剩余污泥对水中污染物的吸附、释放与强化试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快,城市生活污水处理规模日益增大,产生的剩余污泥量也越来越多,剩余污泥的处理与处置费是废水处理成本的主要构成之一。实际上剩余污泥和活性污泥一样具有较强的吸附能力,若借助剩余污泥对有机物、氮磷的吸附作用,将污染物转移到污泥中,既可实现污水净化的目的,又可以处理相当一部分剩余污泥。泥水分离后,再将吸附的污染物从污泥中释放出来并加以回收利用,即实现污水中有机物、氮、磷的资源化。围绕污染物的生物吸附分离—释放回收,如何提高污泥的吸附能力,控制吸附污染物质的再释放以及污泥活性的保持等问题和关键技术,有待研究解决。本论文通过在吸附了污染物的剩余污泥中接种厌氧污泥,调控污泥的水解酸化环境(即控制停留时间、污泥量、pH及预处理条件),研究了厌氧污泥对污泥的水解酸化程度,揭示污染物C、N、P的释出规律和环境调控对污泥释放能力的影响;通过好氧曝气预处理释放污泥和剩余污泥,研究了活化对污泥再吸附能力恢复的影响,揭示了活化后污泥对污水中有机物、氮和磷的吸附特性。试验结果表明:
     1.在接种厌氧污泥厌氧发酵24 h后就可以将剩余污泥中吸附了的污染物质大量释出,释出的污染物质相当于原污水中SCOD、氨氮和正磷酸盐分别被浓缩了2.30倍、7.16倍和12.79倍。
     2.在厌氧发酵时间一定条件下,污染物释出量与污泥质量成正比;吸附污泥相对质量越高,释磷量越大。
     3.污泥厌氧发酵时,有机物和正磷酸盐的释出量均为碱性条件优于酸性条件,加碱调节发酵体系的pH有利于氨氮的释出。
     4.温度升高到30℃以上有利于污染物质的大量释出;连续搅拌也可促进污染物的大量释出。
     5.对吸附污泥进行短时热处理和超声波预处理可以有效缩短厌氧条件下污泥中污染物的释出时间;热处理试验适宜的释出条件为60℃预处理1 h,厌氧发酵6 h;超声波预处理试验中,超声时间10 min,超声功率150 W,厌氧发酵时间6 h较利于释出。
     6.剩余污泥经好氧曝气活化后其吸附能力得到有效的提升,可作为吸附材料重新吸附污水中的污染物质,适宜的活化条件为好氧曝气30 min。
     7.在连续试验中,延长运行时间可以有效促进污染物的稳定释出。
The scale of municipal wastewater treatment enlarges increasingly, and the productions of excess sludge become more and more. The cost of excess sludge treatment is the most expensive part of wastewater treatment. Actually, excess sludge has the ability of adsorption like activated sludge. With the aid of organism adsorption ability, it is possible to transfer pollutant from waste water to activated sludge. After sedimentation, the pollutants are made to release from the sludge and recovered. Basing on the consideration of pollutants adsorbing-separating-releasing, the problems of how to improve the ability of adsorbing, how to control the condition of releasing pollutant and retain the activity of activated sludge remain to be solved. In this paper, anaerobic sludge was inoculated into the reactor containing the sludge that adsorbed those pollutants from wastewater. The effect on promoting release of the pollutant via hydrolysis-acidification was investigated under different retention time, sludge mass, pH and pretreatment, to understand the disciplinarian and effect of environmental conditioning for pollutant release. The released sludge and excess sludge were activated under aerobic activation treatment, to understand the effect on sludge adsorption ability and the sludge adsorption characteristic after activation. The experimental results showed that:
     1. The pollutants were released out in a great deal after 24 h treatment, which was equal to that the organic substance, ammonium and phosphate from original wastewater were concentrated 2.30 times, 7.16 times, 12.79 times.
     2. On the condition of 24 h fermentation, the quantity of pollutant released was in direct proportion to the sludge mass fed. The more the excess sludge fed, the more the quantity of phosphorus released.
     3. Organic substance and phosphate released under alkaline condition were more than that under acidic condition. Adding alkali to increase pH could promote the release of ammonium.
     4. When the temperature was higher than 30°C, the pollutants were released out in a great deal via hydrolysis-acidification. The pollutants were also released out in a great deal with continuous mixing.
     5. Heating and ultrasonic pretreatment of excess sludge could benefit the release with shorter retention time. The suitable conditions are that heating pretreatment for 1 h under 60℃, then fermentation for 6 h; ultrasonic pretreatment for 10 min under 150 W of ultrasonic power, then fermentation for 6 h.
     6. Adsorption ability of excess sludge was improved after aerobic treatment. It could adsorb a lot of pollutants from wastewater again after activation as adsorption material. Aeration for 30 min was enough for activating sludge.
     7. The pollutants were released out stably by prolonging the operation time in the continuous experiment.
引文
[1]Banister S S,Pitman A R,Pretorius W A.The solubilisation of N and P during primary sludge acid fermentation and precipitation of the resultant P[J].Water S A,1998,24(4):337-342.
    [2]任南琪,王爱杰等.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [3]苑宏英,陈银广,周琪.污泥生物转化为VFAs及用于生物除磷的研究进展[J].工业水处理,2006,26(2):14-17.
    [4]吴一平,刘莹,王旭东,彭党聪,王志盈.初沉污泥厌氧水解酸化产物作为生物脱氮除磷系统碳源的试验研究[J].西安建筑科技大学学报(自然科学版),2004,36(4):421-423.
    [5]Hatziconstantinou G J.Primary sludge hydrolysis for biological nutrient removal[J].Water Science and Technology,1996,34(2):417-423.
    [6]Canziani R,Pollice A,Ragazzi M.Feasibility of using primary-sludge mesophilic hydrolysis for biological removal of nitrogen and phosphorus from wastewater[J].Bioresource Technology,1995,54(3):255-260.
    [7]王绍贵,张兵,汪慧贞.以鸟粪石的形式在污水处理厂回收磷的研究[J].环境工程,2005,23(3):78-80.
    [8]Eastman J A,Ferguson J F.Solubilisation of particulate organic carbon during the acid phase anaerobic digestion[J].J W P C F,1981,53(3):352-366.
    [9]Lilley T D,Wentzel M C,Loewenthal R E,et al.Acid fermentation of primary sludge at 20℃[R].Res.Rep.W64,Dep.Civ.Eng.,Univ.of Cape Town,1990.
    [10]Skaisky D S,Daigger G T.Wastewater solids fermentation for volatile acid production and enhanced biological phosphorus removal[J].Water Environment Research,1995,67(2):230-237.
    [11]Maharaj I,Elefsiniotis P.The role of HRT and low temperature on the acid-phase anaerobic digestion of municipal and industrial wastewaters[J].Bioresource Technology,2001,76:191-197.
    [12]Miron Y,Zeeman G,van Lier J B,et al.The role of sludge retention time in the hydrolysis and acidification of lipids,carbohydrates and proteins during digestion of primary sludge in CSTR systems[J].Water Research,2000,34(5):1705-1713.
    [13]Ahna Y H,Speeceb R E.Elutriated acid fermentation of municipal primary sludge[J].Water Research,2006,40(11):2210-2220.
    [14]Banerjee A,Elefsiniotis P,Tuhtar D.Effect of HRT and temperature on the acidogenesis of municipal primary sludge and industrial wastewater[J].Wat Sci.Tech.,1998,38(8-9):417-423.
    [15]Moser-Engeler R,Udert K M,Wild D,et al.Products from primary sludge fermentation and their suitability for nutrient removal[J].Wat.Sci.Tech.,1998,38(1):265-273.
    [16]Ferreiro N.,Soto M.Anaerobic hydrolysis of primary sludge:influence of sludge concentration and tempearture[J].Wat.Sci.Tech.,2003,47(12):239-246.
    [17]张希衡等.废水厌氧生物处理工程[M].北京:中国环境科学出版社,1996:100-400.
    [18]Elefsiniolis P,Oldham W K.Influence of pH on the acid-phase anaerobic digesiton of pri mary sludge[J].Chem.Tech.Biotech.,1994,60(1):89-96.
    [19]苑宏英,张华星,陈银广,周琪.pH对剩余污泥厌氧发酵产生的COD、磷及氨氮的影响[J].环境科学,2006,27(7):1358-1361.
    [20]Banerjee A.,Elefsiniotis P.,Tuhtar D.The efect of addition of potato-processing wastewater on the acidogenesis of primary sludge under varied hydraulic retention time and temperature[J].Journal of Biotechnology,1999,72(3):203-212.
    [21]Alleman J E,Kim B J,Quivey D M,et al.Alkaline hydrolysis of munition-grade nitrocellulose[J].Wat Sci Tech,1994,30(3):63-72.
    [22]Woodard S E,Wukasch R F.A hydrolysis/thickening/filtration process for the treatment of waste activated sludge[J].Wat.Sci.Tech,1994,30(3):29-38.
    [23]Chang C.N,Ma Y S.,Lo C.W.Appilcation of oxidaiton-reduciton potential as a controlling parameter in waste activated sludge hydrolysis[J].J.Chemical Eng,2002,90(3):273-281.
    [24]Jardin N,P(o|¨)pel H J.Behaviour of waste activated sludge from enhanced biological phosphorus removal during sludge treatment[J].Water Environ.Res,1996,68(6):965-973.
    [25]Gujer W,Zehnder A J B.Conversion processes in anaerobic digestion[J].Wat Sci Tech,1983,15:127-167.
    [26]Pitman A R,L(o|¨)tter L H,Alexander W V,et al.Fermentation of raw sludge and elutriation of resultant fatty acids to promote excess biological phosphorus removal[J].Water Sci.Technol.1992,25(4-5):185-194.
    [27]Glenn A R.Production of extracellular proteins by bacteria[J].Annual Review Microbiol.,1976,30:41-62.
    [28]Pansare A C,Venugopal V,Lewis N F.A note on nutritional influences on extracellular protease synthesis in Aeromonas hydrophila[J].Applied Bacteriol,1985,58:101-104.
    [29]Breure A M,Beeftink H H,Verkuijlen J,et al.Acidogenic fermentation of protein/carbohydrate mixtures by bacterial populations adapted to one of the substrates in anaerobic chemostat cultures[J].Appl.Microbiol.Biotechnol,1986,23:245-249.
    [30]Moser-Engeler R,K(u|¨)hni M,Bernhard C,et al.Fermentation of raw sludge on an industrial scale and applications for elutriating its dissolved products and non-sedimentable solids[J].Water Research,1999,33(16):3503-3511.
    [31]王永华,徐鹏,赵金宝.污泥厌氧消化预处理的研究进展[J].环境科学动态,2004,4:9-11.
    [32]Hobson P N.A model of some aspects of microbial degradation of particulate substrates[J].J.Ferm.Technol.,1987,65(4):431-439.
    [33]Yasui H,Goel R,Li Y Y,et al.Modified ADMI structure for modelling municipal primary sludge hydrolysis[J].Water Research,2008,42(1-2):249-259.
    [34]Pitt W G,Ross S A.Ultrasound increases the rate of bacterial cell growth[J].Biotechnol Prog,2003,19(3):1038-1044.
    [35]Gonze E,Pillot S,Valette E.Ultrasonic treatment of an aerobic activated sludge in a batch reactor[J].Chemical Engineering and Processing,2003,42(12):965-975.
    [36]Antti G,Hanna K,Kirsi K,et al.Ultrasound assisted method to increase soluble chemical oxygen demand(SCOD)of sewage sludge fordigestion[J].Uitrasonics sonochemistry,2004,12(2005):115-120.
    [37]曹秀芹,唐臣,欧阳利等.超声处理后剩余污泥性质变化及分析[J].环境工程,2005,10:84-86.
    [38]Barton S,Bullock C.The effects of ultrasound on the activities of some glycosidase enzymes of industrial importance[J].Enzyme and Microbial Technology,1996,18(30):190-194.
    [39]丁文川,龙腾锐,曾晓岚等.低强度超声场促进剩余污泥好氧消化[J].给水排水,2007,33(5):41-45.
    [40]Lin Lidong,Wu Jianyong.Enhancement of shikonin production in single-and two-phase suspension cultures of Lithospermum erythrorhizon cells using low-energy ultrasound[J].Biotechnology and Bioengineering,2002,78(1):81-88.
    [41]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2005:271.
    [42]杨金美,张光明,王伟.超声波强化活性污泥活性的试验研究[J].给水排水,2006,32(1):37-40.
    [43]刘红,闫怡新,王文燕等.低强度超声波改善污泥活性[J].环境科学,2005,26(4):124-128.
    [44]曾晓岚,龙腾锐,丁文川等.低能量超声波辐射提高好氧污泥活性研究[J].中国给水排水,2006,22(5):88-91.
    [45]Schlafer O,Onyeche T,Bormann H,et al.Ultrasound stimulation of micro-organisms for enhanced biodegradation[J].Ultrasonics,2002,40(1-8):25-29.
    [46]Schlaefer O,Sievers M,Klotzbuecher H,et al.Improvement of biological activity by low energy ultrasound assisted bioreactors[J].Ultrasound,2000,38:711-716.
    [47]Hamer A,Mason C A,Hamer G.Death and lysis during aerobic thermophilic sludge treatment:characterization of recalcitrant products[J].Wat Res,1994,28(4):863-869.
    [48]王治军,王伟,李芬芳.污泥热水解技术的发展及应用[J].中国给水排水,2003,19(10):25-27.
    [49]Kuroda A,Takiguchi N,Gotanda T,et al.A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling[J].Biotechnol Bioeng,2002,78:333-338.
    [50]薛涛,黄霞,郝王娟.剩余污泥热处理过程中磷、氮和有机碳的释放特性[J].中国给水排水,2006, 12:22-25.
    [51]张洪林,范丽华,曹春艳等.高温预处理对污泥厌氧消化影响的研究[J].辽宁师范大学学报(自然科学版),2007,30(3):336-338.
    [52]Smith G,Goransson J.Generation of an effective internal carbon source for denitrification through thermal hydrolysis of pre-precipitated sludge[J].Water Science and Technology,1992,25(4-5):211-218.
    [53]Barlindhaug J,Φ degaard H.Thermal hydrolysis for the production of carbon source for denitrification[J].Water Science and Technology,1996,34(1-2):371-378.
    [54]Shanableh A.Production of useful organic matter from sludge using hydrothermal treatment[J].Water Reseach,2000,34(3):945-951.
    [55]Haug R T,Lebrun T J,Tortorici L D.Thermal pretreatment of sludges-a field demonstration[J].WPCF,1983,55:23-34.
    [56]汪群慧,刘建丽,艾恒雨等.提高污泥厌氧消化效率的溶胞预处理技术[J].黑龙江大学自然科学学报,2005,22(5):614-618.
    [57]梁鹏,黄霞,钱易等.污泥减量化技术的研究进展[J].环境污染治理技术与设备,2003,4(1):44-52.
    [58]Babjebruch M,Kopplow O.Enzymatic mechanical and thermal pretreatment of surplus sludge[J].Advances in Enviornmental Research,2003,7:715-720.
    [59]Jiang Su,Chen Yinguang,Zhou Qi.Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification[J].Chemical Engineering Journal,2007,8:311-317.
    [60]张礼平,陈银广,姜苏等.两种表面活性剂对剩余污泥产酸影响的比较研究[J].环境科学学报,2007,27(1):96-100.
    [61]尤作亮,蒋展鹏,师绍琪,祝万鹏.强化一级处理污泥的吸附性能研究[J].环境科学,1999,7:24-27.
    [62]朱晓君.低氧活性污泥法脱氮除磷工艺生产性研究[J].中国给水排水,1997,13,增刊:11-13.
    [63]Boehnke B.Moeglichkeiten Abwasser reinigung durch das'Adsorption-Belebungs-verfahren.'.GWA29,Schrifureihe des Instituts fuer Siedlungswsserwirtschaft der RWTH Aachen,Germany(in Germen),1978.
    [64]PERH.C.Adsorption of Ammonium To Activated Sludge.Wat.Res.1996,30(3):762-764.
    [65]李德生,王宝山,强化生物吸附法处理生活污水[J].环境工程,2003,21(3):25-28.
    [66]郝晓地,朱景义,曹秀芹.污水强化除磷工艺的现状与未来[J].中国给水排水,2005,11:37-40.
    [67]刘亚男,于水利等.胞外聚合物对生物除磷效果影响[J].哈尔滨工业大学学报,37(5):623-625.
    [68]Odegaard H.Optimized Particle Separation in the Primary Step of Wastewater Treatment.Wat Sci Tech,1998,31(10):43-53.
    [69]王晓昌,金鹏康等.城市生活污水中的污染物分类及处理性评价[J].给水排水,2004,30(9): 38-41.
    [70]孔海霞,袁林江.基于生物吸附-释放污染物特性的污水资源化净化途径[J].应用化工,2007,36(6):603-605.
    [71]尤作亮,蒋展鹏,师绍琪.活化污泥法中污泥活化度的理论分析与应用[J].中国给水排水,2002,18(2):23-25.
    [72]蒋展鹏,尤作亮,师绍琪等.城市污水强化一级处理新工艺-活化污泥法[J].中国给水排水,1999,15(12):1-5.
    [73]张为堂,许国仁.化学强化一级处理工艺中污泥的活化研究[J].给水排水,2006,32(1):115.
    [74]Shimizu T,et al.An anaerobic fluidized pellet bet bioreacton process for simultaneous removal of organic,nitrogenous and phosphorus substances[J].Wat.Res.,1994,(9).
    [75]郝晓地,甘一萍.排水研究新热点-从污水处理过程中回收磷[J].给水排水,2003,29(1):20-25.
    [76]Mamais D,Pitt P A,Cheng Y W,et al.Determination of ferric chloride does to control struvite precipitation in anaerobic digesters[J].Water Environ Res,1994,66:912-918.
    [77]Mohajit K K,Bhaattarai E,Taiganides P,et al.Struvite deposits in pipes and aerators[J].Biol Wastes,1989,30:133-147.
    [78]Pitman A R,Deacon S L,Alexander W V.The thickening and treatment of sewage sludge to minimize phosphorus release[J].Water Res,1991,25:1285-1294.
    [79]Webb K M,Ho G E.Struvite solubility and its application to a piggery effluent problem[J].Water Sci Technol,1992,26(9):2229-2232.
    [80]Tunay O,Kabdasli I,Orhon D,et al.Ammonia Removal by magnesium ammonium phosphate precipitation in industrial wastewaters[J].Wat Sci Technol,1997,36(2-3):225-228.
    [81]Li X Z,Zhao Q L,Hao X D.Ammonium removal from landfill leachate by chemical precipitation[J].Waste Management,1999,19:409-415.
    [82]Chimenos J M,Fernandez A I,Villalba G,et al.Removal of ammonium and phosphates from wastewater resulting from the process of cochineal extraction using MgO-containing by-product[J].Wat Res,2003,37:1601-1607.
    [83]白晓慧,贺兰喜.味精生产中离子交换废水的预处理技术研究[J].工业水处理,2002,22(1):34-36.
    [84]Katsuura H.Phosphate recovery from sewage by granule forming process[C].In International conference on phosphorus recovery from sewage and animal waste.UK.Warwick University,1998.
    [85]Celen I,TurkerM.Recovery of ammonia as struvite from anaerobic digester effluents[J].EnvironmentTechnology,2001,22:1263-1272.
    [86]Schulze R R.The simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium-ammonium-phosphate[J].Wat.Sci.Tech.,1991,24(7):229-234.
    [87]陈瑶,李小明,曾光明,杨麒,管慧玲.污水磷回收中磷酸盐沉淀法的影响因素及应用.工业水处理,2006,26(7):10-14.
    [88]Munch E V,Barr K.Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams[J].Wat Res,2001,35(1):151-159.
    [89]佟娟,陈银广.剩余污泥水解酸化液磷去除的影响因素研究[J].环境工程学报,2007,4:1-5.
    [90]Friksson L,Aahn B.Study of flocculation mechanisms by observing effects of a complexing agent on activated sludge properties[J].Wat.Sci.Tech.,1991,24(7):21-28.
    [91]Sanin R D,Vesilind P A.Effect of centrifugation on the removal of extracellular polymers and physical properties of activated sludge[J].Wat.Sci.Tech.,1994,30(8):117-127.
    [92]Elefsiniotis P,Oldham W K.Substrate degradation patterns in acid-phase anaerobic digestion of municipal primary sludge[J].Environmental Technology,1994,15(8):741-753.
    [93]Gomec C Y,Speece R E.The role of pH in the organic material solubilization of domestic sludge in anaerobic digestion[J].Wat.Sci.Tech.,2003,48(3):143-150.
    [94]NeyensE,Baeyens J,Creemers C.Alkaline thermal sludge hydrolysis[J].J Hazard Mater,2003,97(2):295-314.
    [95]苑宏英,员建,徐娟等.碱性pH条件下增强剩余污泥厌氧产酸的研究[J].中国给水排水,2008,24(9):26-29.
    [96]Cai M,Liu J,Wei Y.Enhanced biohydrogen production from sewage sludge with alkaline pretreatment[J].Environ Sci Technol,2004,38(11):3195-3202.
    [97]Dignac M F,Urbain V,et al.Chemical description of extracellular polymers:implication on activated sludge floc structure[J].Wat.Sci.Tech.,1998,38(8-9):45-53.
    [98]Morgan J W,et al.A comparative study of the nature of biopolymers extracted from anerobic and activated sludges[J].Wat.Res.,1990,24(6):743-753.
    [99]Urbain V,et al.Bioflocculation in activated sludge:an analystic approach[J].Wat.Res.,1993,27(5):829-838.
    [100]Bruus J H,et al.On the stability of activated sludge flocs with imolication to dewatering[J].Wat.Res.,1992,26:1597-1604.
    [101]Majone M,et al.Influence of Storage on Kinetic Selection to Control Aerobic Filamentous Bulking[J].Wat.Sci.Tech.,1996,34(5-6):223-232.
    [102]Delia T S.Extracellular polymer substances and physicochemical properties of flocs in steady-and unsteady-state activated sludge systems[J].Process Biochemistry,2002,37:983-998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700