高速单光子探测及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的几十年中,各种各样的单光子探测器件和技术在量子光学和传统光学中都有着广泛的应用,为基础物理的研究和应用光学的发展都做出了积极的贡献。不同的单光子探测器有这个各自的优缺点,其中基于雪崩光电二极管(Avalanche Photodiode APD)的单光子探测器在这一领域有着举足轻重的地位。虽然该种探测器已凭借其具有的高探测效率、大动态范围、低偏置电压、低功耗和结构简单等优点在量子光学、量子信息学、超灵敏激光雷达系统、超灵敏光谱、生物和医学光子学等领域获得了广泛应用,但是其仍有许多性能上的突破空间和应用可能性需要更进一步的探索研究。本论文基于高速APD单光子探测器的新性能研发,围绕着“探索APD单光子探测和光子数可分辨探测技术的新应用”这一主线,拓展APD单光子探测器在量子光学、量子信息学和超灵敏激光雷达领域的应用。通过理论和实验研究验证了高速APD单光子探测器在量子密钥分发、量子随机数、激光测距与成像中的独特优势。
     本论文的主要研究内容和创新点介绍如下:
     1.研究并验证了正弦门驱动的铟镓砷/铟磷(InGaAs/InP) APD单光子探测器的准连续探测模式,使InGaAs/InP APD单光子探测器兼具了门驱动模式的优势和连续探测的性能。进一步深入研究了其时间特性,分析了造成其时间抖动的原理,并提出了门信号幅度与滤波器优化配合的解决方案。该种1GHz正弦波驱动技术实现了InGaAs/InP APD单光子探测器在准连续工作模式下达到4.7%的探测效率和180ps的时间抖动。
     2.首次采用准连续InGaAs/InP APD单光子探测器,实现了1550nm激光测距实验。在32m的实测距离和日光辐射背景下得到了3cm的最小表面分辨率,基于实验数据推算了该系统只需0.26nJ的每脉冲能量就可以达到300m的最大工作距离,为实现机载和星载平台的远距离人眼安全激光测距系统提供了实验基础。
     3.通过实验验证了在使用Si APD单光子探测器的测距系统中,工作在1036nm波长的激光测距系统与工作在1064nm波长的激光测距系统相比,探测效率可以从4.3%提升为9.7%,并在32m的实测距离和日光辐射背景下得到了15cm的最小表面分辨度。此外,基于实验数据拟合验证了该系统只需1μJ的每脉冲能量就可以达到14.3km的最大工作距离,为远距离近红外激光遥感和激光雷达系统提供了更优的选择可能。
     4.利用1.5GHz正弦波驱动的高速InGaAs/InP APD单光子探测器实现了1550nm扫描型3D激光成像实验,该实验系统实现了工作在1550nm的3D激光成像,对32m距离的四个方体目标的成像实验验证了该眼安全波段超灵敏3D激光成像系统在日光背景下工作的可行性。
     5.基于MPPC探测器的光子数分辨特性,提出了基于光子数布居随机性的量子随机数产生方法。与使用单光子探测器的方案相比,将随机数发生效率从25%提高到了40%,并且在实验上实现了这种新型的随机数发生器,随机数发生速率达到了2.4MHz。
     6.深入研究Counterfactual Quantum Key Distribution (QKD)方案的理论模型和可行性,提出了改良方案。在国际上首次在12.5km的光纤量子信道中实现了Counterfactual QKD,并针对不同的窃听方案分析了该方案的通讯安全性。
The past decades have seen a dramatic increase of interest in various kinds of new single-photon detectors (SPDs) technologies and their wide application, including quantum optics and classi optics. These detectors have served as indispensable key devices in both basic and application physics research. Although different SPDs have their own advantages and disadvantages, the SPDs based on Avalanche Photo-Diode (APD) are one of the most important detectors. Among all kinds of detectors, APD based SPDs have some special advantages, such as high detection efficiency, large dynamic range, relatively low bias voltage, low power consumption;and relatively simple system-structure. Thus, they have been widely used in quantum optics, quantum information, ultra-sensitive spectroscopy, bio-photonics and medical-photonics. However, there are still lots of potential technical breakthrough and new application waiting for us to discover. My works in this thesis mainly focus on the development and new application of high speed APD-based single-photon detectors and photon-number-resolving detectors. Besides, I theoretically and experimentally verified the applications of SPD in quantum-key-distribution, quantum-random-number-generator, laser ranging and3D imaging system. And I am trying to expand the application possibilities of APD-based photon-counting detectors in quantum optics and lidar system.
     The works demonstrated in this thesis include:
     1. A deeper study on GHz sine-wave gated InGaAs/InP APD indicated that it can be operated in a quasi-continuous mode. The research also showed that the APD, operating in the sine-wave gating mode, combined both advantages of gate mode and countinue mode. We tested its timing performance and found out the key influencing factor. The optimized1-GHz sine-wave gated InGaAs/InP SPD could offer4.7%detection efficiency and180-ps timing jitter.
     2. We demonstrated a single-photon laser ranging system at1550nm with an optimized1-GHz sine-wave gated InGaAs/InP APD SPD. By using a time-of-flight TCSPC approach, we achieved3cm depth resolution at32m distance in daylight environment. It provides a simple way to build an ultra-high sensitive1550nm laser ranging system at eye-safe spectral region. Benefiting from low power consumption of the devices used in this system, it is promising to be a mobile single-photon range finder for long-distance application.
     3. We demonstrated a laser ranging experiment obtained with a Geiger-mode silicon avalanche photodiode (Si GAPD). The surface-to-surface resolution of15cm was achieved with TCSPC. In the experiment, a mode-locked Yb-doped fiber laser at1036nm was applied, which made the detection efficiency of Si APD increased from4.3%to9.7%, comparing with1064-nm laser-source ranging system. And the system could measure the non-cooperated object longer than14.3km far away with1μJ per pulse laser output theoretically, which was tested through inserting the optical loss. It presented a potential for hundreds-of-kilometer laser ranging at low-light level.
     4. We demonstrated a3D laser imaging system at1550nm with an optimized1.5-GHz sine-wave gated Geiger-mode InGaAs/InP APD single-photon detector. Two computer-controlled galvanometer mirrors steered the laser beam over the target and scanned in a pixel-by-pixel raster-scanning pattern. Meanwhile the time-of-flight measurement on the arriving photons provided the distance information of the targets, thereby achieving3D laser imaging. This system has shown a potential of low-energy and eye-safe fast3D laser imaging system for long-distance measurement.
     5. We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach2.4MHz with a system clock of6.0MHz, corresponding to random bit generation efficiency as high as40%.
     6. For the first time to our knowledge, we realized the counterfactual QKD experiment in a round-way unbalanced Mach-Zehnder interferometer of12.5km fiber length. The counterfactual QKD protocol provides a powerful security proving method by monitoring the photon distribution of each detector. Despite7.2%of error rate on Bob's data, the security of the system is guaranteed that there is no intercept-resend attack according to the unchanged photon distribution of each detector used in the QKD system. And secret keys could be obtained preventing the passive PNS attack. The counterfactual QKD scheme was implemented with currently available technologies, promising a robust and practical quantum cryptography system toward global secure communication.
引文
1. A.Einstein, "On a heuristic point of view about the creation and conversion of light." Ann. Phys. (Leipz.) 17,132-148 (1905).
    2. R.Loudon. Quantum Theory of Light 3rd edn, Ch.1 (Oxford Univ. Press, 2000).
    3. H. lams and B. Salzberg, "The Secondary Emission Phototube," Proc. IRE 23,55(1935).
    4. V. Zworykin, G. Morton, and L. Malter, "The Secondary Emission Multiplier-A New Electronic Device," Proc. IRE 24,351 (1935).
    5. L. A. Kubetsky, "Multiple Amplifier," Proc. Inst. Radio Eng.254,421 (1937).
    6. K.O. Kiepenheuer, "Uber Zahlrohre fur das sichtbare Spektralgebiet," Z. Phys.107.145(1937).
    7. Z. Bay, "Electron Multiplier as an Electron Counting Device," Nature (London) 141,1011 (1938).
    8. J. S. Allen. "The Detection of Single Positive Ions, Electrons and Photons by a Secondary Electron Multiplier," Phys. Rev.55,966-971 (1939).
    9. R. Mclntyre. "Theory of Microplasma Instability in Silicon," J. Appl. Phys. 32.983(1961).
    10. D. E. Groom, "Silicon photodiode detection of bismuth germanate scintillation light." Nucl. Instrum. Methods Phys. Res.219,141 (1984).
    11. G. S. Buller and R. J. Collins, "Single-photon generation and detection", Meas. Sci. Technol.21,012002 (2010).
    12. S. Pellegrini, R. E.Warburton, L. J.J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P.R. David, S. Cova, M. J. Robertson, and G. S. Buller, "Design and performance of an InGaAs-InP single-photon avalanche diode detector," IEEE J. Quant. Electron.42,071116 (2006).
    13. A. Tosi, A. D. Mora, F. Zappa, and S. Cova, "Single-photon avalanche diodes for the near-infrared range:detector and circuit issues," J. Mod. Opt. 56,299 (2009).
    14. X. Jiang, M. A. Itzler, R. Ben-Michael, and K. Slomkowski, "InGaAsP-InP Avalanche Photodiodes for Single Photon Detection," IEEE J. Sel. Top. Quantum Electron.13,895 (2007).
    15. R. Warburton, M. Itzler, and G. Buller, "Improved free-running InGaAs/InP single-photon avalanche diode detectors operating at room temperature," Electron. Lett.45,996 (2009).
    16. N. Namekata, S. Sasamori, and S. Inoue, "800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating," Opt. Exp.4,10043-10049, (2006).
    17. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett.91,041114 (2007).
    18. N. Namekata, S. Adachi, and S. Inoue, "1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode," Opt. Exp.17,6275-6282, (2009).
    19. L. Xu, E Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, "High efficiency InGaAs/InP-based single photon detector with high speed," Appl. Phys. Lett. vol.94, p.161106, (2009).
    20. N. Namekata, S. Adachi, and S. Inoue, "Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths," IEEE Photon. Tech. Lett.22,529-531, (2010).
    21. Z. L. Yuan, A. W. Sharpe, J. F. Dynes. A. R. Dixon. and A. J. Shields. "Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes," Appl. Phys. Lett.96,071102 (2010).
    22. X. Chen, E Wu, G. Wu, and H. Zeng, "Low-noise high-speed InGaAs/InP-based SPD,"Opt. Express 18,7010-7018 (2010).
    23. Y. Jian, E Wu, G. Wu, and H. Zeng, "Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection." IEEE Photon. Tech. Lett.22,173(2010).
    24. Y. Liang, E Wu, X. Chen, M. Ren, Y. Jian. G. Wu, and H. Zeng, ",Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode," IEEE Photon. Tech. Lett.23,13,887-899(2011).
    25. Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Evolution of locally excited avalanches in semiconductors," Appl. Phys. Lett.96,191107 (2010).
    26. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden. "Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes," Appl. Phy. Lett.95, 091103(2009).
    27. M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima,"Reduce Afterpulsing of Single Photon Avalanche Diodes Using Passive Quenching With Active Reset," IEEE JOURNAL OF Quant. Elect.44,5 (2008).
    28. C. Hu, M. Liu, X. Zheng, and J. C. Campbell, "Dynamic Range of Passive Quenching Active Reset Circuit for Single Photon Avalanche Diodes," IEEE J. Quant. Elect.46,1(2010).
    29. J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, "Comprehensive Characterization of InGaAs-InP Avalanche Photodiodes at 1550 nm With an Active Quenching ASIC," IEEE J. Quant. Elect.45,7, (2009).
    30.陈修亮,《利用对称电容平衡尖峰噪声的1550nm单光子探测器的研制》(硕士论文),华东师范大学(2006)。
    31.许黎霖,《基于InGaAs/InPAPD的近红外单光子探测器的研究》(硕士论文),华东师范大学(2009)。
    32.简轶,《基于光平衡的单光子探测》,(硕士论文)华东师范大学(2011)。
    33.陈杰,《实用化量子通讯系统及其关键技术的研究》(博士论文),华东师范大学(2010)。
    34.刘伟,《基于InGaAs/InP雪崩光电二极管的近红外单光子探测》(博士论文),中国科学院半导体研究所(2006)。
    35.吴孟,《用于红外单光子探测的InP基盖革雪崩光电二极管的设计与工艺研究》(博士论文),中国科学院半导体研究所(2008)。
    36. A. Migdall, "Introduction to journal of modern optics special issue on singlephoton:detectors, applications, and measurement methods," J. Mod. Opt.51,1265-1266 (2004).
    37. M. A. Nielsen, and I. L. Chuang, "Quantum Computation and Quantum Information Ch.1," (Cambridge Univ. Press,2000).
    38. P. Zoller, et al., "Quantum information processing and communicationm," Eur. Phys. J. D 36,203-228 (2005).
    39. C. H. Bennett and G. Brassard. "Quantum cryptography:Public key distribution and coin tossing." in Proc. IEEE Int. Conf. Computers, Systems and Signal Processing, Bangalore 175-179 (1984).
    40. N. Gisin, G. Ribordy, W. Tittel. and H. Zbinden. "Quantum cryptography,' Rev. Mod. Phys.74,145-195 (2002).
    41. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409,46-52 (2001).
    42. P. Kok. et al. "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys.79,135-175 (2007).
    43. J. L. O'Brien. "Optical quantum computing," Science 318,1567-1570 (2007).
    44. M. Varnava. D. E. Browne, and T. Rudolph, "How good must single photon sources and detectors be for efficient linear optical quantum computation?" Phys. Rev. Lett.100.060502 (2008).
    45. T. Isoshima, Y. Isojima, K. Kikuchi, K. Nagai, and H. Nakagawa, Rev. Sci. Inst.66.2922(1995).
    46. U. Lieberwirth, J. Arden-Jacob, K. H. Drexhage, D. P. Herten, R. Muller, M. Neumann. A. Schulz, S. Siebert. G. Sagner. S. Klingel. M. Sauer, and J. Wolfrum, Anal. Chem.70,4771 (1998).
    47. J.-P. Knemeyer, N. Marme, and M. Sauer. Anal. Chem.72,3717 (2000).
    48. D. N. Gavrilov, B. Gorbovitski, M. Gouzman, G. Gudkov, A. Stepoukhovitch, V. Ruskovoloshin, A. Tsuprik, G. Tyshko, O. Bilenko, O. Kosobokova, S. Luryi, and V. Gorfinkel, Electrophoresis 24,1184 (2003).
    49. I. Rech, A. Restelli, S. Cova, M. Ghioni, M. Chiari, and M. Cretich, "Microelectronic photosensors for genetic diagnostic Microsystems," Sens. Actuators B 100,158 (2004).
    50. J.-P. Knemeyer, N. Marme, and M. Sauer, "Fluorescence Spectroscopy of Single Biomolecules," Science 283,1676 (1999).
    51. A. Berglund, A. Doherty, and H. Mabuchi, "Photon Statistics and Dynamics of Fluorescence Resonance Energy Transfer," Phys. Rev. Lett.89,068101 (2002).
    52. K. Suhling, P. French, and D. Phillips, "Time-resolved fluorescence microscopy," Photochem. Photobiol. Sci.4,13 (2005).
    53. T. McIlrath, R. Hudson, A. Aikin, and T. Wilkerson, "Two-photon lidar technique for remote sensing of atomic oxygen," Appl. Opt.18,316 (1979).
    54. M. Viterbini, A. Adriani, and G. Didonfrancesco, "Single photon detection and timing system for a Lidar experiment," Rev. Sci. Inst.58,1833 (1987).
    55. Bender, P. L., Currie, D. G., Dicke, R. H., Eckhardt, D. H., Faller, J. E., Kaula, W. M., Mullholland, J. D., Plotkin, H. H., Poultney, S. K., Silverberg, E. C., Wilkinson, D. T., Williams, J. G., & Alley, C. O., "The Lunar Laser Ranging Experiment", Science,182,229, (1973)
    56. S. Soper, Q. Mattingly, and P. Vegunta, "Photon burst detection of single near-infrared fluorescent molecules,"Anal. Chem.65,740 (1993).
    57. L.-Q. Li and L. Davis, "Single photon avalanche diode for single molecule detection,"Rev. Sci. Inst.64,1524 (1993).
    58. I. Rech, G. Luo, M. Ghioni, H. Yang, X. S. Xie, and S. Cova, IEEE J. Sel.Top. Quant. Electron.10,788 (2004).
    59. M. Wahl, F. Koberling, M. Patting, H. Rahn, and R. Erdmann, "Photon-timing detector module for single-molecule spectroscopy with 60-ps resolution,"Curr.Pharm. Biotechnol.5,299 (2004).
    60. M. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. Besse, R. Popovic,H. Blom, and R. Rigler, "Parallel single molecule detection with a fully integrated single-photon 2*2 CMOS detector array,"J. Biomed. Opt.9,913 (2004).
    61.X. Michalet, O. H.W. Siegmund, J. V. Vallerga, P. Jelinsky, J. E. Millaud.and S. Weiss, "Detectors for single-molecule fluorescence imaging and spectroscopy,"J. Mod. Opt.54,239 (2007).
    62. http://almagest.as.utexas.edu/-rlr/mlrs.html
    63. R. Hadfield, "Single-photon detectors for optical quantum information application."Nature Photon.3,696 (2009).
    64. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, "Invited Review Article:Single-photon sources and detectors." Rev. Sci. Instrum.82.071101 (2011).
    65. W.H.P. Pernicel, C. Schuck, O. Minaeva, M. Li, G.N. Goltsman, A.V. Sergienko, and H.X. Tang, "High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits," 3,1325 NATURE COMMUNICATIONS (2012)
    66. P. Kok, et al. "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys.79,135-175 (2007).
    67. C. Silberhorn, "Detecting quantum light," Contemp. Phys.48,143-156 (2007).
    68. A. M. Fox, Quantum Optics:An Intruduction, Oxford University Press, Oxford,2006.
    69. Donati, S. "Photodetectors:Devices, Circuits and Applications" Ch.3 (Prentice Hall,2000).
    70. J. W. Rohlf Modern Physics from a to Z 1st edn (New York:Wiley 1994).
    71. www.optoelectronics.perkinelmer.com
    72. Rech I, Labanca I, Ghioni M and Cova S, "Modified single photon counting modules for optimal timing performance" Rev. Sci. Instrum.77 033104 (2006).
    73. Ghioni M, Gulinatti A, Rech I, Zappa F and Cova S "Progress in silicon single-photon avalanche diodes" IEEE J. Sel. Top. Quantum Electron.13 852-62 (2007).
    74. http://www.micro-photon-devices.com
    75. Lacaita A, Zappa F and Cova S, "Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors", Appl. Opt. 352986-96(1996).
    76. Hiskett P A, Buller G S, Smith J M, Loudon A Y, Gontijo I, Walker A C, Townsend P D and Robertson M J, "Performance and design of InGaAs/InP photodiodes for single-photon counting at 1.55 μm", Appl. Opt.396818-29 (2000).
    77. Campbell J C, Dentai A G, HoldenWS and Kasper B L, "High performance avalanche photodiode with separate absorption grading and multiplication regions", Electron. Lett.20 596 (1984).
    78. P. Eraerds, E. Pomarico, J. Zhang, B. Sanguinetti, R. Thew, and H. Zbinden, "32 bin near-infrared time-multiplexing detector with attojoule single-shot energy resolution,"Rev. Sci. Instrum.81(10),103105 (2010).
    79. G. Wu, Y. Jian, E Wu and H. Zeng. "Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode," Opt. Express 17,18782(2009).
    80. Y. Jian, E Wu, X. Chen, G. Wu. and H. Zeng, "Time-dependent photon number discrimination of InGaAs/InP avalanche photodiode single-photon detector," Appl. Opt.50,61 (2011).
    81. X. Chen, E Wu, G. Wu, and H. Zeng, "Low-noise high-speed InGaAs/InP-based singlephoton detector", Opt. Express,18,7,7010 (2010).
    82. Cova S, Ghioni M, Lacaita A, Samori C and Zappa F, "Avalanche photodiodes and quenching circuits for single-photon detection" Appl. Opt. 351956-76(1996).
    83. Brown R G W. Ridley K D and Rarity J G, "Characterization of silicon avalanche photodiodes for photon correlation measurements.1:Passive quenching" Appl. Opt.254122-6 (1986).
    84. Antognetti P, Cova S and Longoni A. "A study of the operation and performances of an avalanche diode as a single-photon detector" Proc.2nd ISPRA Nuclear Electronics Symp. (Stresa, Italy) pp 453-6 (1975).
    85. Cova S, Longoni A and Andreoni A. "Towards picosecond resolution with single-photon avalanche diodes" Rev. Sci. Instrum.52408-12 (1981).
    86. Foord R, Jones R, Oliver C J and Pike E R "The use of photomultiplier tubes for photon counting", Appl. Opt.81975-89. (1969).
    87. Burle Industries Inc. "Photomultiplier Handbook", (1980).
    88. Rodman J P and Smith H J "Tests of photomultipliers for astronomical pulse-counting applications" Appl. Opt.2 181-6 (1963).
    89.王挺峰,《提高PMT光子计数系统探测灵敏度的方法》,《光机电信息》,2009,26(3)。
    90.刘云,《红外单光子探测器的研制》(博士论文),中国科学技术大学(2007)。
    91. J. Gower, Optical Communications Systems 2nd ed (Englewood Cliffs, NJ: Prentice Hall) (1993).
    92. J. Wilson and J. Hawkes, Optoelectronics:An Introduction 3rd edn (Englewood Cliffs, NJ:Prentice Hall) (1998).
    93. http://www.hamamatsu.com/
    94. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, S. D. Cova, R. A. Lamb and G. S. Buller, "Enhanced performance photon-counting time-of-flight sensor" Opt. Express 15 423-9 (2007).
    95. W. Becker and A. Bergmann, Detectors for High-Speed Photon Counting (Berlin:Becker and Hickl GmbH) (2002).
    96. J. J. Degnan, "Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements J. Geodyn.34 503-49 (2002).
    97. H. Kume, K. Koyama, K. Nakatsugawa, S. Suzuki, and Fatlowitz, D. Ultrafast "microchannel plate photomultipliers", Appl. Opt.27,1170-1178 (1988).
    98. http://www.hamamatsu.com.cn/product/pmt/mcp.html
    99. H. K. Onnes'The resistance of pure mercury at helium temperatures Commun" Phys. Lab. Univ. Leiden 120b 1479-81 (1911).
    100.L. R. Testardi, "Destruction of superconductivity by laser light" Phys. Rev. B 42189-96 (1971).
    101.P. L. Richards. "Bolometers for infrared and millimeter waves" J. Appl. Phys. 761-24(1994).
    102.A. Peacock et al "Single optical photon detection with a superconducting tunnel junction" Nature 381135-7 (1996).
    103.K. D. Irwin "An application of electrothermal feedback for high-resolution cryogenic particle-detection" Appl. Phys. Lett.661998-2000 (1995).
    104.P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis and J. Zmuidzinas "A broadband superconducting detector suitable for use in large arrays" Nature 425 817-21 (2003).
    105.G. N. Gol'tsman. O. Okunev, G. Chulkova, A. Lipatov. A. Semenov. K. Smirnov, B. Voronov, A. Dzardanov, C. Williams and R. Sobolewski "Picosecond superconducting single-photon optical detector" Appl. Phys. Lett.79705-7(2001).
    106.R. Radebaugh "Refrigeration for superconductors" Proc. IEEE 92 1719-34 (2004).
    107.K. D. Irwin. "An application of electrothermal feedback for high resolution cryogenic particle detection", Appl. Phys. Lett.66 1998-2000 (1995).
    108.K. D. Irwin, S. W. Nam, B. Cabrera, B. Chuggx and B. A. Young, "A quasi-particle-trap-assisted transition edge sensor for phonon-mediated particle detection", Rev. Sci. Instrum.665322-6 (1995).
    109. SHEN Xiao-Fang(申小芳),YANG Xiao-Yan(杨晓燕),YOU Li-Xing((尤立星)‘'Performance of Superconducting Nanowire Single-Photon Detection System", CHIN. PHYS. LETT.27,8,087404 (2010).
    110.张忠祥,韩正甫,刘云,郭光灿,《超导单光子探测技术》,《物理学进展》2007年27卷1期。
    111.B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam and R. W. Romani, "Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors", Appl. Phys. Lett.73 735-7 (1998).
    112.D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, "Noise-free high-efficiency photon-number-resolving detectors", Phys. Rev. A 71061803 (2005).
    113.A. E. Lita, A. J. Miller, and S. W. Nam, "Counting near-infrared single-photons with 95%efficiency", Opt. Express 16,3032-3040 (2008).
    114.D. Fukuda, et al. "Photon number resolving detection with high speed and high quantum efficiency", Metrologia 46, S288-S292 (2009).
    115.T. Gerrits, B. Calkins, N.Tomlin, A. E. Lita, A. Migdall, R. Mirin, and S. W. Nam, "Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime", Opt. Express 20,21, 23798 (2012).
    116.C. M. Natarajan, M. G. Tanner and R. H. Hadfield, "Superconducting nanowire single-photon detectors:physics and applications", Supercond. Sci. Technol.25,063001 (2012).
    117.A. Verevkin,, "Detection efficiency of large-active area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range" Appl. Phys. Lett.80 4687-9 (2002).
    118.F. Marsili, A. Fiore, et al. "Physics and application of photon number resolving detectors based on superconducting parallel nanowires" New J. Phys.11 045022(2009).
    119.K. M. Rosfjord, et al., "Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating" Opt. Express 14,527-534 (2006).
    120.S. Miki, T. Yamashita, H. Terai, Z. Wang, "High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler," arXiv:1303.6381 (2013).
    121.E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, IEEE J. Sel. Top. Quantum Electron.9,1502 (2003).
    122.A. J. Shields, M. P. O'Sullivan, I. Farrer, D A Ritchie, R A Hogg, M L Leadbeater, C E Norman and M Pepper, "Detection of single photons using a field-effect transistor gated by a layer of quantum dots", Appl. Phys. Lett.76 3673-5 (2000).
    123.B. E. Kardynal, A. J. Shields. M. P. O'Sullivan, N. S. Beattie, I. Farrer. D. A. Ritchie and K. Cooper, "Detection of single photons using a field effect transistor with a layer of quantum dots", Meas. Sci. Technol.13 1721-6 (2002).
    124.B. E. Kardynal, S. S. Hees. A. J. Shields, C. Nicoll, I. Farrer and D. A. Ritchie "Photon number resolving detector based on a quantum dot field effect transistor", Appl. Phys. Lett.90 181114 (2007).
    125.M. A. Rowe, E. J. Gansen, M. Greene, R. H. Hadfield, T. E. Harvey, M Y Su, S W Nam, R P Mirin and D Rosenberg, "Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency", Appl. Phys. Lett.89253505 (2006).
    126J. C. Blakesley, P. See, A. J. Shields, B. E. Kardynal, P. Atkinson, I. Farrer and D A Ritchie, "Efficient single photon detection by quantum dot resonant tunnelling diodes", Phys. Rev. Lett.94067401 (2005).
    127.H. W. Li, B. E.Kardynal, P. See, A. J. Shields, P. Simmonds, H. E. Beere and D..A Ritchie, "Quantum dot resonant tunnelling diode for telecommunication wavelength single photon detection", Appl. Phys. Lett. 91073516(2007).
    128.顾晓蓉,《时频域精密控制的单光子频率上转换探测研究》(博士论文),华东师范大学(2012)。
    129.潘海峰,《单光子频率上转换探测及其量子特性研究》(博士论文),华东师范大学(2008)。
    130.J. A. Armstrong, N. Bloembergen, J. Ducuing and P. S. Pershan "Interactions between lightwaves in a nonlinear dielectric," Phys. Rev.1271918-39 (1962).
    131.E. A. Watson and G. M. Morris, "Comparison of infrared upconversion methods for photon limited imaging," J. Appl. Phys.67 6075-84 (1990).
    132.C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer and H. Takesue, "Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton exchanged periodically poled LiNbO3 waveguides," Opt. Lett.301725-7 (2005).
    133.M. A. Albota and F. N. Wong, "Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt. Lett.29 1449-51 (2004).
    134.H. Dong, H. Pan, Y. Li, E Wu and H. Zeng, "Efficient single-photon frequency upconversion at 1.06 μm with ultralow background counts." Appl. Phys. Lett.93 071101 2008.
    135.H. Pan, H. Dong, H. Zeng and W. Lu, "Efficient single-photon countiung at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser," Appl. Phys. Lett.89 191108 2006.
    136.E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer and Y. Yamamoto, "100 km differential phase shift quantum key distribution experiment with low jitter up-conversion detectors," Opt. Lett.31727-92006.
    137.R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden and N. Gisin, "Low jitter up-conversion for telecom waveelngth GHz QKD," New J. Phys.8 32 2006.
    138.R. T. Thew, H. Zbinden and N. Gisin, "Tunable upconversion detector,' Appl. Phys. Lett.93 0711042008.
    139.K. Huang, X. Gu. M. Ren. Y. Jian, H. Pan, G. Wu, E Wu, and H. Zeng, "Photon-number-resolving detection at 1.04 μm via coincidence frequency up conversion," Optics Letters,36,9,1722 (2011).
    140.A. C. Elitzur and L. Vaidman, "Quantum mechanical interaction-free measurements" Found. Phys.23.987 (1993).
    141.P. G. Kwiat et al., "High-efficiency quantum interrogation measurements via the quantum Zeno effect" Phys. Rev. Lett.83,4725 (1999).
    142.T.-G. Noh and C. K. Hong, "Interaction-free measurement based on nonclassical fourth-order interference," Quantum Semiclass. Opt.10,637 (1998).
    143.R. Penrose, Shadows of the Mind (Oxford Univ. Press, New York,1994), p. 240.
    144.T. G. Noh, "Counterfactual Quantum Cryptography," Phys. Rev. Lett.103, 230501 (2009); arXiv:0809.3979v2.
    145.F. A. A. El. Orany, M. R. B. Wahiddin, M.-A. Mat-Nor, N. Jamil, and I. Bahari, "Quantum key distribution in terms of the Greenberger-Home-Zeilinger state:Multi-key generation," Laser Phys.20,1210 (2010).
    146.Y.-S. Kim, Y.-C. Jeong, and Y.-H. Kim, "Implementation of polarization-coded free-space BB84 quantum key distribution," Laser Phys.18,810 (2008).
    147.A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N.Gisin, ""Plug and play" systems for quantum cryptography", Appl. Phys. Lett.70,793 (1997).
    148.M. Bourennane, F. Gibson, A. Karlsson, A. Hening, P. Jonsson, T. Tsegaye, D. Ljunggren, and E. Sundberg, "Experiments on long wavelength (1550nm) "plug and play" quantum cryptography Systems", Opt. Express 4,383-387 (1999).
    149.C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber", Appl. Phys. Lett.84,3762 (2004).
    150.S. B. Cho and T. G. Noh, "Stabilization of a long-armed fiber-optic singlephoton interferometer,"Opt. Express 17,19027-19032 (2009).
    151.C. H. Bennett, G. Brassard, and J.-M. Robert, "Privacy amplification by public discussion," SIAM J. Comput.17,210-229 (1988).
    152.G. Brassard and L. Salvail, in Advances in Cryptology, EUROCRYPT'93 Proceedings, Lecture Notes in Computer Science, Vol.765, edited by T. Helleseth (Springer, New York,1994), p.410.
    153.L. L. Xu, E Wu, X. R. Gu, Y. Jian. G. Wu, and H. P. Zeng. "High-speed InGaAs/InP-based single-photon detector with high efficiency," Appl. Phys. Lett.94,161106(2009).
    154.Y. Liu, L. Ju, X.L. Liang, S.B. Tang, G.L.S Tu, L. Zhou. C. Peng. K.i Chen, T. Chen, Z. Chen, and J. Pan, "Experimental Demonstration of Counterfactual Quantum Communication," Phys. Rev. Lett.109.030501 (2012).
    155.G. Brida, A. Cavanna, I.P. Degiovanni, M. Genovese, P. Traina, "Experimental realization of counterfactual quantum cryptography," Laser Physics Letters,9,3,247-252, (2012).
    156.J. Chen, G. Wu, Y. Li, E Wu, and H. P. Zeng. "Active polarization stabilization in optical fibers suitable for quantum key distribution." Opt. Express 15,17928-17936(2007).
    157.G. B. Xavier, G. Vilela de Faria. G. P. Temporao. and J. P. von der Weid, "Full polarization control for fiber optical quantum communication systems using polarization encoding," Opt. Express 16,1867-1873 (2008).
    158.J. Chen, G. Wu, L. L. Xu. X. R. Gu, E Wu, and H. P. Zeng. "Stable quantum key distribution with active polarization control based on time-division multiplexing," New J. Phys.11.065004 (2009).
    159.A.M. Ferrenberg, D. P. Landau, and Y. J.Wong, "Monte Carlo simulations: Hidden errors from "good" random number generators," Phys. Rev. Lett.69, 3382(1992).
    160.J. Walker, [http://www.fourmilab.ch/hotbits/hardware3.html].
    161.W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, "An integrated analog/digital random noise source," IEEE Trans. Circuit Syst., I:Fundam. Theory Appl.44,521 (1997).
    162.J.T.Gleeson, "Truly random number generator based on turbulent electroconvection," Appl. Phys. Lett.81,1949 (2002).
    163.M. Bucci, L. Germani, R. Luzzi, A. Trifletti, and M. B. Varanonuovo, "A high-speed oscillator-based truly random number source for cryptographic applications on a smart card IC," IEEE Trans. Comput.52,403 (2003).
    164.A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden, "Optical Quantum Random Number Generator," J. Mod. Opt.47,595 (2000).
    165.M. Stipcevic and B. Medved Rogina, "Quantum random number generator based on photonic emission in semiconductors," Rev. Sci. Instrum.78, 045104(2007).
    166.J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, "A high speed, postprocessing free, quantum random number generator," Appl. Phys. Lett. 93,031109(2008).
    167.I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, "Ultrahigh-Speed Random Number Generation Based on a Chaotic Semiconductor Laser," Phys. Rev. Lett.103,024102 (2009).
    168.I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, "An optical ultrafast random bit generator," Nat. Photo.4,58 (2010).
    169.M. A. Wayne and P. G. Kwiat, "Low-bias high-speed quantum random number generator via shaped optical pulses," Opt. Exp.18,9351 (2010).
    170.M. Furst, H. Weier, S. Nauerth. D. G. Marangon, C. Kurtsiefer, and H. Weinfurter,"High speed optical quantum random number generation," Opt. Exp.18,13029(2010).
    171.A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, andD. Syvridis, "Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit." Opt. Exp.18,18763 (2010).
    172.M, Fiorentino, C. Santori, S. M. Spillane, R. G. Beausoleil, andW. J. Munro, "Secure self-calibrating quantum random-bit generator," Phys.Rev.A 75, 032334 (2007).
    173.O. Kwon, Y. Cho, and Y. Kim, "Quantum random number generator using photon-number path entanglement," Appl. Opt 48,091774 (2009).
    174.B. Qi, Y. Chi, H. Lo. and L. Qian, "High-speed quantum random number generation by measuring phase noise of a single-mode laser," Opt. Lett.35. 312(2010).
    175.C. Gabriel. C. Wittmann. D. Sych, R. Dong. W. Mauerer, U. L. Andersen. C.Marquardt, and G. Leuchs. "A generator for unique quantum random numbersbased on vacuum states." Nature Photonics,197,1 (2009).
    176.Y. Shen, L. Tian, and H. Zou, "Practical quantum random number generator based on measuring the shot noise of vacuum states," Phys. Rev. A 81, 063814(2010).
    177.T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger, "A fast and compact quantum random number generator," Rev. Sci. Instrum.71, 1675(2007).
    178.G. E. Katsoprinakis,M. Polis, A. Tavernarakis, A. T. Dellis, and I. K. Kominis, "Quantum random number generator based on spin noise," Phys.Rev.A 77,054101 (2008).
    179.W. Wei and H. Guo, "Bias-free true random-number generator," Opt. Lett. 34,1876(2009).
    180.K. Yamamoto, K. Yamamura, K. Sato, T. Ota, H. Suzuki, and S. Ohsuka, "Development of Multi-Pixel Photon Counter (MPPC)," IEEE Nuclear Science Symposium Conference Record.30-102,1094 (2006).
    181.P. Eraerds,M. Legre, A. Rochas, H. Zbinden, and N. Gisin, "SiPM for fast Photon-Counting and Multiphoton Detection," Opt. Express 15,14539 (2007).
    182.M. Akiba, K. Tsujino, K. Sato, and M. Sasaki, "Multipixel silicon avalanche photodiode with ultralow dark count rate at liquid nitrogen temperature," Opt. Express 17,16885 (2009).
    183.U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, Cambridge, England,1997).
    184.NIST Statistical Tests Suite, http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html.
    185.D. Branning and M. Bermudez, "Testing quantum randomness in single-photon polarization measurements with the NIST test suite," J. Opt. Soc. Am. B 27,1594(2010).
    186.P. J. Besl, "Active, optical range imaging sensors," Mach. Vision Appl.1, 127(1988).
    187.Becker, W. Advanced Time-Correlated Single Photon Counting Techniques Ch.2 (Springer,2005).
    188.J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, "Laser depth measurement based on time-correlated single-photon counting," Opt. Lett.22,543 (1997).
    189.Massa J S, Wallace A M, Buller G S, Fancey S J and Walker A C, "Laser depth measurement based on time-correlated single photon counting" Opt. Lett.22 543-5(1997).
    190.Bellis S, Jackson C and Konig A, "Photon counting sensors for medical and biophotonic applications", Laser+Photonik,5,34-8 (2005).
    191.Massa J S, Buller G S and Walker A C,"Time-resolved photoluminescence studies of cross-well transport in a biased GaAs/AlGaAs multiple quantum well p-i-n structure", J. Appl. Phys.82,712-7 (1997).
    192.http://www.picoquant.com/products/picoharp300/picoharp300.htm
    193.S. Richardson and P. J. Green, "On Bayesian analysis of mixtures with an unknown number of components," J. R. Stat. Soc. Ser. B, vol.59. pp.731-792,(1997).
    194.S. Hernandez-Marin, A. M.Wallace, and G. J. Gibson, "Bayesian analysis of LIDARsignals with multiple returns," IEEE Trans. Pattern Anal.Mach. Intell (2007).
    195.S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, "Markov chain Monte Carlo algorithms for 3D ranging and imaging," presented at the IAPR Conf. Mach. Vis. Appl., Tsukuba, Japan. May (2005).
    196.金锋,巩马理,时顺森,翟刚,李晶,马楠,刘彦巍,《1.5Xμm人眼安全激光测距技术设计》,光电子激光,第9卷,第5 期(1998)。
    197.刘林华,董士奎,余算铮,谈和平,《红外1~14p.m波长间隔0. 1p.m上大气平均透过率》,哈尔滨工业大学学报,第30卷,第5期(1998)。
    198.卢常勇,王小兵,郭延龙,王古常,孙斌,林轶,万强,《1.5X μm波长人眼安全的军用激光测距机及其进展》,激光与光电子学进展,第42卷第3期,(2005)。
    199.R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, "Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength," Opt. Lett.32(15),2266-2268 (2007).
    200.Q. Hao, W. Li, and H. Zeng, "High-power Yb-doped fiber amplification system synchronized with a few-cycle Ti:sapphire laser," Opt. Exp,17,7, 5815 (2009).
    201.W. Li, Q. Hao, M. Yan, and H. Zeng, "Tunable flat-top nanosecond fiber laser oscillator and 280 W average power nanosecond Yb-doped fiber amplifier," Opt. Exp,17,12,10113 (2009).
    202.P. F. McManamon, "Review of ladar:a historic, yet emerging, sensor technology with rich phenomenology," Optical Engineering 51(6),060901 (2012).
    203.A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernandez, A. M. Wallace, and G. S. Buller, "Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting," 48,32,6241, APPLIED OPTICS (2009).
    204.R. M. Marino 1, J. Richardson, R.t Gamier, "Photon-Counting Lidar for Aerosol Detection and 3-D Imaging," Proc. of SPIE Vol.7323,73230H (2009).
    205.王飞,《基于Geiger探测器的激光成像性能及测距精度研究》,博士论文,哈尔滨工业大学(2010)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700