretion substrates: screening and identification of four proteins translocated into host cellsthrough VirB system[J]. Cellular microbiology2011,13:1261-1274.
    114. Martínez-Nú ez C, Altamirano-Silva P, Alvarado-Guillén F, Moreno E, Guzmán-Verri C,Chaves-Olarte E. The two-component system BvrR/BvrS regulates the expression of the type IVsecretion system VirB in Brucella abortus[J]. Journal of bacteriology2010,192:5603-5608.
    115. McClintock B. Controlled mutation in maize[M]. Carnegie inst wash Yrb1951.
    116. McCord JM, Keele BB, Fridovich I. An enzyme-based theory of obligate anaerobiosis: thephysiological function of superoxide dismutase[J]. Proceedings of the National Academy ofSciences1971,68:1024-1027.
    117. McQuiston J, Vemulapalli R, Inzana T, Schurig G, Sriranganathan N, Fritzinger D, Hadfield T, et al.Genetic characterization of a Tn5-disrupted glycosyltransferase gene homolog in Brucella abortusand its effect on lipopolysaccharide composition and virulence[J]. Infection and immunity1999,67:3830-3835.
    118. Mekalanos JJ. Environmental signals controlling expression of virulence determinants inbacteria[J]. Journal of bacteriology1992,174:1.
    119. Memish ZA, Balkhy HH. Brucellosis and international travel[J]. Journal of travel medicine2004,11:49-55.
    120. Michiels J, Xi C, Verhaert J, Vanderleyden J. The functions of Ca2+in bacteria: a role for EF-handproteins?[J]. Trends in microbiology2002,10:87-93.
    121. Miller MA, Lipscomb JD. Homoprotocatechuate2,3-dioxygenase from Brevibacterium fuscum adioxygenase with catalase activity[J]. Journal of biological chemistry1996,271:5524-5535.
    122. Moreno E, Berman D, Boettcher L. Biological activities of Brucella abortus lipopolysaccharides[J].Infection and immunity1981,31:362-370.
    123. Moreno E, Cloeckaert A, Moriyon I. Brucella evolution and taxonomy[J]. Veterinary microbiology2002,90:209-227.
    124. Moreno E, Moriyón I. Brucella melitensis: a nasty bug with hidden credentials for virulence[J].Proceedings of the National Academy of Sciences2002,99:1-3.
    125. Moriyon I, Grillo MJ, Monreal D, Gonzalez D, Marin C, Lopez-Goni I, Mainar-Jaime RC, et al.Rough vaccines in animal brucellosis: structural and genetic basis and present status[J]. Veterinaryresearch2004,35:1-38.
    126. Murphy EA, Parent M, Sathiyaseelan J, Jiang X, Baldwin CL. Immune control of Brucella abortus2308infections in BALB/c mice[J]. FEMS immunology and medical microbiology2001,32:85-88.
    127. Myeni S, Child R, Ng TW, Kupko JJ,3rd, Wehrly TD, Porcella SF, Knodler LA, et al. Brucellamodulates secretory trafficking via multiple type IV secretion effector proteins[J]. PLoS pathogens2013,9: e1003556.
    128. Naroeni A, Porte F. Role of cholesterol and the ganglioside GM1in entry and short-term survival ofBrucella suis in murine macrophages[J]. Infection and immunity2002,70:1640-1644.
    129. O'Callaghan D, Cazevieille C, Allardet‐Servent A, Boschiroli ML, Bourg G, Foulongne V, FrutosP, et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IVsecretion systems is essential for intracellular survival of Brucella suis[J]. Molecular microbiology1999,33:1210-1220.
    130. O ate AA, Vemulapalli R, Andrews E, Schurig GG, Boyle S, Folch H. Vaccination with liveEscherichia coli expressing Brucella abortus Cu/Zn superoxide dismutase protects mice againstvirulent B. abortus[J]. Infection and immunity1999,67:986-988.
    131. Palka-Santini M, Pützfeld S, Cleven BE, Kr nke M, Krut O. Rapid identification, virulenceanalysis and resistance profiling of Staphylococcus aureus by gene segment-based DNAmicroarrays: Application to blood culture post-processing[J]. Journal of microbiological methods2007,68:468-477.
    132. Pao SS, Paulsen IT, Saier MH. Major facilitator superfamily[J]. Microbiology and molecularbiology reviews1998,62:1-34.
    133. Pappas G. The changing Brucella ecology: novel reservoirs, new threats[J]. International journal ofantimicrobial agents2010,36Suppl.1: S8-11.
    134. Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ, et al. TheBrucella suis genome reveals fundamental similarities between animal and plant pathogens andsymbionts[J]. Proceedings of the National Academy of Sciences2002,99:13148-13153.
    135. Pei J, Ficht TA. Brucella abortus rough mutants are cytopathic for macrophages in culture[J].Infection and immunity2004,72:440-450.
    136. Pei J, Turse JE, Ficht TA. Evidence of Brucella abortus OPS dictating uptake and restrictingNF-kappaB activation in murine macrophages[J]. Microbes and infection2008,10:582-590.
    137. Pei J, Turse JE, Wu Q, Ficht TA. Brucella abortus rough mutants induce macrophage oncosis thatrequires bacterial protein synthesis and direct interaction with the macrophage[J]. Infection andimmunity2006,74:2667-2675.
    138. Pei J, Wu Q, Kahl-McDonagh M, Ficht TA. Cytotoxicity in macrophages infected with roughBrucella mutants is type IV secretion system dependent[J]. Infection and immunity2008,76:30-37.
    139. Porte F, Liautard JP, Kohler S. Early acidification of phagosomes containing Brucella suis isessential for intracellular survival in murine macrophages[J]. Infection and immunity1999,67:4041-4047.
    140. Rasool O, Freer E, Moreno E, Jarstrand C. Effect of Brucella abortus lipopolysaccharide onoxidative metabolism and lysozyme release by human neutrophils[J]. Infection and immunity1992,60:1699-1702.
    141. Riley LK, Robertson DC. Brucellacidal activity of human and bovine polymorphonuclearleukocyte granule extracts against smooth and rough strains of Brucella abortus[J]. Infection andimmunity1984,46:231-236.
    142. Roop RM, Bellaire BH, Valderas MW, Cardelli JA. Adaptation of the Brucellae to theirintracellular niche[J]. Molecular microbiology2004,52:621-630.
    143. Sangari FJ, Agüero J, Garc a-Lobo JM. The genes for erythritol catabolism are organized as aninducible operon in Brucella abortus[J]. Microbiology2000,146:487-495.
    144. Sangari FJ, García-Lobo JM, Agüero J. The Brucella abortus vaccine strain B19carries a deletionin the erythritol catabolic genes[J]. FEMS microbiology letters1994,121:337-342.
    145. Sangari FJ, Grilló MJ, De Bagüés MJ, González-Carrero MI, García-Lobo JM, Blasco J, Agüero J.The defect in the metabolism of erythritol of the Brucella abortus B19vaccine strain is unrelatedwith its attenuated virulence in mice[J]. Vaccine1998,16:1640-1645.
    146. Sangari FJ, Seoane A, Rodríguez MC, Agüero J, Lobo JMG. Characterization of the urease operonof Brucella abortus and assessment of its role in virulence of the bacterium[J]. Infection andimmunity2007,75:774-780.
    147. Schneider WP, Ho SK, Christine J, Yao M, Marra A, Hromockyj AE. Virulence gene identificationby differential fluorescence induction analysis of Staphylococcus aureus gene expression duringinfection-simulating culture[J]. Infection and immunity2002,70:1326-1333.
    148. Scholz HC, Hofer E, Vergnaud G, Fleche PL, Whatmore AM, Dahouk SA, Pfeffer M, et al.Isolation of Brucella microti from mandibular lymph nodes of red foxes, Vulpes vulpes, in lowerAustria[J]. Vector-borne and zoonotic diseases2009,9:153-156.
    149. Scholz HC, Hubalek Z, Nesvadbova J, Tomaso H, Vergnaud G, Le Flèche P, Whatmore AM, et al.Isolation of Brucella microti from soil[J]. Emerging infectious diseases2008,14:1316.
    150. Scholz HC, N ckler K, G llner C, Bahn P, Vergnaud G, Tomaso H, Al Dahouk S, et al. Brucellainopinata sp. nov., isolated from a breast implant infection[J]. International journal of systematicand evolutionary microbiology2010,60:801-808.
    151. Schuhle K, Gescher J, Feil U, Paul M, Jahn M, Schagger H, Fuchs G. Benzoate-coenzyme A ligasefrom Thauera aromatica: an enzyme acting in anaerobic and aerobic pathways[J]. Journal ofbacteriology2003,185:4920-4929.
    152. Seaver LC, Imlay JA. Alkyl hydroperoxide reductase is the primary scavenger of endogenoushydrogen peroxide in Escherichia coli[J]. Journal of bacteriology2001,183:7173-7181.
    153. Seleem MN, Boyle SM, Sriranganathan N. Brucella: a pathogen without classic virulence genes[J].Veterinary microbiology2008,129:1-14.
    154. Sha Z, Stabel TJ, Mayfield JE. Brucella abortus catalase is a periplasmic protein lacking a standardsignal sequence[J]. Journal of bacteriology1994,176:7375-7377.
    155. Sieira R, Arocena GM, Bukata L, Comerci DJ, Ugalde RA. Metabolic control of virulence genes inBrucella abortus: HutC coordinates virB expression and the histidine utilization pathway by directbinding to both promoters[J]. Journal of bacteriology2010,192:217-224.
    156. Sieira R, Comerci DJ, Pietrasanta LI, Ugalde RA. Integration host factor is involved intranscriptional regulation of the Brucella abortus virB operon[J]. Molecular microbiology2004,54:808-822.
    157. Sieira R, Comerci DJ, Sánchez DO, Ugalde RA. A Homologue of an operon required for DNAtransfer in agrobacterium is required in Brucella abortus for virulence and intracellularmultiplication[J]. Journal of bacteriology2000,182:4849-4855.
    158. Sohn AH, Probert WS, Glaser CA, Gupta N, Bollen AW, Wong JD, Grace EM, et al. Humanneurobrucellosis with intracerebral granuloma caused by a marine mammal Brucella spp.[J].Emerging infectious diseases2003,9:485-488.
    159. Sola-Landa A, Pizarro-Cerdá J, Grilló MJ, Moreno E, Moriyón I, Blasco JM, Gorvel JP, et al. Atwo-component regulatory system playing a critical role in plant pathogens and endosymbionts ispresent in Brucella abortus and controls cell invasion and virulence[J]. Molecular microbiology1998,29:125-138.
    160. Tiller RV, Gee JE, Lonsway DR, Gribble S, Bell SC, Jennison AV, Bates J, et al. Identification ofan unusual Brucella strain (BO2) from a lung biopsy in a52year-old patient with chronicdestructive pneumonia[J]. BMC microbiology2010,10:23.
    161. Tumurkhuu G, Koide N, Takahashi K, Hassan F, Islam S, Ito H, Mori I, et al. Characterization ofbiological activities of Brucella melitensis lipopolysaccharide[J]. Microbiology and immunology2006,50:421-427.
    162. Turkmani A, Psaroulaki A, Christidou A, Chochlakis D, Tabaa D, Tselentis Y. In vitro-selectedresistance to fluoroquinolones in two Brucella strains associated with mutational changes in gyrA[J]. International journal of antimicrobial agents2008,32:227-232.
    163. Uzureau S, Godefroid M, Deschamps C, Lemaire J, De Bolle X, Letesson J-J. Mutations of thequorum sensing-dependent regulator VjbR lead to drastic surface modifications in Brucellamelitensis[J]. Journal of bacteriology2007,189:6035-6047.
    164. Valdivia RH, Falkow S. Bacterial genetics by flow cytometry: rapid isolation of Salmonellatyphimurium acid-inducible promoters by differential fluorescence induction[J]. Molecularmicrobiology1996,22:367-378.
    165. Valdivia RH, Falkow S. Fluorescence-based isolation of bacterial genes expressed within hostcells[J]. Science1997,277:2007-2011.
    166. Vemulapalli R, He Y, Buccolo LS, Boyle SM, Sriranganathan N, Schurig GG. Complementation ofBrucella abortus RB51with a functional wboA gene results in O-antigen synthesis and enhancedvaccine efficacy but no change in rough phenotype and attenuation[J]. Infection and immunity2000,68:3927-3932.
    167. Viadas C, Rodríguez MC, Sangari FJ, Gorvel J-P, García-Lobo JM, López-Go i I. Transcriptomeanalysis of the Brucella abortus BvrR/BvrS two-component regulatory system[J]. PLoS One2010,5: e10216.
    168. Whatmore AM, Dawson CE, Groussaud P, Koylass MS, King AC, Shankster SJ, Sohn AH, et al.Marine mammal Brucella genotype associated with zoonotic infection[J]. Emerging infectiousdisease2008,14:517-518.
    169. Wilson RL, Tvinnereim A, Jones BD, Harty JT. Identification of Listeria monocytogenes invivo-induced genes by fluorescence-activated cell sorting[J]. Infection and immunity2001,69:5016-5024.
    170. World Health Organization. The control of neglected zoonotic diseases. World Health Organization2005.
    171. Wu L-F, Mandrand-Berthelot M-A, Waugh R, Edmonds C, Holt S, Boxer D. Nickel deficiencygives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia coli[J].Molecular microbiology1989,3:1709-1718.
    172. Wu Q, Pei J, Turse C, Ficht TA. Mariner mutagenesis of Brucella melitensis reveals genes withpreviously uncharacterized roles in virulence and survival[J]. BMC Microbiology2006,6:102.
    173. Zhang M, Han X, Liu H, Tian M, Ding C, Song J, Sun X, et al. Inactivation of the ABC transporterATPase gene in Brucella abortus strain2308attenuated the virulence of the bacteria[J]. VeterinaryMicrobiology2013,164:322-329.
    174. Zhong Z, Wang Y, Qiao F, Wang Z, Du X, Xu J, Zhao J, et al. Cytotoxicity of Brucella smoothstrains for macrophages is mediated by increased secretion of the type IV secretion system[J].Microbiology2009,155:3392-3402.
    175. Zygmunt MS, Hagius SD, Walker JV, Elzer PH. Identification of Brucella melitensis16M genesrequired for bacterial survival in the caprine host[J]. Microbes and infection2006,8:2849-2854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700