改性聚甲基硅烷系列SiC陶瓷先驱体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备出陶瓷产率高,使用方便,元素组成合理,成本较低的先驱体一直是SiC先驱体技术发展的方向。聚甲基硅烷(Polymethylsilane,PMS)具有室温液态、分子元素组成近化学计量比等优点,在SiC先驱体方面有很好的应用潜力。但PMS分子量小,交联度低,加热过程中大量小分子逸出造成失重,且PMS以Si-Si为主链,在Si-Si的断裂重排为Si-C过程中也容易造成小分子逸出失重。PMS的结构缺陷决定了其不适合直接用作SiC先驱体。
     本文通过改性使PMS由不可用变为可用,探索了改性PMS在制备SiC基复合材料、SiC纤维和SiC纳米线方面的应用,取得了很好的效果。
     由于PMS合成条件苛刻,合成规模一般较小,不能满足制备SiC材料的要求。本研究首先通过合成工艺改进将PMS的Wurtz合成由10g/次放大到近200g/次,最佳反应条件为二氯甲基硅烷(Dichloromethylsilane,DCMS):Na:甲苯=1mol:2mol:350ml,反应温度80℃,反应时间24hr。在此条件下合成的PMS数均分子量860,在空气中易氧化,陶瓷产率35%,热解产物富硅,Si/C(atom)=1.23。
     PMS与SbCl_3室温反应得到了液态先驱体锑改性聚硅烷(Antimony substitutedpolymethylsilane,A-PMS)。SbCl_3活性较低,避免了A-PMS的过度交联,使其在室温保持液态,具有较好的可加工性。SbCl_3与Si-H的反应消耗了PMS中的Si-H,使A-PMS在空气中具有较好的稳定性。Sb元素的引入使A-PMS具有较高的分子量和交联度,同时促进了Si-Si的重排,A-PMS在320℃热交联,产物形成以SiC_4和SiC_3H为主的高度交联结构,陶瓷产率高达91%。A-PMS热解得到β-SiC,Si/C原子比为1.12。
     A-PMS作为先驱体制备SiC基复合材料,具有不需要溶剂、低温固化增重等优点,将A-PMS用于制备C_f/SiC复合材料,根据A-PMS 320℃交联后陶瓷产率高的特点改进了PIP工艺,实现了低温增重,减少了高温烧结次数,经过4次高温烧结制备出密度1.76g/cm~3的C_f/SiC复合材料,弯曲强度381MPa。以A-PMS为先驱体,通过改性的PIP制备C_f/SiC复合材料,将复合材料的制备周期由120hr左右缩短至60hr左右,提高了制备效率,降低了制备成本。用A-PMS为先驱体,国产KD-Ⅰ型SiC纤维为增韧相制备的SiC_f/SiC复合材料,密度2.05g/cm~3,弯曲强度353MPa。
     PMS与聚碳硅烷(Polycarbosilane,PCS)两者结构、性质各有特点,将两者共混,有望得到物理状态、性质可调的先驱体,并利用PMS与PCS热解产物分别富硅和富碳的特点得到近化学计量比的SiC。将PMS与PCS室温共混,两者不发生反应,PMS/PCS陶瓷产率只有48-54%。将PMS/PCS加热,PMS与PCS发生Si-H热交联反应,使产物熔点升高,在二甲苯中的溶解度降低,陶瓷产率提高。PMS/PCS 320℃热交联产物陶瓷产率高达81-83%,表现出协同效应。PMS/PCS经1250℃热解,产物C/Si比值在0.81-1.29之间,与纯PMS或PCS相比更接近化学计量比。C/Si比值与PMS/PCS中PMS比例基本成线性关系。经1600℃热解,得到近化学计量比的SiC。
     将8wt%的PMS加入聚铝碳硅烷(Polyaluminocarbosilane,PACS),PMS的加入降低了PACS的可纺性,纺丝速度由250-300r/min降低至60r/min。经1250℃烧结,得到的纤维直径15.3μmm,强度1.54GPa。1800℃热处理后保持较好的形貌。用PMS/PCS共混后在N_2中1250℃裂解,在不用催化剂的条件下生成了高纯度的超长SiC纳米线,长度3mm左右,直径250nm。
Polymethylsilane (PMS), is once looked upon as an attractive precursor because it is liquid and the C:Si ratio is 1:1. However, PMS suffers from the low ceramic yield and the poor processability. Moreover, the synthesis of PMS is in a very low scale of about 10g/time. In this paper, our work is to make PMS usable as a precursor. The study is in the following aspects: enlarging the scale of the synthesis, modifying PMS to overcome the disadvantages, and then preparing materials with PMS.
     First, the scale of the synthesis of PMS through Wurtz reaction was enlarged from 10g/time to near 200g/time when the reaction was carried on at 80℃for 24hr, and Dichloromethylsilane (MeSiHCl_2, DCMS) : Na: toluene = 1mol: 2 mol: 350 ml. The molecular weight and the ceramic yield of the resulted PMS is 860 and 35%, respectively. Pyrolyzed in N_2 at 1250℃, PMS derives ceramic with the Si/C =1.23.
     A novel SiC precursor, A-PMS, was synthesized through a reaction of polymethylsilane (PMS) with SbCl_3, where the Si-H in PMS reacts with Sb-Cl to form Si-Sb bond with HCl evaporated.
     It is evident that SbCl_3 plays a very important role in the promoting chain crosslinking, in the transforming of the Si-Si into Si-C bonds and in the stabilizing PMS from very high oxidation trend of the active Si-H bonds. A-PMS keeps liquid at room temperature that is suitable for the infiltration in the absence of any solvent. When heated, the crosslinking degree increases of A-PMS with the curing temperature. A-PMS can be cured into a fully crosslinked structure at 320℃that leads a very high ceramic yield up to 91%. After pyrolysis, the new precursor resulted in near stoichiometricβ-SiC with the Si/C ratio near 1.12.
     A-PMS was used as precursor to prepare C_f/SiC and SiC_f/SiC composites via polymer infiltration and pyrolysis (PIP) process. The PIP process was modified according to the characteristics of A-PMS. The resulted C_f/SiC samples reaches the density of 1.76g/cm~3 and the flexural strength of 381MPa after only 4 pyrolysis cycles, which will be not achieved less than 10 cycles using PCS and the traditional PIP process. A-PMS can also be used preparing SiC_f/SiC composites. The resulted composite has the density of 2.05g/cm~3 and the flexural strength of 353MPa.
     PMS and PCS were blended to adjust the C/Si ratio of the derived SiC. Analysis shows that when PMS and PCS are mixed in xylene, there is no reaction between the two precursors and the ceramic yield of the blended polymer is only 48~54%. But when the blended polymer is heated, Si-H groups in PMS and PCS react with each other to give high crosslinked structure. The ceramic yield of PMS/PCS cured at 320℃is 81~83%. The C/Si ratio of PMS/PCS derived ceramics (pyrolyzed at 1250℃) is linear to the content of PMS in PMS/PCS.
     SiC fibers were obtained from the blended polymers of PMS(8wt%) and PACS (Polyaluminocarbosilane). The diameter and the tensile strength of the resulted fibers are 15.3μm and 1.54GPa, respectively.
     After the pyrolysis of PMS/PCS at 1250℃, ultra long SiC nanowires with high purity were produced. The length is about 3mm and the diameter is 250nm.
引文
[1] Committee on Advanced Fibers for High-temperature Ceramic composite, Commission on Engineering and Technical Systems, National Research Council, Ceramic Fiber and Coatings:Advanced Materials for The twenty-first Century, National Academy Press, Washington D.C., 1998
    [2] Krenkel W. Application of fibre reinforced C/C-SiC ceramics. Ceram.Forum. Int., 80 (8): 31-38,2003
    [3] 莱利,斯米尔滕斯,碳化硅高温半导体,上海科学技术出版社,上海,1962
    [4] 王零森,特种陶瓷,中南工业大学出版社,长沙,1994
    [5] 朱建军,宠海,刘素英,梁骏吾,SiC的光谱特性研究,稀有金属,23(1):35-41,1999
    [6] 谢凯,张长瑞,陈朝辉,低分子聚碳硅烷气相热裂解制备SiC超微粉的研究,无机材料学报,12(3):291-296,1997
    [7] 董刚,白万金,张九渊,任不凡,徐伟福.激光熔覆Ni基合金/SiC涂层耐冲蚀性能的研究.表面技术,33(2):36-38,2004
    [8] 刘荣军,张长瑞,周新贵,刘晓阳,曹英斌,低温化学气相沉积SiC涂层沉积机理及微观结构,材料科学与工程学报,22(1):15-19,2004
    [9] 付志强,唐春和,梁彤祥,PCS先驱体转化法制备SiC涂层的浸渍工艺,材料工程,3:28-30,2003
    [10] Yao X.,Tan S., Huang Z., Dong S. and Jiang D., Growth mechanism of β-SiC nanowires in SiC reticulated porous ceramics, Ceram. Int., 33: 901-904,2007
    [11] Otoishi S., Tange Y. Effect of a Catalyst on the Formation of SiC Whiskers from Polycarbosilane.Nickel Ferrite as a Catalyst. Bull.Chem.Soc.Jpn., 72: 1607-1613,1999
    [12] Johnson D. W., Evans A. G and Goettler R. W., Ceramic fibers and coatings: advanced materials for the twenty-first century. Publication NMAB-494, Washington D. C, National Academy Press,:1-49.1998
    [13] Lipowitz J., Freeman H.A.,Chen R.T.and Prack E.R.,Composition and structure of ceramic fibers prepared from polymer precursors,Adv. Ceram. Mater., 2 (2): 121-128,1987
    [14] Lipowitz J., Polymer-derived ceramic fibers. Am. Ceram. Soc.Bull, 70 (12):1888-1894,1991
    [15] Yajima S.,Okamura K.,Hayashi J. and Omori M. Synthesis of continuous SiC fibers with high tensile strength, J. Am. Ceram. Soc, 59 (7-8): 324-327,1976
    [16] Galasso R,Basche M. and Kuehe K.,Preparation, structure and properties of continuous silicon carbide filaments, J. Appl.Phys. Lett., 9 (1): 37-39,1966
    [17] 张长瑞,郝元恺,陶瓷基复合材料-原理、工艺、性能与设计,国防科技大学出版社,长沙,2001.
    [18] Evans A.G, Design and life prediction issues for high-temperature engineering ceramics and their composites, Acta mater.,45 (1): 23-40, 1997
    [19] Jamet J. F., Lamisa P. J., Composite thermal structures: an overview of the French experience in high temperature ceramic matrix composites, ed by Naslain R. Bordeaux: Woodhead, 215,1993
    [20] Handrick K. E., Manufacture and application of complex, high-temperature Q/SiC composites via the LPI-process, 48th International Aeronautical Congress, Turin, Italy, 1997
    [21] 李效东,反应性与功能性高分子材料:第六章 先驱体高分子,张政朴编著,化学工业出版社,北京,2005
    [22] Popper D., Special Ceramics, New York: Academic press, New York, 1965
    [23] Yajima S., Hayashi J. and Omori M., Development of tensile strength silicon carbide fiber using organosilicone precursor,Nature, 261:525-528, 1976
    [24] Tanaka T., Tamari N. and Kondoh I., Fabrication and evaluation of 3-dimensional Tyranno fiber reinforced SiC composites by repeated infiltration of polycarbosilane, J. Ceram. Soc. Jpn., 103 (1):1-5,1995
    [25] Ziegler G, Richter I. and Suttor D., Fiber-reinforced composites with polymer-derived matrix:processing, matrix formation and properties, Composites: Part A, 30: 411-417, 1999
    [26] Kotani M., Kohyama A. and Katoh Y, Development of SiC / SiC composites by PIP in combination with RS., J. Nucl.Mater,289:37-41,2001
    [27] Okamura K.,Shimoo T., Suzuya K.and Suzuki K., SiC-based ceramic fibers prepared via organic-to-inorganic conversion process-a review, J. Ceram. Soc. Jpn., 114 (6): 445-454, 2006
    [28] Seyferth D., Bryson N. and Workman D. P., Preceramic polymers as "reagents" in the preparation of ceramics, J. Am. Ceram. Soc.,74 (10): 2687-2689,1991
    [29] 宋永才,商瑶,冯春祥,陆逸,聚二甲基硅烷的热分解研究,高分子学报,6:753-757,1995
    [30] 李祖发,陶瓷先驱体-聚甲基硅烷的合成、表征及热分解特性研究,硕士学位论文,长沙:国 防科技大学,2002
    [31] 邓睿,可溶性聚硅烷的合成与表征及其热分解特性研究,硕士学位论文,长沙:国防科技大学,2002
    [32] 薛金根,冯春祥,徐杰栋,聚二甲基硅烷合成聚碳硅烷的研究,有机硅材料,15(4):5-7,2001
    [33] 李春华,董占能,郭玉忠,聚二甲基硅烷的合成及光谱分析,有机硅材料及应用,6:4-6,1999
    [34] 余煜玺,李效东,曹峰,邢欣,冯春祥,近化学计量比SiC陶瓷纤维先驱体制备方法,高科技纤维与应用,28(2):21-25,2003
    [35] 王浩,李效东,冯春祥,彭平,范小林,SiC陶瓷纤维先驱体的研究动态,宇航材料工艺,2:11-16.2000
    [36] Takeda M.,Imai Y.,Ichikawa and Toshikatsu I., Properties of the low oxygen content SiC fibers on high temperature heat treatment, Ceram.Eng. Sci. Proc,12,1007-1010,1991
    [37] Kipping F. S., Sands J. E., Organic derivatives of silicon. Part XXV. saturated and unsaturated silicohydrocarbons Si_4Ph_8,J. Chem.Soc,119:830-847,1921
    [38] Burkhard C. A., Polydimethylsilanes,J. Am. Chem. Soc, 71: 963-964,1949
    [39] Wesson J. P., Williams T C, Synthesis and properties of phenylmethylpolysilane, J. Polym.Set,17(9): 2833-2843,1979
    [40] West R., David L. D., Djurovich P. I., Srinivasan K. S. V. and Yu H., Phenylmethylpolysilanes:formable silane copolymers with potential semiconducting properties, J. Am. Chem. Soc,103 (24):7352-7354,1981
    [41] Peng Z., Si W., Lin S., Miao H, Fu H., Xie M., Ma H., Zeng H. and Su Z., Synthesis and characterization of branched copolysilanes of high molecular weight with high steric hindrance,Eur. Polym. J., 38: 1635-1643,2002
    [42] Mustafa A., Achilleos M., Ruiz-Iban J., Davies J., Benfield R. E., Jones R. G, Grandjean D. and Holder S. J., Synthesis and structural characterization of various organosilane-organogermane and organosilane-organostannane statistical copolymers by the Wurtz reductive coupling polymerisation:~(119)Sn NMR and EXAFS characterization of the stannane copolymers, React. Funct.Polym.,66:123-135,2006
    [43] Simon J., Holder, Richard, Jones G, Robert E., Benfield and Michael J. W., Wurtz synthesis of a high-molecular-weight organostannane-organosilane copolymer, Polymer, 37 (15): 3477-3479,1996
    [44] Seyferth D., Lang H., Preparation of preceramic polymers via the metalation of poly(dimethysilane), Organometallics, 10:551,1991
    [45] Seyferth D., Wood T. G, Tracy H. J. and Robinson J. L. Near-stoichiometric silicon carbide from an economical polysilane precursor, J. Am. Ceram.Soc,75: 1300-1302,1992
    [46] 胡慧萍,黄可龙,潘春跃,聚硅烷的合成、表征及光敏性研究,高分子材料科学与工程,17(3):149-153.2001
    [47] 董占能,李春华,郭玉忠,聚硅烷Wurtz合成及β-SiC纤维制备的机理,昆明理工大学学报(理工版),28(2):123-126,2003
    [48] 张峰君,陈来,孙晋良,任穆苏,吴市,范雪骐,陶瓷先驱体聚硅烷的合成和表征,上海大学学报(自然科学版),12(5):543-46,2006
    [49] Kim H. K., Matyjaszewski K., Preparation of polysilanes in the presence of ultrasound, J. Am.Chem. Soc, 110 (10): 3321-3323,1988
    [50] 李金辉,陈来,杨鸣,超声波法合成聚硅烷的速率研究,上海大学学报(自然科学版),3:307-310.2005
    [51] Burger C, Hertler W. R., Kochs P., Kreuzer F. H., Kricheldorf H. R. and Mulhaupt R., Silicon in polymer synthesis, World Publishing Corporation, Beijing, 1998
    [52] Kimata Y., Suzuki H., Satoh S. and Kuriyama A., Electrochemical polymerization of hydrosilane compounds, Organomet.,14:2506-2511,1995
    [53] 李效东,邢欣,冯春祥,邓睿,宋永才,朱冰,新型功能聚硅烷的研究进展,材料研究学报,16(4):337-343,2002
    [54] Joseph B., Lambert, Jodi L. P., Wu H. and Liu X., Dendritic polysilanes, J. Organomet. Chem., 685:113-121,2003
    [55] Norihiko K., Daiyo T., Reiji I., Hiroki S., Satoshi A.,Yoshiyuki Y. and Shinji T., Efficient energy transfer from polysilane molecules and its application to electroluminescence, J.Organomet. Chem.,685(1): 235-242, 2003
    [56] Motoo F., Eiichi T., Mikio A., Yoshitaka H., Shigeru M. and Yasushi Y, Electrical conductivity of organosilicon polymers Ⅱ:synthesis and electrical conductivities of iodine-doped polysilanes containing amino groups. Synthetic Met., 96: 239-244, 1998
    [57] 邢欣,李效东,郭爱青,李祖发,余煜玺,王军,聚甲基硅烷稳定性的研究,硅酸盐学报,32(4):402-406,2004
    [58] 邢欣,无机基团取代聚硅烷的合成、结构及其性能研究,博士学位论文,长沙:国防科技大学,2004
    [59] Seyferth D., Yu Y.R,Method for forming new Preceramic polymers containing silicon, U.S. Pat.No. 4639501,1987
    [60] Seyferth D., Yu Y. F. and Koppetsch G. E., Method for Forming New Preceramic Polymers Containing Silicon, U.S. Pat. No. 4719273, 1988
    [61] Seyferth D., Sobon C. A., Borm J., A new procedure for "up-grading" the Nicalon polycarbosilane and related Si-H containing organosilicon Polymers, J. Chem.,14: 545-547, 1990
    [62] Seyferth D., Yu Y. F., The preceramic polymer route to silicon-containing ceramics, Design of new materials, Cocke D. L., Clearfield A., eds; Plenum Press, N.Y., 1987
    [63] Hurwitz. F. I., Pyrolytic conversion of methyl- and vinylsilane polymers to Si-C ceramics, J. Mater.Sci.,39:3130-3136, 1995
    [64] Wayde R. S., Leonard V. I., Robert H. D., Todd K. T., Paul S. M. and Gary E. M. Pyrolysis chemistry of an organometallic precursor to silicon carbide, Chem. Mater.,3:257-267, 1991
    [65] Schilling C. L. Polymeric routes to silicon carbide, Brit. Polym.J.,18 (6): 355-358, 1986
    [66] Laine R. M., Sellinger A. and Chew K. W., Highly processable hyperbranched polymer precursors to controlled chemical and phase purity fully dense, US Pat.6133396,1998
    [67] Zhang Z. F., Scotto C. S. and Laine R. M. Processing stoichiometric silicon carbide fibers from polymethylsilane,J. Mater. Chem., 8: 2715-2723,1998
    [68] Iseki T., Narisawa M., Okamura K., Oka K.and Dohmaru T., Reflux heat-treated polymethylsilane as a precursor to silicon carbide, J. Mater. Sci. Lett., 18 (3): 185-187,1999
    [69] Interrantf L. V.,Whitmarsh C.K.and Trout T. K., Synthesis and pyrolysis chemistry of polymeric precursors to SiC and Si_3N_4,in inorganic and organometallic polymers with special properties,NATO advance studies institute, series E, Applied Science. Lain R. M., Kluwer Publishers,Amsterdam. Netherlands, 1991
    [70] 范雪骐,陈来,吴市,张峰君,张家宝,任慕苏,孙晋良,聚甲基硅烷/二乙烯基苯的交联和裂解,材料科学与工程学报,24(6):920-922,2006
    [71] 李建军,陈来,孙晋良,聚碳硅烷/二乙烯基苯与聚硅烷/二乙烯基苯的交联与裂解,上海大学学报,10(5):479-483,2004
    [72] 李金辉,陶瓷前驱体聚硅烷的超声波法合成及聚硅烷的陶瓷化研究,硕士学位论文,上海: 上海大学,2005
    [73] Prochazka S., Scanlan R. M., Effect of boron and carbon on sintering of SiC, J. Am. Ceram.Soc,58 (1-2): 72-72,1975
    [74] Greskovich C, Rosolowski J. H., Sintering of covalent solids, J. Am. Ceram. Soc, 59 (7-8):336-343, 1976
    [75] Friederich K.M.,Coble R. L., Influence of boron on chemical inter-diffusion in SiC during conversion of silicon fibers to SiC,J.Am. Ceram. Soc, 66(8):C141-C142, 1983
    [76] Kho J.G,Min D. S. and Kim D. P., Polymethylsilane post-treated with a polyborazine promotor as a precursor to SiC with high ceramic yield, J. Mater. Sci. Lett., 19: 303-305, 2000
    [77] Cao F., Li X.D. and Kim D. P., Efficient curing of polymethylsilane by borazine and reaction mechanism study,J. Organomet. Chem., 688: 125-131,2003
    [78] Schubert U., Karch R.Organofunctional Silica Aerogels, Inorg.Chim. Acta.,1997,259: 151-160
    [79] Wang H., Li X. D. and Kim D. P., Macroporous SiC-MoSi_2 ceramics from templated hybrid MoCl_5-polymethylsilane,Appl Organomet. Chem.,19:742-749, 2005
    [80] Narisawa M., Tanno H.,Ikeda M.,Iseki T., Babuchi H., Okamura K., Oka K., Dohmaru T. and Kim D. P., Synthesis and ceramization of polymethylsilane modified with metal chloride. J. Ceram. Soc.Jpn.,114: 558-562, 2006
    [81] Cao F., Kim D. P. and Li X. D, Preparation of hybrid polymer as a near stoichiometric SiC precursor by blending of polycarbosilane and polymethylsilane, J. Mater. Chem., 12: 1213-1217.2002
    [82] Narisawa M., Shimoda K., Nishioka M., Iseki T., Babuchi H., Okamura K., Oka K. and Dohmaru T., Silicon carbide base ceramic fiber synthesis from polycarbosilane-polymethylsilane blend polymers by melting spinning, J. Ceram. Soc Jpn., 114 (6): 511-516,2006
    [83] Wielage B, Odeshi A. G and Mucha H., Microstructural evaluation of a 2D carbon-carbon composite densified by modified polysilane impregnation. Extended abstracts,1st world conference on carbon: Eurocarbon 2000, Berlin, Germany, 201-202, 2000
    [84] Odeshi A. G, Mucha H. and Wielage B. Manufacture and characterization of a low cost carbon fibre reinforced C / SiC dual matrix composite, Carbon, 44: 1994-2001,2006
    [85] Wielage B, Odeshi A. G, Mucha H., Lang H. and Buschbeck R., A cost effective route for the densification of carbon-carbon composites, J. Mater. Process. Tech.,132 (1-3): 313-322,2003
    [86] Nechanicky M. A., Chew K.W.and Sellinger A.,α-Silicon carbide/p-silicon carbide particulate composites via polymer infiltration and pyrolysis (PIP) processing using polymethylsilane, J. Eur.Ceram. Soc, 20:441-451,2000
    [87] Chew K.W.,Sellinger A. and Laine R. M., Processing aluminum nitride-silicon carbide composites via polymer infiltration and pyrolysis of polymethylsilane, a precursor to stoichiometric silicon carbide, J. Am. Ceram. Soc, 82 (4): 857-866,1999
    [88] 于江,一种新型超支化聚硅烷及其与富勒烯复合物的合成和表征,硕士学位论文,长沙:湖南大学,2006
    [89] ASTM Test Method D3379-75, Annual book of ASTM standards, American Society for Testing and Materials, Philadelphia, PA, 1998
    [90] 祝桂洪,陶瓷工艺实验,中国建筑工业出版社,北京,1987
    [91] Erik C. M., Zrolfgang G, Precise nondestructive determination of density of porous ceramics, J. Am. Ceram. Soc, 72 (2): 1269-1270,1989
    [92] 仇沱,马眷荣.工程陶瓷弯曲强度试验方法,中国建筑材料科学研究院,北京,1986
    [93] The America society for testing and materials (ASTM) D2344-76
    [94] GB/T14389-1993,工程陶瓷冲击韧性试验方法.
    [95] Cheng X. Z., Xie Z. F., Xiao J. Y. and Song Y. C, Influence of Temperature on the Properties of Polycarbosilane, J. Inorg. Organomet. Polym.Mater,15 (2): 253-258,2005
    [96] Gozzi M. F., Yoshida I. V., Structural evolution of a polymethylsilane/tetra-allylsilane mixture into silicon carbide, Eur. Polym. J., 33 (8): 1301-1306,1997
    [97] Bao X., Edirisinghe M. J., Fernando G F. and Folkes M. J., Precursors for silicon carbide synthesized from dichloromethylsilane derivatives, J. Eur. Ceram. Soc, 18: 915-922,1998
    [98] Hilbig A., Muller E., Wenzel R., Roewer G, Brendler E.,Irmer G and Schreiber G, The microstructure of polymer-derived amorphous silicon carbide layers, J. Eur. Ceram. Soc, 25:151-156,2005
    [99] Hemida T, Birot M., Pillot J P. and Dunogues J., Synthesis and characterization of new precursors to nearly stoichiometric SiC ceramics Part Ⅱ:a homopolymer route, J. Mater. Sci.,32: 3485-3490,1997
    [100] 邓睿,宋永才,冯春祥,用作陶瓷先驱体的可溶性聚硅烷的合成与表征,有机硅材料,15(6):6-8,2001
    [101] 邢欣,李效东,郭爱青,曹峰,王军,聚甲基硅烷的合成与封端,高分子学报,5:705-708,2004
    [102] Suzanne M. B., Michael J. M., and John H. S., Effect of processing variables on the properties of polysilane ceramic precursors, Polymer,. 37(11):2067-2076,1996
    [103] 陈德本,李高全,傅鹤鉴,谭健,聚硅烷共聚物的合成及表征的研究,四川大学学报(自然科学版),5:673,1997
    [104] 徐冰,聚硅烷的合成、结构及性能研究,硕士学位论文,武汉:湖北大学,2005
    [105] Jones, Richard G, Holder, Simon J., High-yield controlled syntheses of polysilanes by the Wurtz-type reductive coupling reaction, Polym.Int., 55(7),711-718,2006
    [106] Hengge E., Weinberger M. and Jammegg C, Dehydrogenative polymerization of disilanes catalysed by Titanocene and Zirconocene complexes,a novel route to oligo- and polysilanes, J Organomet. Chem.,410:C1-C4,1991
    [107] Hengge E., Weinberger M., Dehydrierende polymerisation von methyldisilanen mittels Metallocen-katalyse zu den Oligomeren Me_3Si[Me_2Si]_nSiMe_2H,HMe_2Si[Me_2Si]_nSiMe_2H mit n=3-9, H[MeSiH]_nH mit n = 3-14 und Hochpolymetem Poly(methylsilane) (MeSiH_x)_n,J.Organomet.Chem.,433 (1-2):21-27,1992
    [108] Kobayashi T., Sakakura T., Hayashi T.,Yumura M. and Tanaka M., Neodymium-catalyzed dehydrogenative condensation of methylsilane and ceramization of the resulting polymer, Chem.Lett., 1157-1160,1992
    [109] Miller R. D., Thompson D. and Sooriyakumaran R., The synthesis of soluble, substituted silane high polymers by Wurtz coupling techniques, J. Polym. Sci. Polym Chem., 29 (7): 813-820, 1991
    [110] Scarlete M., Brienne S., Butler I. S., and Harrod J. F., Infrared spectroscopic study of thin films of poly(methylsilane), its oxidation, and its transformation into poly(carbosilane) on the surfaces of silicon single-crystal wafers, Chem. Mater.,6:977-982,1994
    [111] Florence B., Jocelyne M, and Christian B.,~(29)Si and ~(13)C NMR investigation of the polysilane-to-poly(carbosilane) conversion of poly(methylchlorosilanes) using cross-polarization and inversion recovery cross-polarization techniques, Chem. Mater., 8: 1415-1428, 1996
    [112] 余煜玺,含铝碳化硅纤维的连续化制备与研究,博士学位论文,长沙:国防科学技术大学,2005
    [113] 曾红概,傅鹤鉴,聚硅烷的合成及应用,化学研究与应用,13(3):233-238,2001
    [114] Zhang Z.F.,Babonneau F.,Laine R. M., Mu Y., Harrod J. F. and Rahn J.A., Poly(methylsilane)-a high ceramic yield precursor to silicon carbide, J. Am. Ceram.Soc,74 (3):670-673,1991
    [115] 宋永才,聚二甲基硅烷热分解研究,高分子学报,6:753-757,1995
    [116] Kurtenbach D., Martin H. P., Müller E., Roewer G and Hoell A.,Crystallization of polymer derived silicon carbide materials, J. Eur. Ceram. Soc, 18:1885-1891, 1998
    [117] Zheng C. M., Li X. D., Wang H. and Zhu B., Thermal stability and curing kinetics of polycarbosilane fibers, Trans. Nonferrous Met. Soc. China, 16: 44-48, 2006
    [118] Tsirlin A. M., Shcherbakova G I., Fiorina E. K., Popova N. A., Gubin S. P., Moroz E.M,Riedel R., Kroked E.and Steen M., Nano-structured metal-containing polymer precursors for high temperature non-oxide ceramics and ceramic fibers - syntheses, pyrolysis and properties, J. Eur.Ceram. Soc, 22:2577-2585, 2002
    [119] 李梦龙,化学数据速查手册,化学工业出版社,北京,2003.
    [120] 曹峰,耐超高温碳化硅纤维新型先驱体研究及纤维制备,博士学位论文,长沙:国防科技大学,2000
    [121] Mustafa A., Achilleos M., Ruiz-Iban J., Davies J., Benfield R. E., Jones R. G, Grandjean D. and Holder S. J., Synthesis and structural characterization of various organosilane-organogermane and organosilane-organostannane statistical copolymers by the Wurtz reductive coupling polymerisation: ~(119)Sn NMR and EXAFS characterisation of the stannane copolymers, React. Funct.Polym.,66:123-135,2006
    [122] 王浩,先驱体高分子/模板技术制备有序多孔非氧化物陶瓷,长沙:国防科技大学,2004
    [123] Gubin S P., Tsirlin A M., Popova N A., Fiorina E K.and Moroz E M. Clusters in a polymer matrix:Ⅳ.Zr and Ti-Containing nanoparticles formed during the transformation of oligosilacarbosilane into poly(carbosilane): structure and interaction with the matrix. Inorg. Mater,37 (11):1121-1129,2001
    [124] Mario R. B., Andrónico N. C. and Carlos A. J., Thermogravimetric study of the formation of cross-linked structures in the synthesis of poly(methylsiloxane), J. Chil.Chem.Soc, 48 (2): 2003
    [125] 陆逸,李效东,聚碳硅烷的结构鉴定,宇航材料工艺,6:55-59.1989
    [126] Patai S., Rappoport Z., The chemistry of organic silicon compounds, John Wiley & Sons Ltd.,New York, 1989
    [127] Hartman J. S., Richardson M. F., Sherriff B. L. and Winsborrow B. G, Magic angle spinning NMR studies of silicon carbide polytypes, impurities, and highly inefficient spin-lattice relaxation.J. Am. Chem.Soc,109: 6059-6067, 1987
    [128] Hartmut S., Christian J., Alain M., Hidehiko T. and Martin S., Structural Evolution of Non-Crystalline SiC Precursors Prepared from Tetra methoxysilane (TMOS) and Phenol Resin, J.Eur. Ceram.Soc,15:615-681,1995
    [129] Tanaka T.,Tamari N. and Kondoh I., Fabrication and Evaluation of 3-dimensional Tyranno Fiber Reinforced SiC Composites by Repeated Infiltration of Polycarbosilane. J. Ceram. Soc. Jpn.,103(1):1-5,1995
    [130] 邹世清,PIP工艺制备C-SiC复合材料矢量喷管研究,博士学位论文,长沙:国防科技大学,2005
    [131] Jian K., Chen Z. H., Ma Q. S., Hu H. F. and Zheng W. W., Effects of polycarbosilane infiltration processes on the microstructure and mechanical properties of 3D-C_f/SiC composites, Ceram. Int.,33:905-910,2007
    [132] 陈曼华,陈朝辉,马青松,聚碳硅烷/二乙烯基苯陶瓷前驱体交联样品的制备,有机硅材料,16(6):4-7,2002
    [133] 阎联生,邹武,宋麦丽,王涛,3D C/SiC复合材料的孔隙率与性能的关系,碳素技术,105:11-13.1995
    [134] 邹世钦,张长瑞,周新贵,曹英斌,SiC_f/SiC陶瓷复合材料的研究进展,高技术通讯,8 95-100,2003
    [135] 张玉娣,张长瑞,CVI-PIP工艺制备C/SiC复合材料及其显微结构研究,材料科学与工程学报,22(5):657-659,2004
    [136] Evans A.G, Marshall D.B., The mechanical behavior of ceramic matrix composites, Acta Meter.,37 (10): 2567-2583, 1989
    [137] 王建方,碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究,博士学位论文,长沙:国防科技大学,2003
    [138] Noda T.,Kohyama A.and Katoh Y., Recent progress of SiC-fibers and SiC/SiC-composites for fusion applications, Phys. Scr,91:124-129,2001
    [139] Wu S., Cheng L. and Zhang L., Residual strength prediction of SiC/SiC composite exposed to service environments with factor analysis method, Inter. J. Appl.Ceram.,Technolo.,4(3): 285-290,2007
    [140] Becher P.E.,Lin H. and More K., Lifetime-applied stress response in air of a SiC-based Nicalon-fiber-reinforced composite with a carbon interfacial layer: effects of temperature (300° to 1150℃), J.Am. Ceram.Soc, 81 (7): 1919-1925,1998
    [141] Takeda M., Urano A., Sakamoto J I. and Imai Y., Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type, J. Nuclear Mater, 258-263: 1594-1599, 1998
    [142] Kakimoto K I.,Shimoo T.and Okamura K.,Oxidation-induced microstructural change of Si-Ti-C-O fibers,J.Am.Ceram. Soc,81 (2):409-412,1998
    [143] Jones R E., Petrak D., Rabe J. and Szweda A. S., SiC fibers for CMC reinforcement, J. Nuclear Mater,223: 556-559,2000
    [144] 楚增勇,先驱体法碳化硅纤维缺陷形成机理与性能提高研究,博士学位论文,长沙:国防科技大学,2003
    [145] 何新波,曲选辉,叶斌,SiC_f/SiC复合材料的制备与力学性能,无机材料学报,20(3):677-683,2005
    [146] Mohamed Saleem.Preparation of SiC-based fibers from orgnaosilicon polymers (Ⅰ)effects of polyvinylsilazane on the characteristics and processing behavior of polycabosilane based solutions and (Ⅱ)synthesis, characterization and processing of polymethylsilanes, A dissertation for the degree of Doctor of Philosophy, Florida: University of Florida, 1998
    [147] Yoshida T., Nishide S., Method for manufacturing ceramic-based composite material, U.S. Pat.6342269, 2002
    [148] Katoh Y, Nozawa T., Ozawa K. and Kohyama A., Characterization of silicon carbide composites produced by polymer impregnation and high temperature pyrolysis process, Fusion materials semiannual progress report for the period ending, OAK ridge national laboratory, Oak ridge,Tennessee, 2004
    [149] Hasegawa Y., Iimura M. and Yajima S.,Synthesis of continuous silicon carbide fibre, Part 2 Conversion of polycarbosilane fibre into silicon carbide fibre, J. Mater. Sci.,720-728,1980
    [150] 范小林,冯春祥,宋永才,李效东,高熔点聚碳硅烷的合成及其裂解机理的研究,宇航材料工艺.5:23-29,1999,.
    [151] 宋永才,王岭,冯春祥,聚碳硅烷的合成与特性研究,高分子材料科学与工程,13(4):30-33,1997
    [152] 所俊,郑文伟,肖加余,陈朝辉,C_f/SiC复合材料先驱体转化法浸渍工艺条件优化,宇航材 料工艺,2:29-32,2000
    [153] Fu Z. Q., Tang C. H. and Liang T. X., Structure of SiC coatings from polycarbosilane on graphite for fuel element matrix of high temperature gas-cooled reactor, Surf. Coat. Tech., 200: 3950-3954,2006
    [154] Riedel R., Gabriel A. O.,Synthesis of polycrystalline silicon carbide by a liquid-phase process.Adv. Mater,11:207,1999
    [155] 余煜玺,李效东,陈国明,曹峰,冯春祥,SiC(AJ)陶瓷纤维先驱体聚铝碳硅烷的合成与表征高分子材料科学与工程,高分子材料科学与工程,20(2):85-88,2004
    [156] 吴艳军,碳化硅纳米晶须的制备、特性及应用基础研究,博士学位论文,上海:上海交通大学,2004
    [157] Otoishi S., Tange Y., Effect of a catalyst on the formation of SiC whiskers from polycarbosilane,nickel ferrite as a catalyst, B. Chem. Soc.Jpn., 72: 1607-1613,1999
    [158] Cai K.R,Zhang A. X. and Yin J. L., Ultra thin and ultra long SiC/SiO_2 nanocables from catalytic pyrolysis of poly(dimethyl siloxane),Nanotechno.,18:1-6,2007
    [159] Cai K.R, Lei Q. and Zhang L. C, Ultra long SiC/SiO_2 core-shell nanocables from organic precursor, J. Nanosci. Nanotechno., 5:1925-1928, 2005
    [160] Otoishi S.,Tange Y,Growth rate and morphology of silicon carbide whiskers from polycarbosilane, J. Cryst. Growth., 200: 467-471,1999
    [161] Cai K. R, Lei Q. and Zhang A. X., A simple route to ultra long SiC nanowires, J. Nanosci.Nanotechno., 7: 580-583,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700