TiO_2和六钛酸钾晶须掺杂SiO_2干凝胶的制备及隔热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiO2气凝胶是一种由SiO2胶体粒子相互团簇聚集形成的纳米多孔网络结构材料,由于在常温下具有很低的密度和极低的热导率,因此成为最具有开发潜力的一种超级绝热材料。但是随着使用环境温度的升高,由于SiO2气凝胶在高温时对传递热辐射能量的红外电磁波具有穿透性,它的辐射热导率会随温度升高而迅速增加,从而限制了其在高温环境下的应用。本文针对SiO2气凝胶对高温环境下的红外光具有高透过率的问题,选用了TiO2和六钛酸钾晶须两种具有高红外反射和吸收性能的粉末材料作为遮光剂,采用溶胶-凝胶法和非超临界干燥技术制备了遮光剂掺杂的SiO2干凝胶(通常由非超临界干燥法制备的气凝胶材料被成为干凝胶),并通过X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、傅立叶红外光谱仪(FTIR)以及N2吸附-脱附等方法对掺杂后的SiO2干凝胶的组织性能和孔结构等进行了分析,采用了分子力学模拟方法对掺杂后遮光剂粒子与SiO2干凝胶粒子的界面能进行了模拟和计算,并通过将掺杂后的干凝胶填充入蜂窝隔热结构中,采用表面瞬态加热装置对掺杂遮光剂的SiO2干凝胶与纯SiO2干凝胶在高温环境下的隔热性能进行了评价。
     以正硅酸乙酯(TEOS)为硅源,无水乙醇为溶剂,盐酸(0.2mol/L乙醇溶液)和氨水(2mol/L乙醇溶液)分别作为酸碱两步法中的酸性和碱性催化剂,选用丙三醇(GLY)为化学干燥控制剂(DCCA),制备TiO2和六钛酸钾晶须掺杂含量均为1%~8%(质量比)的SiO2干凝胶材料。在制备过程中,TEOS: H2O:无水乙醇=1:4:8;酸性水解条件为:pH=2、水解时间为15min、水解温度为50℃;碱性聚合条件为:TEOS: NH3·H2O=1:0.036、凝胶时间<2min。
     TiO2粉末掺杂的SiO2干凝胶是一种具有纳米孔的非晶态网络结构材料,TiO2颗粒以物理形态包覆于SiO2网络骨架中,在1000℃以内,随掺杂含量的增加,TiO2-SiO2干凝胶的孔径分布逐渐变宽,掺杂量≤5%的TiO2-SiO2干凝胶均能够具有>1000m2/g较高的比表面积,平均孔径分布为30~50nm。TiO2颗粒的掺入能够有效的散射或吸收2~8μm波长区域内的红外电磁辐射,降低这一高温能量主要集中区域的红外透过率。
     六钛酸钾(K2Ti6O13)晶须掺杂SiO2干凝胶在小于870℃时同样是具有纳米孔网络结构的非晶材料,其中1%质量比掺杂的干凝胶具有最大的比表面积为843m2/g,相比于同质量比掺杂的TiO2-SiO2干凝胶来说比表面积有所降低,且平均孔径也有所减小,1%~8%不同晶须掺杂量的SiO2干凝胶的平均孔径均为20~30nm。六钛酸钾晶须的掺入能够大大降低SiO2干凝胶的结晶温度,使其在870℃就出现了多晶化现象。六钛酸钾晶须掺杂的SiO2干凝胶同样可以有效的降低SiO2干凝胶在2~8μm波段内的红外辐射透过率。
     采用分子模拟方法对TiO2和六钛酸钾晶须掺杂SiO2干凝胶的掺杂形态和界面能进行了模拟和计算,结果表明:TiO2与SiO2界面能仅为0.601J/m2,说明TiO2颗粒与SiO2干凝胶骨架间没有的化学反应结合,TiO2颗粒能够稳定地掺杂于SiO2网络结构中;六钛酸钾晶须与SiO2的界面能为3.32J/m2,也属于一种较弱的结合方式。但是与TiO2/SiO2界面不同的是,在模拟过程中,六钛酸钾晶须中有部分K+从其初始位置扩散到干凝胶结构内部,这种K+扩散所导致的界面变形重构,可能是使六钛酸钾晶须掺杂的SiO2干凝胶在较低温度下就出现内部分子重排,导致晶化的主要原因。
     利用有限元分析方法对遮光剂掺杂SiO2干凝胶填充的蜂窝隔热结构进行了瞬态热环境模拟,并采用表面瞬态加热装置对这一隔热结构进行真实热环境测试来验证模拟结果。结果表明:未填充干凝胶的蜂窝结构的传热方式主要是内部的空气对流和辐射传热,填充遮光剂掺杂的SiO2干凝胶能够有效地阻止这两种传热方式的产生,使热量主要集中在面积很小的蜂窝壁上,大大延迟了底部面板达到预计高温的时间。
SiO2 aerogels belong to a kinds of non-crystal solid material which consist of SiO2 colloid particles molecule and form continuous random and porous network structure filled with gaseous dispersive medium. Because of their nano-size particles and porous characteristic, aerogels have many potential applications especially as super-insulation materials in modern aerospace and industrial fields.
     However, at ambient and higher temperatures, aerogel has poor thermal insulating property because it is highly transparent in the 2-8μm wavelength regions and the infrared electromagnetic wave can transmit in the SiO2 aerogels,therefore the radiative thermal conductivity will increase with the temperature increasing, which limits its actual application at high temperature.
     Due to its high transmittance in the infrared region at elevated temperature, this paper select TiO2 and K2Ti6O13 whisker as main opacifiers, considering it is an efficient opacifer due to its high reflection index and thermal stability. The pure and composite aerogels were fabricated by sol-gel method and subsequent non- supercritical drying technique (usually it maybe called as xerogels prepared with this method).The microstructure and physicochemical properties of the prepared aerogels were investigated by the menas of XRD, SEM, TEM, HRTEM, as well as Nitrogen gas adsorption, BET and FTIR method. Moreover, the MS method was adopted to simulate and analyze the interfacial and bonding properties between the SiO2 xerogels matrix and doped TiO2 particle or K2Ti6O13 whisker. Also the thermal insulation properties of the pure and doped-opacifer aerogels were evaluated using oxy-acetylene heating equipment.
     In the course of sol-gel, two-step acid-base catalyzed silica gels were prepared by using of tetraethoxysiliane (TEOS) as precursor, absolute alcohol as solvent, 0.2mol/L hydrochloric acid (diluting with absolute ethanol) and ammonia as acid and base catalyzer respectively. The results show that the most optimal molar ratio of TEOS, H2O, alcohol is 1: 4: 8. The hydrolyzation and condensation temperature is 50℃, and the hydrolysis time is 15min under acid solution. The most optimal molar ratio of TEOS and NH3·H2O is 1:0.036 under alkaline condition and the gel time is less than 2 min.
     Silica aerogels doped nano-sized TiO2 particle belong to amorphous and nano-porous network materials. TiO2 particles are physically embedded by silica aerogel and most TiO2 particles were adhered to silica aerogels.The average diameter of the pores obtained by BET analysis was about 30-50 nm. The BET surface area was in excess of 1000 m2/g for the doped TiO2 is less than 5wt%, while the specific surface area was slightly decreased to 785 m2/g for the doped TiO2 reaches 5wt%. The results showed that the SiO2 aerogel doped TiO2 can effectively scatter and adsorb the infrared electromagnetic wave between 2-8μm wavelengths, which results in the reducing infrared transmittance.
     Silica aerogels doped K2Ti6O13 whisker also have a characteristic of amorphous and nano-porous structure. The maximum BET surface area was 843 m2/g for the doped K2Ti6O13 whisker is 1wt%, and the specific surface area was slightly decreased compared with the doped-TiO2 aerogels. The average diameter of the pores for the doped content between 1wt% and 8wt% obtained by BET analysis was about 20-30 nm. The doped K2Ti6O13 whisker can greatly reduce the crystallization temperature, and thus the SiO2 crystalline was found at 870℃. The results showed that the SiO2 aerogel doped K2Ti6O13 whisker can also scatter and adsorb the infrared electromagnetic wave effectively between 2-8μm wavelengths, which results in the reducing infrared transmittance.
     The MS method was adopted to simulate and analyze the microstructural feature and interfacial energy between the SiO2 xerogels matrix and doped TiO2 particle or K2Ti6O13 whisker. The results revealed that the interfacial energy between TiO2/SiO2 is only 0.601J/m2, showing that no obvious chemical reaction on interface when the TiO2 is added into SiO2 aerogel. However, the interfacial energy between TiO2/ K2Ti6O13 whisker increased to 3.32 J/m2, although it is also attributed to weak interfacial bonding. It is noticeable that the some K+ can diffuse into the SiO2 aerogel and therefore displace its original position, which will result in interfacial reconstitution. This phenomenon will explain the reason that the SiO2 crystalline occur at relatively low temperature.
     The transient temperature distribution of honeycomb structure filled with and without doped TiO2 or K2Ti6O13 whisker aerogel was simulated by finite element modeling (FEM) analysis. Moreover, the modeling results were compared with the experimental equipment by oxy-acetylene heating system. The experimental and simulated results showed that the heat transfer style is mainly air convection and radiation transfer. However, the heat transfer of the doped-opacifer TiO2 or K2Ti6O13 can effectively inhibit the occurrence of the above two transferring style. The heat was mainly transferred by the small-area honeycomb wall and greatly delays the time to reach the back surface.
引文
1王家胜. 2006年世界航天新材料发展综述.中国航天.2007, 3: 20~22
    2 A. Tsukahara, H.Yamao. Advanced Thermal Protection Systems for Reusable Launch Vehicles. AIAA 2001-1909
    3 D.J.Rasky, H.K. Tran, D.B.Leiser. Thermal Protection System. Launchspace, 1998: 49~54
    4邱惠中.美国空天飞机用先进材料最新进展.宇航材料工艺. 1994,6:5~9
    5 B.Laub, E.Venkatapathy. Thermal Protection System Technology and Facility Needs for Demanding Future Planetary Missions Trajectory Analysis and Science, Lisbon, Portugal, 6~9, 2003
    6范绪箕.气动加热与热防护系统.科学技术出版社,2004: 147~148
    7苏芳,孟宪红.三种典型热防护系统发展概况.飞航导弹. 2006,10: 57~60
    8 J. T. Dorsey, C.C. Poteet, R. R. Chen, K.E. Wurster. Metallic Thermal Protection System Technology Development Concepts, Requirements and Assessment Overview. AIAA 2002-05-02
    9 W.D.Morris, N.H.White, C.E.Ebeling. Analysis of Shuttle Orbiter Reliability and Maintainability Data for Conceptual Studies. AIAA Space Programs and Technology Conference. Huntville, AL, Sept. 1996: 43~62
    10 M.L Blosser.Development of Metallic Thermal Protection System for The Reusable Launch Vehicle. NASA Technical Memorandum, 1996, 110296
    11 M.L Blosser. Advanced Metallic Thermal Protection Systems for Reusable Launch Vehicles.University of Virginia, 2000-05
    12史丽萍,李垚,赫晓东.金属热防护系统的研究进展.宇航材料工艺. 2005, 3: 21~23
    13 M.L.Blosser, R.R. Chen, I.H.Schmidt, J.T.Dorsey, C.C.Poteet, R.K.Bird. Advanced Metallic Thermal Protection System Development. AIAA. 2002-05-04
    14仝爱莲,蒋宇平.新的高纯陶瓷纤维复合材料及其应用.宇航材料工艺. 1995, 24(1): 14~19
    15 K.A. Hinkle, P.R. Staszak, E.T. Watts. Advanced Ceramic MaterialsDevelopment and Testing, AIAA Paper 96-1426. In 37th Structures , Structure Dynamics, and Materials Conference, 1996: 957~961
    16 K.Daryabeigi. Heat Tranfer in High-Temperature Fibous Insulation. AIAA 2002-3332. 2002: 1~15
    17 L.W.Hrubesh. Aerogels Applications. Journal of Non-Crystalline Solids. 1998, 225: 335~342.
    18 S. White, D. Rask. Lightweight Supper Insulating Aerogel/Tile Composite Have Potential Industrial Use. Material Tech. 1999, 14(1): 13~17
    19 K.P.Lee. Aerogels for Retrofitted Increases in Aircraft Survivability-An Improved Approach to Reduce MANPADS Threats against Aircraft. AIAA 2002-1497: 22~25
    20 Owen R Evans. Aerogel Insulation for the Thermal Protection of Venus Spacecraft. NASA SBIR 2005 Solicitation.
    21何飞. SiO2和SiO2-Al2O3复合干凝胶超级隔热材料的制备与表征.哈尔滨工业大学博士学位论文. 2006: 1~24
    22夏雅君.隔热技术.北京:机械工业出版社,1991.
    23邹宁宇,鹿成滨,张德信.绝热材料应用技术.中国石化出版社.北京,2005
    24闵桂荣,郭舜.航天器热控制.科学出版社. 1998: 90~184
    25陆平鸽,田凤仁.高铝质漂珠耐火隔热砖的研制.耐火材料. 1990, (4): 26~28
    26 H.M.Ковалъчук.耐火氧化物纤维的隔热材料.国外耐火材料. 1992, (7): 50~53
    27于萍霞译.用于高温的微孔耐火材料.国外耐火材料. 1997,(3): 34~36
    28 Makus Spinnler. Studies on High-temperature Multilayer Thermal Insulations. Internatonal Journal of Heat and Mass Transfer. 2004, 47: 1305~1312
    29曹峰,李效东,冯春祥.连续氧化铝纤维制造、性能与应用.宇航材料工艺. 1999,28(6): 6~9
    30 D.D.Hass, B.D.Prasad, D.E.Glass, K.E.Wiedemann. Reflective Coating on Fibous Insulation for Reduced Heat Transfer, NASA-97-CR-201733
    31 M.P.Gorton, J.L.Shideler, G.L.Webb. Static and Aerothermal Tests of A Superaloy Honeycomb Prepackaged Thermal Protection System. NASA TP3257, 1993
    32 C.H.Yan, S.H.Meng, G.Q.Chen. S.Y.Du. Weight Optimizing for Fibrous Thermal Insulations of Metallic Thermal Protection Systems under the Steady Heat Transfer. The 1st International Conference on Enhancement and Promotion of Computational Methods in Engineering Science and Mechanics. 2006, 8
    33 T. Imai, Y. Nishida, M.Yamada, I. Shirayanagi and H. Matsubara. K2O.6TiO2 Whisker-Rreinforced Aluminium Composite by A Powder Metallurgical Method. Journal of Materials Science Letters. 1987, 6: 1257~1258
    34张娜,张玉军,田庭艳,刘超.高温低热导率隔热材料的研究现状及进展.中国陶瓷.2006,42(1): 16~18
    35 N.Z. Bao, X.H. Lu, X.Y. Ji, X. Feng and J.W. Xie Thermodynamic Modeling and Experimental Verification for Ion-exchange Synthesis of K2O·6TiO2 and TiO2 Fibers From K2O·4TiO2. Fluid Phase Equilibria. 2002, 193( 1-2): 229-243
    36 Fujiki Y, Ohta N. The Flux Growth Reactions of Potassium Tetratitanate fibers. Yogyo Kyokaishi. 1980, 88: 111~116
    37李卫东,李月强,刘艳改,丁浩.新型建材——泡沫玻璃的发展与应用前景.中国陶瓷工业. 2007, 14(1): 36~38
    38刘辉,孙伟.多孔陶瓷材料的应用及发展前景.矿业工程. 2003, 26(6): 68~71
    39闫长海.金属热防护系统隔热材料的隔热机理及隔热效率研究.哈尔滨工业大学博士学位论文. 2006: 10
    40 H.D.Zhu. Design of Metallic Foams as Insulation in Thermal Protection Systems. Doctoral Thesis. University of Florida, 2004
    41 D.Alan, D.Kamaran. Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam. 35th AIAA Thermophysics Conference. Anaheim, Canada.2001,9
    42邓忠生,魏建东,王珏,沈军. SiO2气凝胶结构及其热学特性研究.材料工程.1999, (12):23~25
    43 L.L.Aranda. Silica Aerogel. 2001 IEEE.0278-6648
    44 Yu K Akimov. Fields of Application of Aerogels(Review). Instruments and Experimental Techniques. 2003,46(3): 287~293
    45 S.S.Kistler. Coherent Expanded Aerogels and Jellies. Nature, 1931, 127:741
    46陈烈民,航天器结构与机构,中国科学技术出版社,北京,2005,273~283
    47 C.Y.Kim, J.K.Lee, B.I.Kim. Synthesis and Pore Analysis of Aerogel-Glass Fiver Composite by Ambient Drying Method. Colloids and Surfaces A: Physicochem.Eng.Aspects. Avaliable Online. 2007,2
    48 Kamran Daryabeigi. Design of High Temperature Multi-Layer Insulation for Reusable Launch Vehicles. Doctoral Thesis: University of Virginia, 2005,5
    49 C.K.Krishnaprakas, K.Badari Narayana, Pradip Dutta. Heat Transfer Correlations for Multilayers Insulation Systems. Cryogenics, 2000, 40:431~435
    50赵增典,张勇,李杰.泡沫金属的研究及其应用进展.轻合金加工技术,1998,26(1): 1~10
    51凤仪,朱震刚,陶宁,郑海务.闭孔泡沫铝的导热性能.金属学报. 2003,39(8): 817~820
    52夏运周,项品海,彭玉堂.泡沫玻璃的生产及应用.石油化工. 1983,12(8):514~516
    53郭兵,黄家骏,蔡韩英.泡沫玻璃在建筑节能领域中的应用.平原大学学报. 2004,21(3): 27~28
    54 J.Fricke. Aerogel and Their Applications. Journal of Non-Crystalline Solids. 1992, 219: 356~362
    55倪文,刘凤梅.纳米孔超级绝热材料的原理及制备.新型建筑材料,2002, 1: 36
    56 E.Schlegel, K.S.Haenssler, H.Seifat. Micro-porosity and its use in highly efficient thermal insulating materials. CIF Ceramic Forum International, 1998,76(8): 7~10
    57 A.J.Hunt. Aerogel, Atransparent Porous Super Insulator. Materials Engineering Congress, Sponsored by : ASCE, Pusloby, ASCE. 1992,2: 398~403
    58梁庆宣.水镁石纤维增强SiO2气凝胶超级绝热材料研究.长安大学硕士学位论文. 2006:10~13
    59陈龙武,甘礼华.气凝胶.化学通报. 1997,8: 21
    60 J.E. Fesmire. Aerogel Insulation System for Space Launch Applications. Cryogenics. 2006, 46:111~117
    61 L.W.Hrubesh. Aerogels: The World’s Lightest Solids. Chem. & Industry. 1990, 24:824~827
    62王珏,沈军,J.Fricke.高效隔热材料掺TiO2及玻璃纤维硅石气凝胶的研制.材料研究学报. 1995,9(6): 568~572
    63 P.H.Tewari, A.J.Hunt, K.D.Lofftus. Ambient Temperature Supercritical Drying of Transparent Silica Aerogels. Mater. Lett. 1985, 9~10(3): 363~367
    64张志焜,崔作林.纳米技术与纳米材料.国防工业出版社,北京,2000: 131~144
    65沈军,王珏,甘礼华,陈龙武.溶胶-凝胶法制备SiO2气凝胶及其特性研究.无机材料学报. 1995, 10(1): 69~75
    66 H.Hdach, T.Woignier, J.Phalippou, G.W.Scherer. Effect of Aging and pH on The Modulus of Aerogels. 1990, 121(1-3): 202~205
    67 D.M.Smith, G.W.Scherer, J.M.Anderson. Shrinkage During Drying of Silica Gel. J.Non-Cryst. Solids. 1995,188: 191~206
    68胡惠康,甘礼华,李光明,沙海洋,陈龙武.超临界干燥技术.实验室研究与探索. 2000,2: 33~35
    69 K.Tajiri, K.Igarashi, T.Nishio. Effects of Supercritical Drying Media on Structure and Properties of Silica Aerogel. Journal of Non-Crystallian Solids. 1995, 186: 83~87
    70甘礼华,陈龙武,张宇星.非超临界干燥法制备SiO2气凝胶.物理化学学报. 2003,19(6): 504~508
    71同小刚,王芬,冯海涛,安世武.二氧化硅气凝胶的制备和应用研究.材料导报. 2006, 20(VI): 24~26
    72 N.Uchida, N.Ishiyama, Z.Kato. Chemical Effects of DCCA to the Sol-Gel. J.Mater.Sci. 1994,29: 5188~5192
    73 A.V. Rao, M.M.Kulkarni. Effect of Glycerol Additive on Physical Properties of Hydrophobic Silica Aerogels. Materials Chemistry and Physics. 2003, 77(3): 819~825
    74 S.H?reid, E.L.Nilsen, M.A.Einarsrud. Subcritical Drying of Silica Gels. Journal of Porous Materials. 1995, 2(4):
    75 P.R.Aravind, P.Mukundan, P.Krishna Pillai, K.G.K.Warrier. Mesoporous Silica-Alumina Aerogels with High Thermal Pore Stability through Hybrid Sol-Gel Route Followed by Subcritical Drying. 2006, 96(1-3): 14~20
    76 V.D.Land, T.M.Harris and D.C.Teeters. Processing of Low-Density Silica Gel by Critical Point Drying or Ambient Pressure Drying. J.Non-Cryst. Solids. 2001,283: 11~17
    77 G.Amato, N.Brunetto, A.Parisini. Characterizationof Freeze-Dried Porous Silicon. Thin Solid Films. 1997, 297: 73~78
    78 Ok-Joo Lee, Kun-Hong Lee, Tae Jin Yim, Sun Young Kim, Ki-Pung Yoo. Determination of Mesopore size of Aerogels from Thermal Conductivity Measurement. Journal of Non- Crystalline Solids. 2002, 298: 287~292
    79 J.Wang, J.Kuhn, X.Lu. Monolithic Silica Aerogel Insulation Doped with TiO2 Powder and Ceramic Fibers. Journal of Non-Crystalline Solid. 1995,186: 296~300
    80 Fricke J, Tillotson T. Aerogels: Production. Characterization, and Application. Thin Solid Film. 1997,297:212
    81 E.Hummer, X.Lu, Th.Rettelbach and J.Fricke. Heat Transfer in Opacified Aerogel Powders. Journal of Non-Crystalline Solids. 1992, 145: 211~216
    82 J.Fricke, X.Lu, P.Wang, D.Buttner and U.Heinemann. Optimization of Monolithic Silica Aerogel Insulants. International Journal of Heat and Mass Transfer. 1992, 35(9): 2305~2309
    83 J.Kuhn, T.Gleissner, M.C. Arduini-Schuster, S. Korder, J. Fricke. Integration of Mineral Powders into SiO2 Aerogels. Journal of Non-Crystalline Solids. 1995,186: 291~295
    84白林,辛宇天.消光材料的物理特性及消光系数的测定方法.光电对抗与无源干扰. 2002, 3: 17~18
    85王玄玉,潘功配,何艳兰.压片法测试纳米氧化铝的红外消光特性.光谱实验室. 2005, 22(3): 449~452
    86 Chung-jen Tseng, Kuang-te Kuo. Thermal Radiative Properties of Phenolic Foam Insulation. Journal of Quantitative Spectroscopy & Radiative Transfer. 2002,72: 349~359
    87 S.Q.Zeng, R.Greif, P.Stevens, M.Ayers, A.Hunt. Effective Optical Constants n and k and extinction Coefficient of silica aerogel.
    88 D.Lee, P.C.Stevens, S.Q.Zeng, A.J.Hunt. Thermal characterization of Carbon-Opacified Silica Aerogels. Journal of Non-Crystalline Solids. 1995, 186: 285~290
    89袁江涛,杨立,谢骏,田恬,孙丰瑞.基于Mie理论的水雾粒子多光谱消光特性研究.光学技术. 2007,32(3): 459~461
    90何飞,赫晓东,李垚.气凝胶热特性的研究现状.材料导报. 2005,19(12): 20~22
    91 Zeng S Q, Hunt A, Greif R. Transport Properties of Gas in Silica Aerogel. J. Non-Cryst Solid, 1995,186:264
    92陈永甫.红外辐射红外器件与典型应用.电子工业出版社.北京. 2004: 1~17
    93余怀之.红外光学材料.国防工业出版社.北京. 2006: 5~17
    94 J.Kuhn, T.Gleissner, M.C. Arduini-Schuster, S. Korder, J. Fricke. Integration of Mineral Powders into SiO2 Aerogels. Journal of Non-Crystalline Solids. 1995,186: 21~295
    95 Young-Geun Kwon, Se-Young Choi. Ambient-Dried Silica Aerogel Doped with TiO2 Powder for Thermal Insulation. J Mater Sci. 2000,35:6075
    96 A.F.Danilyuk, V.L.Kirillov, M.D.Savelieva, V.S.Bobrovnikov, A.R.Buzykaev, E.A.Kravchenko, A.V.Lavrov, A.P.Onuchin. Recent Results on Aerogel Development for Use in Cherenkov Counters. Nuclear Instruments and Methods in Physics Research A. 2002,494: 491~494
    97 S.Henning, G.Jarlskog, U.Mjornmark. An Aerogel Cherenkov Counter for the AFS Experiment. Physica Scripta. 1981, 23(4): 703~707
    98 T.Bellunato, M.Calvi, C.Matteuzzi, M.Musy, P.Negri, A.Braem,E.Chesi, C.Hansen, D.Liko, C.Joram, N.Neufeld, J.Séguinot, P.Weilhammer, A.R.Buzykaev, E.A.Kravchenko, A.P.Onuchin, A.F.Danilyuk, S.Easo, S.Wotton, S.Jolly. Performance of Aerogel as Cherenkov Radiator. Nuclear Instruments and Methods in Physics Research A. 2004, 519: 493~507
    99 A.Emmerling, R.Petricevic, A.Beck, P.Wang, H.Scheller, J.Fricke. Relationship Between Optical Transparency and Nanostructure Features of Silica Aerogels. J.Non-Cryst.Solid. 1995, 185: 240~248
    100 M.Reim, A.Beck, W.Korner, R. Petrcevic, M.Glora, M.Weth, T.Schliermann, J.Fricke, Ch.Schmidt, F.J.P?tter. Highly Insulating Aerogel Glazing for Solar Energy Usage. Solar Energy. 2002, 72(1): 21~29
    101 M.Reim, G.Reichenauer, W.K?rner, J.Manara, M.A.Schuster, S.Korder, A.Beck, J.Fricke. Silica Aerogel Granulate—Structure, Optical and ThermalProperties. J.Non-Cryst. Solids. 2004, 350: 358~363
    102 www.cabot.com
    103 www.aerogel.com
    104王珏,黎青,沈军,周斌,陈玲燕.两步法制备超低密度SiO2气凝胶.原子能科学技术. 1996,30(1): 41~45
    105 Z.S. Deng, J. Wang, Y.L.Zhang, Z.N. Weng, Z. Zhang, B.Zhou, J. Shen and L.Y. Cheng. Preparation and Photocatalytic Activity of TiO2-SiO2 Binary Aerogels. Nanostructured Materials. 1999,11(8): 1313~1318
    106 J. Wang, J.Shen, B. Zhou, Z.S. Deng, L. Zhao, L. Zhu and Y.F. Li. Cluster Structure of Silica Aerogel Investigated by Laser Ablation. Nanostructured Materials. 1998,10(6): 909~916
    107 Z.S. Deng, J. Wang, A.M. Wu, J. Shen and B. Zhou. High Strength SiO2 Aerogel Insulation. Journal of Non-Crystalline Solids. 1998, 225 (1):101 ~104
    108 L.Zhu, Y.F.Li, J.Wang. and J. Shen. Structural and Optical Characteristics of Fullerenes Incorporated Inside Porous Silica Aerogel. Chemical Physics Letters. 1995, 239(4-6): 393~398
    109刘朝辉,苏勋家,侯根良,王先猛. SiO2气凝胶的改性研究及在航空航天领域的应用.飞航导弹.2006, 10: 61~64
    110 A. S.Dorcheh, M.H. Abbasi. Silica Aerogel: Synthesis, Properties and Characterization. Journal of Materials Processing Technology. 2008, 199(1):10~26
    111 S.Q. Liu, J.C.Rao, X.Y. Sui, P. Cool, E. F. Vansant, G.V. Tendeloo and X. Cheng. Preparation of Hollow Silica Spheres with Different Mesostructures. Journal of Non-Crystalline Solids. 2008, 354(10-11): 826~830
    112 P.B. Sarawade, J.K.Kim, H.K.Kim and H.T. Kim. High Specific Surface Area TEOS-based Aerogels with Large Pore Volume Prepared at An Ambient Pressure. 2007, 254(2): 574~579
    113 A. Karout , A. C. Pierre. Silica Xerogels and Aerogels Synthesized with Ionic Liquids. Journal of Non-Crystalline Solids, 2007, 353(30-31): 2900~2909
    114 D.Carta, A.Corrias, G. Mountjoy and G.Navarra. Structural Study of Highly Porous Nanocomposite Aerogels. Journal of Non-Crystalline Solids, 2007,353(18-21):1785~1788
    115 S.Lee, Y. C. Cha, H. J. Hwang, J.W. Moon and I. S. Han. The Effect of pH on The Physicochemical Properties of Silica Aerogels Prepared by An Ambient Pressure Drying Method. Materials Letters, 2007, 61(14-15): 3130~3133
    116 S. D. Bhagat, Y. H. Kim, Y.S. Ahn and J.G.Yeo. Rapid Synthesis of Water-glass Based Aerogels by In Situ Surface Modification of The Hydrogels. Applied Surface Science.2007, 253(6):3231~3236
    117 G. Reichenauer. Thermal Aging of Silica Gels in Water. Journal of Non-Crystalline Solids, 2004, 350: 189~195
    118徐艳姬. K2Ti6O13晶须的制备、生长机理及微结构研究
    119朱文化,柯家骏.新型无机晶须—钛酸钾晶须.化学通报. 1994, (4): 5~10
    120 H.Izawa, S.Kikkawa, M.Koizumi. Ion Exchange and Dehydration of Layered Titanates: Na2Ti3O7 and K2Ti4O9. J. Phys. Chem. 1982, 86:5023~5026
    121 He M,Feng X,Lu XH,et al.A controllable approach for the synthesis of titanate derivatives of potassium tetratitanate fiber.Journal of Materials Science,2004,39(11):3745-3750
    122 T.Zaremba, A.Hadrys. Synthesis of K2Ti4O9 whiskers.Journal of Materials Science,2004,39(14):4561-4568
    123 M.C.Long, R. Beranek, W.M.Cai and H. Kisch. Hybrid Semiconductor Electrodes for Light-driven Photoelectrochemical Switches. Electrochimica Acta. 2008, 53(14): 4621~4626
    124王斌,梁刚强,曹鹏军.纳米TiO2在汽车面漆中的应用研究.表面技术.
    125冯新,吕家栋,陆小华等.钛酸钾晶须在复合材料中的应用,复合材料学报, 1999,16(4):55~59
    126 P.B. Sarawade, J.K. Kim, H.K. Kim, H.T. Kim. High Specific Surface Area TEOS-Based Aerogels with Large Pore Volume Prepared at An Ambient Pressure. Applied Surface Science. 2007, 254(2):574~579
    127 D.A. Donatti, A.I. Ruiz, D.R. Vollet. From Sol to Aerogel: A Study of The Nanostructural Characteristics of TEOS Derived Sonogels. Journal of Non-Crystalline Solids, 2001,292(1-3): 44~49
    128 Hajime Tamon, Taketo Kitamura, Morio Okazaki. Preparation of Silica Aerogel from TEOS. Journal of Colloid and Interface Science, 1998, 197(2):353~359
    129 A.V. Rao, P.B. Wagh. Preparation and Characterization of Hydrophobic Silica Aerogels. Materials Chemistry and Physics. 1998, 53(1): 13~18
    130 F.Schwertfeger, D.Frank, M.Schmidt. Hydrophobic Waterglass Based Aerogels without Solvent Exchange or Supercritical Drying. J.Non-Cryst. Solids. 1998,225:24~29
    131邓忠生,魏建东,王珏,沈军,周斌,暴玉萍,陈玲燕.由多聚硅氧烷制备二氧化硅气凝胶.功能材料. 2000,31(3):296~298
    132 Satoshi Yoda, Satoshi Ohshima. Supercritical Drying Media Modification for Silica Aerogel Preparation. Journal of Non-Crystalline Solids. 1999,248: 224~234
    133 Juncal Estella, Jesús C. Echeverría, Mariano Laguna, Julián J. Garrido. Silica xerogels of tailored porosity as support matrix for optical chemical sensors. Simultaneous effect of pH, ethanol:TEOS and water:TEOS molar ratios, and synthesis temperature on gelation time, and textural and structural properties. Journal of Non-Crystalline Solids.2007,357(3):286~294
    134沈军,王珏,吴翔.气凝胶—一种结构可控的新型功能材料.材料科学与工程. 1994,12(3):1~5
    135高朋召,王红洁,金志浩. SiO2溶胶凝胶转变过程的动力学研究及应用.复合材料学报. 2003, 20(4): 122~126
    136王珏,黎青,沈军,周斌,陈玲燕.二步法制备超低密度SiO2气凝胶.原子能科学技术. 1996, 30(1): 41~45
    137林健.催化剂对正规酸乙酯水解-聚合机理的影响.无机材料学报.1997,12(3):363~369
    138李文翠,郭树才,王振林.老化过程参数对新型纳米材料有机气凝胶性能的影响研究.材料科学与工程.2000,18(2):25~27
    139 S.H?reid, E.Nisen, M.A.Einarsrud. Properties of Silica Aged in TEOS. J.Non-Cryst. Solids. 1996,204:228~234
    140 G.W.Scherer, S.H?reid, E.Nisen, M.A.Einarsrud. Shrinkage of Silica Gels Aged in TEOS. J.Non-Cryst.Solids. 1996,202:42~52
    141 G.W.Scherer. Effect of Drying on Properties of Silica Gel. J.Non-Cryst.Solids. 1997, 215: 155~168
    142 G.W.Scherer, D.M.Smith, X.Qiu, J.M.Anderson. Compressiono of Aerogels. J.Non-Cryst.Solid.1995,186:316~320
    143沈钟,王果庭.胶体与表面化学.化学工业出版社. 1997
    144陈宗淇,王光信,徐桂英.胶体与界面化学.高等教育出版社. 2001
    145李兴华.密度浓度测量.中国计量出版社.1991
    146 D.弗兰克,A.齐默尔曼,F.索尼森.含有至少一种热塑性纤维材料的纤维组织—气凝胶—复合材料,其制备方法及其应用.中国专利:96199193.1999-1-20
    147 Young-Geun Kwon,Se-Young Choi, Eul-Son Kang, Seung-Su Baek. Ambient Dried Silica Aerogel Doped with TiO2 Powder for Thermal Insulation. Journal of Material Science 2000,35: 6075~6079
    148 J.Phalippou, F.Despetis, S.Calas, A.Faivre, P.Dieudonné, R.Sempéréand T.Woignier. Comparison between Sintered and Compressed Aerogels. Optical Materials. 2004,26:167~172.
    149 S.J.格雷格. Adsorption, surface aera and porosity. 1989,05: 118~178
    150黄胜涛.固体X射线学.高等教育出版社,1990
    151 D.R.Vollet, D.A.Donatti, A.I.Ruiz. Structural Evolution of Aerogels Prepared form TEOS Sono-Hydrolysis upon Heat Treatment up to 1100℃. J.Non-Cryst.Solids. 2003,332:73~79
    152李志宏,孙继红,吴东,孙予罕.小角X射线散射方法测定SiO2干凝胶的比表面.科学通报. 2000,45(7): 706~710
    153 Jhy-Wen Wu, Wen-Fa Sung, Hsin-Sen Chu. Thermal Conductivity of Polyurethane Foams. International Journal of Heat and Mass Transger. 1999, 42: 2211-2217.
    154赵淑媛.金属热防护系统纤维隔热毯隔热性能研究.哈尔滨工业大学硕士学位论文. 2005, 6
    155徐子颉,吕泽霖,甘礼华,郝志显,陈龙武. SiO2气凝胶小球热处理过程中的相变研究.人工晶体学报. 2006, 35(6): 1176~1179
    156杨小震.分子模拟与高分子材料.科学出版社.北京. 2002
    157熊家炯.材料设计.天津大学出版社.天津. 2002
    158叶雅静. C/SiC复合材料热解碳界面区域原子级模拟.西北工业大学硕士学位论文. 2003
    159 N. L. Allinger. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J.Am.Chem.Soc. 1977, 99: 8127~8134
    160 W. D. Cornell, P. Cieplak and C. I. Bayly et al. A second generation force. field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1996, 118 (9): 2309~2309
    161 J. H. Lii , N.L. Allinger. Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons. J.Am.Chem.Soc. 1989, 111: 8576~8582
    162 S. L. Mayo, B. D. Olafson and W. A. Goddard. Dreiding: a generic force field for molecular simulations. 1990, 94: 8897~8909
    163 V.S. Allured, C. M. Kelly , C.R. Landis. SHAPES empirical force field: new treatment of angular potentials and its application to square-planar transition-metal complexes. J.Am.Chem.Soc. 1991, 113: 1~12
    164 D. M. Root, C. R. Landis , T.Clevland . Valence bond concepts applied to the molecular description of molecular shapes.1.Application to nonhypervalent molecules of the P-block. J.Am.Chem.Soc. 1993, 115 (10): 4201~4290
    165 A. K. Rappe, C. J. Casewit and K. S. Colwell et al. UFF,a full periodic table force filed for molecular mechanics and molecular dynamics simulations. J.Am.Chem.Soc. 1992, 114 (25): 10024~10035
    166 C.J. Casewit, K.S. Colwell and A.K. Rappé. Application of a Universal Force Field to Main Group Compounds. J.Am.Chem.Soc. 1992, 114(25): 10035~10046
    167 A.K. Rappé, W.A. Goddard. Charge Equilibration for Molecular Dynamics Simulations. J. Phys. Chem. 1991, 95: 3358~3363
    168 W.H.Baur, A.A.Khan. Rutile-type Compounds. SiO2, GeO2 and a Comparison with Other Rutile-type Structures. Acta Crystallographica B.1982, 24: 1968~38
    169 D.H.Cid; M.J.Buerger . The Crystal Structure of Potassium Hexatitanate K2Ti6O13, Zeitschrift Fuer Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie .1962, 117: 411~430
    170 Modal Density of Composite Honeycomb Sandwich Panels. Journal of sound and vibration. 1996, 195(5): 687~699
    171吴全兴.复合材料在航空航天领域的扩大应用.稀有金属快报. 2002, 9(6): 13~14
    172史丽萍,赫晓东,孟松鹤等. MTPS金属蜂窝夹心结构尺寸效应的数值分析.南京航空航天大学学报,2005,37(1) :121~124
    173 Haynes 214 Alloy. Printed in U.S.A. 072596
    174邓忠生,张会林,魏建东,王珏.掺杂SiO2气凝胶结构及其热学特性研究.航空材料学报, 1999, 19(4):38-43
    175王小东.纳米孔SiO2气凝胶隔热复合材料应用基础研究.国防科技大学硕士学位论文. 2006: 35~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700