孤立性肺结节良恶性综合性影像诊断的ROC分析及其临床应用价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:利用ROC曲线(receiver operating characteristic curve,受试者运行特征曲线)分析方法,评价多层螺旋CT(multi-slice spiral computed tomography, MSCT)和18F-FDG PET/CT在鉴别孤立性肺结节(solitary pulmonary nodule, SPN)良恶性中的应用价值,进而探讨孤立性肺结节的综合性影像学诊断的可靠性和可行性,以及在孤立性肺结节的影像学检查中多层螺旋CT和18F-FDG PET/CT如何优化选择和联合应用的问题。
     材料与方法:行多层螺旋CT检查的孤立性肺结节217个,均经手术和/或穿刺活检组织病理结果或随访结果证实,由3位资深的CT诊断医师以随机顺序对每个孤立性肺结节的多层螺旋CT图像进行仔细地独立阅读和分析,评价结果采用意见一致性原则。在阅片时,观察者不被告知任何临床资料,不被限制读片时间,不改变读片习惯。首先,观察者根据自己的经验和主观印象,将孤立性肺结节按五等级法进行评价:1=肯定良性,2=可能良性,3=不确定,4=可能恶性,5=肯定恶性。然后,依据孤立性肺结节各种特征性的多层螺旋CT表现对其进行综合评分,将孤立性肺结节常见的与其良恶性倾向密切相关的各CT征象作为评分基础,评分标准为:具有显著恶性倾向为1、具有不显著恶性倾向为0.5、无恶性倾向或具有良性倾向为O。
     行PET/CT检查的孤立性肺结节98个,均经手术和/或穿刺活检组织病理结果或随访结果证实,用目测法和半定量法对18F-FDG PET/CT图像进行阅读和分析。首先,由3位资深的核医学医师以随机顺序对所有孤立性肺结节的18F-FDG PET/CT图像分别予以独立阅片,评价结果采用意见一致性原则。在阅片时,观察者不被告知任何临床资料,不被限制读片时间,不改变读片习惯。通过目测,对每个孤立性肺结节的放射性摄取程度根据五等级法做出分析和评价:0=无放射性摄取,1=放射性摄取程度低于纵隔,2=放射性摄取程度接近纵隔,3=放射性摄取程度介于纵膈与肝脏之间,4=放射性摄取程度高于肝脏。然后,将相同大小的感兴趣区(region of interest, ROI)分别置于孤立性肺结节和对侧肺的相应正常部位,孤立性肺结节的ROI选择FDG摄取最强的部位,分别测量孤立性肺结节ROI(T)和对侧正常肺ROI(N)的放射性活度(activity), ROI大小应包括最大活度值90%以上的区域,再计算对比率(contrast ratio, CR),将其作为每个孤立性肺结节的FDG放射性摄取指标:CR=(T—N)/(T+N)。同时,测量并由计算机程序自动计算出每个孤立性肺结节ROI的标准摄取值(standardized uptake value,SUV=放射性活度/注射计量/体重),以与CR值进行对照。
     将通过上述方法的影像学图像资料分析所得出的结果,分别与孤立性肺结节的病理或随访结果(即所谓“金标准”)对照,再根据孤立性肺结节的最大径(D),以2.Ocm     根据约登(Youden)指数,选取多层螺旋CT综合评分和PET/CT的CR值各自鉴别孤立性肺结节良恶性诊断的最佳阈值,将多层螺旋CT评分≥最佳阈值的孤立性肺结节定义为阳性、评分<最佳阈值的孤立性肺结节定义为阴性,将PET/CT的CR≥最佳阈值的孤立性肺结节定义为阳性、CR<最佳阂值的孤立性肺结节定义为阴性。将评价结果与孤立性肺结节的病理或随访结果(“金标准”)进行对照,在多层螺旋CT或PET/CT上表现为阳性的恶性结节和良性结节分别定义为真阳性(TP)和假阳性(FP)、表现为阴性的恶性结节和良性结节分别定义为假阴性(FN)和真阴性(TN)。分别计算各自的灵敏度、特异度、准确度、阳性预测值和阴性预测值(灵敏度=TP/TP+FN,特异度=TN/TN+FP,准确度=TP+TN/TP+FP+TN+FN,阳性预测值=TP/TP+FP,阴性预测值=TN/TN+FN).采用x2检验进行统计学分析和比较,P<0.05,认为差异具有统计学意义。
     行18F-FDG PET/CT检查的98个孤立性肺结节,均在前一周时间内进行了规范的多层螺旋CT检查,通过对每个孤立性肺结节的多层螺旋CT和18F-FDG PET/CT图像的综合性分析,根据每个孤立性结节的评价等级以及由多层螺旋CT综合评分或PET/CT的CR值与相应的最佳阈值比较而获得的评价结果,将孤立性肺结节的良恶性诊断进行两种检查方法的联合评价。按照一致性原则,将在多层螺旋CT和18F-FDG PET/CT图像上良恶性评价一致的孤立性肺结节,仍然维持其良恶性诊断。在多层螺旋CT和18F-FDG PET/CT图像上良恶性评价不一致的孤立性肺结节,采取以下原则进行评价:如果多层螺旋CT的评价等级为5(即肯定恶性),则不考虑PET/CT的FDG摄取程度,将该孤立性肺结节定性为恶性;如果多层螺旋CT的评价等级为1(即肯定良性),则不考虑PET/CT的FDG摄取程度,将该孤立性肺结节定性为良性;如果多层螺旋CT的评价等级为2、3、4(即不能确定恶性或良性)时,则依据PET/CT的FDG摄取程度评价孤立性肺结节的良恶性,若PET/CT的评价等级为2、3、4(即18F-FDG摄取程度为中等以上,甚至高于肝脏)或CR≥最佳阈值则该孤立性肺结节被定性为恶性,若PET/CT的评价等级为0、1(即18F-FDG摄取程度低于纵隔,甚至无放射性摄取)且CR<最佳阈值则该孤立性肺结节被定性为良性,亦即PET/CT的评价结果否决了多层螺旋CT的评价结果。将联合评价结果与孤立性肺结节的病理或随访结果(“金标准”)进行对照,计算相应的灵敏度、特异度、准确度、阳性预测值和阴性预测值,并与单独PET/CT的评价效能加以比较,采用x2检验进行统计学分析,P<0.05,认为差异具有统计学意义。
     结果:行多层螺旋CT检查的217个孤立性肺结节,恶性结节146个,良性结节71个。所有恶性结节均经手术和/或穿刺活检病理结果证实,包括腺癌123个(其中包含细支气管肺泡癌11个、瘢痕癌2个)、鳞癌12个、小细胞癌5个大细胞癌3个、单发转移瘤3个;良性结节包括结核19个、错构瘤16个、非特异性炎症15个、肺隐球菌病6个、炎性假瘤3个、神经纤维瘤1个,均经手术和/或穿刺活检病理结果证实,另有11个孤立性肺结节经正规抗炎或抗结核治疗后缩小或消失而定性为良性结节。恶性结节最大径1.0~3.0cm,良性结节最大径0.8-3.0cm,分别平均为1.92cm和1.87cm,差异无统计学意义。
     行PET/CT检查的98个孤立性肺结节,恶性结节69个,良性结节29个。所有恶性结节均经手术和/或穿刺活检病理结果证实,包括腺癌47个(其中包含细支气管肺泡癌6个、瘢痕癌2个)、鳞癌9个、小细胞癌5个、大细胞癌6个、单发转移瘤2个;良性结节包括结核12个、错构瘤5个、非特异性炎症5个、肺隐球菌病3个、炎性假瘤3个,均经手术和/或穿刺活检病理结果证实,另有1个孤立性肺结节经正规抗结核治疗后缩小而定性为良性结节。恶性结节最大径1.0-3.0cm,良性结节最大径0.8-3.0cm,分别平均为1.81cm和1.78cm,差异无统计学意义。
     多层螺旋CT评价2.0cm     18F-FDG PET/CT评价2.0cm     评价最大径为2.0cm     多层螺旋CT和18F-FDG PET/CT联合评价孤立性肺结节良恶性的诊断效能与单独的PET/CT相比显著提高,多层螺旋CT和18F-FDG PET/CT联合评价孤立性肺结节良恶性的灵敏度、特异度、准确度、阳性预测值、阴性预测值分别为97.10%、93.10%、95.92%、97.10%、93.10%。
     结论:随着多层螺旋CT的逐渐广泛应用,越来越多的孤立性肺结节被发现,虽然其大多数为良性,但是在孤立性肺结节的鉴别诊断中,肺癌仍然构成其重要的考虑内容,进一步检查或处理的目的是准确地鉴别良、恶性结节,以确保适当的治疗方案。因此,影像学检查的一个主要目的就是尽最大可能地准确鉴别孤立性肺结节的良恶性,一方面使恶性结节尽快得以切除,以阻止其继续生长和发生转移而影响患者预后,另一方面可使良性结节避免被施行不必要的创伤性检查和手术,防止患者承受不必要的医疗花费、痛苦和风险。
     近年来,多层螺旋CT和PET/CT已经明显改善了孤立性肺结节影像特征的显示和评价。本研究采用ROC曲线分析方法综合评价多层螺旋CT和PET/CT在鉴别孤立性肺结节良恶性方面的诊断效能,显示多层螺旋CT和PET/CT均具有明显的应用价值,但是对于不同大小、不同性质的孤立性肺结节来说,多层螺旋CT和PET/CT之间及其不同评价方法之间的诊断效能均存在差别,评价结果存在不同程度的不一致现象,将PET/CT和多层螺旋CT图像进行综合性分析和联合评价可明显提高孤立性肺结节良恶性鉴别诊断的准确性。
     本研究说明ROC分析方法在综合运用多层螺旋CT和PET/CT所提供的影像信息、全面评价孤立性肺结节的良恶性方面具有显著应用价值,使孤立性肺结节的良恶性评价结果得到明显改善,将评价结果与恶性概率等临床资料相结合,一定能为孤立性肺结节患者提供合理的处理策略和方案。
Objective:To compare the role of MSCT (multi-slice spiral computed tomography) with 18F-FDG PET/CT (positron emission tomography, PET) in the imaging diagnosis to differentiate malignant from benign solitary pulmonary nodules (SPNs) with the use of receiver operating characteristic curve (ROC) analysis, by which to probe into the clinical use of the comprehensive imaging diagnosis in the characterization of a solitary pulmonary nodule (SPN) in order to answer the problem how to select the optimal project on the single or combining use of MSCT and F-FDG PET/CT in the clinical management of solitary pulmonary nodules.
     Materials and Methods:A retrospective study was performed involving the patients referred for the characterization of solitary pulmonary nodule with MSCT and 18F-FDG PET/CT between February 2001 and February 2011, for whom a pathologic diagnosis or follow-up result was available. In the study,217 solitary pulmonary nodules were examined with MSCT and 98 solitary pulmonary nodules were examined with 18F-FDG PET/CT, which were confirmed pathologically by surgery and/or needle biopsy or by follow-up.
     The MSCT or PET/CT images were read in consensus. The MSCT images of all 217 solitary pulmonary nodules were assessed and graded by three senior radiologists on the basis of malignant likelihood of morphological and density characteristics. The PET/CT images of all 98 solitary pulmonary nodules were interpreted by three nuclear medicine physicians. The blinded interpretation of MSCT or PET/CT images was performed. The radiologists and nuclear medicine physicians were all unaware of the patient's history and PET/CT image findings or MSCT image results each other. Each observer independently read the MSCT or PET/CT images in random order. The observers were given unlimited time to view the images in each case and were allowed to vary their viewing distance. The solitary pulmonary nodules were analyzed by location, texture, axial dimension, and density or metabolic activity and visually scored on a 5-point scale from benign to malignant. According to the MSCT images, the solitary pulmonary nodules were scored as follows:1=definitely benign; 2= probably benign; 3=equivocal; 4=probably malignant; 5=definitely malignant. According to the PET/CT images, the locations of areas of abnormal tracer (18F-FDG) uptake were recorded and the degree of uptake was scored as follows:0=no uptake; 1=less than mediastinum; 2=equal to mediastinum; 3=between mediastinum and liver; 4=higher than liver. At the same time, MSCT images were evaluated and calculated the comprehensive score according to every morphological sign as follows: 1=definitely malignant likelihood; 0.5=probably or equivocal malignant likelihood; 0=definitely benign likelihood. Correspondingly, 18F-FDG PET/CT data were evaluated semi-quantitatively on the basis of the contrast ratio (CR) obtained as follows. The regions of interest (ROIs) were placed around the areas of abnormal uptake in the nodules and contra-lateral normal lung. Highest activities in the tumor ROI (T) and in the contra-lateral normal lung ROI (N) were measured. The CR was calculated by (T—N)/(T+N) in each nodule as an index of 18F-FDG uptake. In addition, the maximum standardized uptake value (SUVmax) was determined and analyzed respectively.
     Receiver operating characteristic curve (ROC) analysis was used to evaluate the observer's performance in differentiating malignant from benign solitary pulmonary nodules by MSCT and 18F-FDG PET/CT. According to the size of maximum diameter (D), The solitary pulmonary nodules were classified as 2.0cm     The optimal thresholds were selected with Youden's index on the ROC curves. By the criterion of optimal thresholds, the solitary pulmonary nodules were defined as positive or negative. The results of MSCT and PET/CT were compared with pathological or follow-up results respectively. Positive MSCT and PET/CT findings with malignancy and benign nodules were defined as true positive (TP) and false positive (FP), respectively. Negative MSCT and PET/CT findings with malignancy and benign nodules were defined as false negative (FN) and true negative (TN), respectively. The diagnostic values of MSCT and PET/CT were assessed by calculating sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV). Sensitivity was calculated as TP/TP+FN, specificity as TN/TN+FP, accuracy as TP+TN/TP+FP+TN+FN, positive predictive value as TP/TP+FP, and negative predictive value as TN/TN+FN. All data were analyzed for significance by using the x2-test, values of P<0.05 were accepted as significance.
     The comprehensive imaging diagnosis in the characterization of a solitary pulmonary nodule was given by combining MSCT with PET/CT images. The images were interpreted as benign or malignant in consensus. In case of concordance between MSCT and PET/CT interpretation, the classification did not differ from the MSCT and PET/CT findings. The MSCT and PET/CT images were jointly reviewed. The combining interpretation could be described with the following rules:If the MSCT score was 5 (definitely malignant), then the solitary pulmonary nodule was considered malignant, regardless of the 18F-FDG uptake. If the MSCT score was 1 (definitely benign), then the solitary pulmonary nodule was considered benign, regardless of the 18F-FDG uptake. If the MSCT score was 2,3,4 (could not affirm to be malignant or benign), then the solitary pulmonary nodule was determined the nature according to the 18F-FDG uptake as follows. The solitary pulmonary nodule was considered malignant if the PET/CT rating was 2,3,4 (moderate uptake to uptake higher than the liver) or CR≥optimal thresholds, and the solitary pulmonary nodule was considered benign if the PET/CT rating was 0,1 (no uptake or uptake less than mediastinum) and CR     Results:There were 146 malignant nodules and 71 benign nodules in the 217 solitary pulmonary nodules which were scanned by MSCT. There were 69 malignant nodules and 29 benign nodules in the 98 solitary pulmonary nodules which were examined by 18F-FDG PET/CT. All of malignant nodules were pathologically confirmed. The benign nodules were proved pathologically or by follow-up.
     Using pathology and follow-up results as the reference standard, the efficiency of MSCT as to the solitary pulmonary nodules of 2.0cm     As to the solitary pulmonary nodules of 2.0cm     The comprehensive imaging diagnosis by combining MSCT images with PET/CT images demonstrated a more excellent performance in classifying solitary pulmonary nodules as benign or malignant. The sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of combining diagnosis by MSCT and 18F-FDG PET/CT were 97.10%,93.10%,95.92%,97.10%, 93.10%(P<0.05 for PET/CT).
     Conclusion:With the increasing use of MSCT, more solitary pulmonary nodules are being detected. Although the majority of these nodules are benign, lung cancer constitutes an important consideration in the differential diagnosis of solitary pulmonary nodules. The goal of management is to correctly differentiate malignant from benign nodules to ensure appropriate treatment. Recent technological advances in imaging, including MSCT and PET/CT, have improved nodule characterization and surveillance. Our study found MSCT and PET/CT all have a high accuracy for characterization of solitary pulmonary nodules. The usefulness of ROC analysis was obvious in the differential diagnosis of solitary pulmonary nodules with the comprehensive imaging characteristic obtained by MSCT and PET/CT. MSCT and PET/CT are synergistic to play an important role in the solitary pulmonary nodules not to be definitely diagnosed by MSCT. It is favorable for us to combine the diagnosis of solitary pulmonary nodules by MSCT and PET/CT with the malignant probability and to improve the treatment project of solitary pulmonary nodules in clinical practice. As a result, management strategies for the imaging evaluation of the solitary pulmonary nodules will continue to be evolved.
引文
1. Austin JH, Muller NL, Friedman PJ, et al. Glossary of terms for CT of the lungs: recommendations of the Nomenclature Committee of the Fleischner Society [J]. Radiology 1996,200(2):327-331.
    2. Jeong YJ, Yi CA, Lee KS. Solitary pulmonary nodules:Detection, characterization, and guidance for further diagnostic workup and treatment [J]. Am J Roentgenol 2007,188(1):57-68.
    3. Gould MK, Fletcher J, Iannettoni MD, et al. Evaluation of patients with pulmonary nodules:When is it lung cancer?:ACCP evidence-based clinical practice guidelines (2nd edition) [J]. Chest 2007,132(3 Suppl):108s-130s.
    4. Henschke CI, McCauley DI, Yankelevitz DF, et al. Early Lung Cancer Action Project:Overall design and findings from baseline screening [J]. Lancet 1999, 354(1):99-105.
    5. Edey AJ, Hansell DM. Incidentally detected small pulmonary nodules on CT [J].Clinical Radiology 2009,64(9):872-884.
    6. Marten K, Grabbe E. The challenge of the solitary pulmonary nodule:Diagnostic assessment with multislice spiral CT [J].Clinical Imaging 2003,27(3):156-161.
    7. Wahidi MM, Covert JA, Goudar RK, et al. Evidence for the treatment of patients with pulmonary nodules:When is it lung cancer?:ACCP evidence-based clinical practice guidelines (2nd edition) [J]. Chest,2007,132(3 Suppl):94s-107s.
    8. Tang AW, Moss HA, Robertson RJ. The solitary pulmonary nodule [J]. Eur J Radiol 2003,45(1):69-77.
    9. Ell PJ, Von Schulthess GK. PET/CT:a new road map [J]. Eur J Nucl Med Mol Imaging 2002,29(6):719-720.
    10. Metz CE. ROC analysis in medical imaging:a tutorial review of the literature [J]. Radiol Phys Technol 2008,1(1):2-12.
    11. Arian R, Peter M. Receiver operating characteristic (ROC) analysis:Basic principles and applications in radiology [J]. Eur J Radiol 1998,27(1):88-94.
    1. Austin JH, Muller NL, Friedman PJ, et al. Glossary of terms for CT of the lungs: recommendations of the Nomenclature Committee of the Fleischner Society [J]. Radiology 1996; 200(2):327-331.
    2. Tan BB, Flaherty KR, Kazerooni EA, Iannettoni MD. The solitary pulmonary nodule [J]. Chest.2003;123(1 suppl):89S-96S.
    3. Gupta NC, Frank AR, Dewan NA, et al. Solitary pulmonary nodules:detection of malignancy with PET with 2-[F-18]-Fluoro-2-deoxy-D-glucose [J]. Radiology, 1992,184(2):441-444.
    4. Ost D, Fein AM, Feinsilver SH. The solitary pulmonary nodule [J]. N Engl J Med. 2003;348:2535-2542.
    5. Gould MK, Fletcher J, Iannettoni MD, et al. Evaluation of patients with pulmonary nodules:When is it lung cancer?:ACCP evidence-based clinical practice guide lines (2nd edition) [J].Chest,2007; 132(3 suppl):108s-130s.
    6. Henschke CI, McCauley DI, Yankelevitz DF, et al. Early Lung Cancer Action Project:Overall design and findings from baseline screening [J]. Lancet,1999, 354(1):99-105.
    7. Swensen SJ, Jett JR, Hartman TE, et al. CT screening for lung cancer:five-year prospective experience [J]. Radiology 2005; 235(1):259-265.
    8. Wahidi MM, Covert JA, Goudar RK, et al. Evidence for the treatment of patients with pulmonary nodules:When is it lung cancer?:ACCP evidence-based clinical practice guidelines (2nd edition) [J]. Chest,2007,132(3 suppl):94s-107s.
    9. American Cancer Society. Cancer facts and figures 2006 [M]. Atlanta (GA): American Cancer Society; 2006.
    10. Viggiano RW, Swensen SJ, Rosenow EC III. Evaluation and management of solitary and multiple pulmonary nodules [J]. Clin Chest Med 1992;13:83-95.
    11. Mountain CF. Revisions in the international system for staging lung cancer. Chest 1997; 111:1710-1717.
    12. Bury T, Dowlati A, Paulus P, Corhay JL, Benoit T, Kayembe JM, et al. Evaluation of the solitary pulmonary nodule by positron emission tomography imaging [J]. Eur Respir J.1996; 9:410-414.
    13. Coakley FV, Cohen MD, Johnson MS, et al. Maximum intensity projection images in the detection of simulated pulmonary nodules by spiral CT [J]. Br J Radiol 1998;71 (842):135-140.
    14. Gruden JF, Ouanounou S, Tigges S, et al. Incremental benefit of maximum intensity projection images on observer detection of small pulmonary nodules revealed by MDCT [J]. Am J Roentgen 2002;179:149-157.
    15. Girvin F, Ko JP. Pulmonary nodules:detection, assessment, and CAD [J]. Am J Roentgen 2008; 191:1057-1069.
    16. Gurney JW, Lyddon DM, McKay JA. Determining the likelihood of malignancy in solitary pulmonary nodules with Bayesian analysis [J]. Part II. Application. Radiology 1993; 186:415-422.
    17. Lee HJ, Im JG, Ahn JM, et al. Lung cancer in patients with idiopathic pulmonary fibrosis:CT findings [J]. J Comput Assist Tomogr 1996; 20(6):979-982.
    18. Bailey-Wilson JE, Amos CI, Pinney SM, et al. A major lung cancer susceptibility locus maps to chromo- some 6q2325 [J]. Am J Hum Genet 2004; 75:460-474.
    19. Ginsberg MS, Griff SK, Go BD, et al. Pulmonary nodules resected at video-assisted thoracoscopic surgery:etiology in 426 patients [J]. Radiology,1999; 213(1):277-282.
    20.吴一龙,蒋国樑,廖美琳,等.孤立性肺结节的处理[J].循证医学,2009,9(4):243-246.
    21.Swensen SJ, Silverstein MD, Edell ES, et al. Solitary pulmonary nodules: Clinical prediction model versus physicians [J]. Mayo Clin Proc,1999; 74:319-329.
    22. Herder GJ, van Tinteren H, Golding RP, et al. Clinical prediction model to characterize pulmonary nodules:validation and added value of 18F-fluoro-deoxyglucose positron emission tomography [J]. Chest,2005;128(4):2490-2496.
    23. Burdine J, Joyce LD, Plunkett MB, et al. Feasibility and value of video-assisted thoracoscopic surgery wedge excision of small pulmonary nodules in patients with malignancy [J]. Chest,2002;122:1467-1470.
    24. MaeMahon H, Austin JH, Gamsu Q et al. Guidelines for management of small pulmonary nodules detected on CT scans:A statement from the Fleischner Society [J]. Radiology,2005;237(2):395-400.
    25. Gambhir SS, Shepherd JE, Shah BD, et al. Analytical decision model for the cost-effective management of solitary pulmonary nodules [J]. J Clin Oncol.1998; 16:2113-2125.
    26. Baldwin DR, Eaton T, Kolbe J, et al. Management of solitary pulmonary nodules: how do thoracic computed tomography and guided fine needle biopsy influence clinical decisions? [J] Thorax.2002;57:817-822.
    27. Bury T, Dowlati A, Paulus P, et al. Evaluation of the solitary pulmonary nodule by positron emission tomography imaging [J]. Eur Respir J.1996;9:410-414.
    28. Hartman TE. Radiologic evaluation of the solitary pulmonary nodule [J]. Radiol Clin North Am.2005; 43:459-465.
    29. Metz CE. ROC analysis in medical imaging:a tutorial review of the literature [J]. Radiol Phys Technol,2008,1(1):2-12.
    30. Arian R, Peter M. Receiver operating characteristic (ROC) analysis:Basic principles and applications in radiology [J].Eur J Radiol,1998,27(1):88-94.
    31. Mori K, Saitou Y, Tominaga K, et al. Small nodular lesions in the lung periphery: new approach to diagnosis with CT [J]. Radiology,1990,177(3):843-849.
    32. Webb WR. Radiologic evaluation of the solitary pulmonary nodule [J]. AJR Am J Roentgenol,1990,154(4):701-708.
    33. Muller NL, Gordon G, Webb WR. Pulmonary nodules:Detection using magnetic resonance and computed tomography [J]. Radiology,1985,155(3):687-690.
    34.周康荣主编.体部磁共振成像[M].上海:上海医科大学出版社,2000:413.
    35.安宁豫,高元桂,梁燕,等.肺癌与结核球的MRI增强研究[J].中华放射学杂志,1997,31(7):442-445.
    36.李成州,刘士远,张电波,等.CT引导下经皮肺穿刺活检:附158例报告[J].中华放射学杂志,1998,32(6):427-428.
    37.肖湘生,欧阳强,韩希年,等.肺癌血供的DSA研究及临床意义[J].中华放射学杂志,1997,31(7):446-448.
    38. Warburg O. On the origin of cancer cells [J]. Science,1956,123(2):309-314.
    39.杨春山,刘士远.PET对孤立性肺结节的诊断价值及限度[J].国外医学临床放射学分册,2003,26(4):228-230.
    40. Seltzer SE, Judy PF, Adams DF, et al. Spiral CT of the chest:comparison of cine and film-based viewing [J]. Radiology 1995;197(1):73-78.
    41.Henschke CI, McCauley DI, Yankelevitz DF, et al. Early lung cancer action project:overall design and findings from baseline screening [J]. Lancet 1999; 354:99-105.
    42. Kaneko M, Eguchi K, and Ohmatsu H, et al. Peripheral lung cancer:screening and detection with low-dose spiral CT versus radiography [J]. Radiology 1996; 201:798-802.
    43. Sone S, Takashima S, Li F, et al. Mass screening for lung cancer with mobile spiral computed tomography scanner[J]. Lancet 1998;351(9111):1242-1245.
    44. Zerhouni EA, Stitik FP, Siegelman SS, et al. CT of the pulmonary nodule:a cooperative study [J]. Radiology 1986;160:319-327.
    45. Zwirewich CV,Vedal S, Miller RR, et al. Solitary pulmonary nodule:high-resolution CT and radiologic-pathologic correlation [J]. Radiology 1991;179:469-476.
    46. Heitzman ER, Markarian B, Raasch BN, et al. Path-ways of tumor spread through the lung:radiologic correlations with anatomy and pathology [J]. Radiology 1982; 144 (1):3-14.
    47. Winer-Muram HT. The solitary pulmonary nodule [J]. Radiology 2006; 239(1):34-49.
    48. Lee YR, Choi YW, Lee KJ, et al. CT halo sign:the spectrum of pulmonary diseases [J]. Br J Radiol 2005;78:862-865.
    49. Kim SJ, Lee KS, Ryu YH, et al. Reversed halo sign on high-resolution CT of cryptogenic organizing pneumonia:diagnostic implications [J]. Am J Roentgenol 2003; 180:1251-1254.
    50. Wahba H, Truong MT, Lei X, et al. Reversed halo sign in invasive pulmonary fungal infections [J]. Clin Infect Dis 2008;46(11):1733-1737.
    51. Siegelman SS, Khouri NF, Scott WW Jr, et al. Pulmonary hamartoma:CT findings [J]. Radiology 1986; 160:313-317.
    52. Muram TM, Aisen A. Fatty metastatic lesions in 2 patients with renal clear-cell carcinoma [J]. J Comput Assist Tomogr 2003; 27(6):869-870.
    53. Seo JB, Im JG, Goo JM, et al. Atypical pulmonary metastases:spectrum of radiologic findings [J]. Radio-graphics 2001;21(2):403-417.
    54. O'Keefe ME, Good CA, McDonald JR. Calcification in solitary nodules of the lung [J]. Am J Roentgenol 1957; 77:1023-1033.
    55. Grewal RG, Austin JHM. CT demonstration of calcification in carcinoma of the lung [J]. J Comput Assist Tomogr 1994;18:867-871.
    56. Mahoney MC, Shipley RT, Corcoran HL, et al. CT demonstration of calcification in carcinoma of the lung [J]. Am J Roentgenol 1990; 154:255-258.
    57. Siegelman SS, Khouri NF, Leo FP, et al. Solitary pulmonary nodules:CT assessment [J]. Radiology 1986;160(2):307-312.
    58. Siegelman SS, Zerhouni EA, Leo FP, et al. CT of the solitary pulmonary nodule [J]. Am J Roentgenol 1980; 135:1-13.
    59. Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT:initial experience [J]. Eur Radiol 2007;17:1510-1517.
    60. Higashi Y, Nakamura H, Matsumoto T, et al. Dual-energy computed tomographic diagnosis of pulmonary nodules [J]. J Thorac Imaging 1994;9(1):31-34.
    61. Bhalla M, Shepard JA, Nakamura K, et al. Dual kV CT to detect calcification in solitary pulmonary nodule [J]. J Comput Assist Tomogr 1995;19(1):44-47.
    62. Swensen SJ, Yamashita K, McCollough CH, et al. Lung nodules:dual-kilovolt peak analysis with CT- multicenter study [J]. Radiology 2000; 214:81-85.
    63. Henschke CI, Yankelevitz DF, Mirtcheva R, et al. CT screening for lung cancer: frequency and significance of part-solid and nonsolid nodules [J]. Am J Roentgenol 2002;178:1053-1057.
    64. Noguchi M, Shimosato Y The development and progression of adenocarcinoma of the lung [J]. Cancer Treat Res 1995;72:131-142.
    65. Colby TV, Wistuba II, Gazdar A. Precursors to pulmonary neoplasia [J]. Adv Anat Pathol 1998;5:205-215.
    66.Yang ZG, Sone S, Takashima S, et al. High-resolution CT analysis of small peripheral lung adenocarcinomas revealed on screening helical CT [J]. Am J Roentgenol 2001;176:1399-1407.
    67. Ohta Y, Shimizu Y, Kobayashi T, et al. Pathologic and biological assessment of lung tumors showing ground-glass opacity [J]. Ann Thorac Surg 2006; 81:1194-1197.
    68. Woodring JH, Fried AM. Significance of wall thickness in solitary cavities of the lung:a follow-up study [J]. Am J Roentgenol 1983;140:473-474.
    69. Woodring JH, Fried AM, Chuang VP Solitary cavities of the lung:diagnostic implications of cavity wall thickness [J]. Am J Roentgenol 1980;135:1269-1271.
    70. Kui M, Templeton PA, White CS, et al. Evaluation of the air bronchogram sign on CT in solitary pulmonary lesions [J]. J Comput Assist Tomogr 1996; 20(6):983-986.
    71.Folkman J. Tumor angiogenesis, in:Becker FFed Cancer:a comprehensive treatise [M]. New York:Plenum press,1975:355-389.
    72. Keogan MT, Tung KT, Kaplan DK, et al. The significance of pulmonary nodules detected on CT staging for lung cancer[J]. Clin Radiol 1993;48(2):94-96.
    73. Kunitoh H, Eguchi K, Yamada K, et al. Intrapulmonary sublesions detected before surgery in patients with lung cancer. Cancer 1992;70(7):1876-1879.
    74. Shimizu N, Ando A, Date H, et al. Prognosis of undetected intrapulmonary metastases in resected lung cancer [J]. Cancer 1993;71(12):3868-3872.
    75. Lillington GA, Caskey CI. Evaluation and management of solitary multiple pulmonary nodules [J]. Clin Chest Med 1993;14:111-119.
    76. Good CA, Wilson TW. The solitary circumscribed pulmonary nodule [J]. JAMA 1958;166:210-215.
    77. Good CA. Management of patient with solitary mass in lung [J]. Chic Med Soc Bull 1953;55:893-896.
    78. Aoki T, Nakata H, Watanabe H, et al. Evolution of peripheral lung adenocarcinomas:CT findings correlated with histology and tumor doubling time [J]. Am J Roentgenol 2000; 174:763-768.
    79. Hasegawa M, Sone S, Takashima S, et al. Growth rate of small lung cancers detected on mass CT screening [J]. Br J Radiol 2000;73(876):1252-1259.
    80. Revel MP, Bissery A, Bienvenu M, et al. Are two-dimensional CT measurements of small non-calcified pulmonary nodules reliable? [J] Radiology 2004;231 (2):453-458.
    81. Erasmus JJ, Gladish GW, Broemeling L, et al. Inter- observer and intraobserver variability in measurement of non-small-cell carcinoma lung lesions:implications for assessment of tumor response [J]. J Clin Oncol 2003;21(13):2574-2582.
    82.Yankelevitz DF, Reeves AP, Kostis WJ, et al. Small pulmonary nodules: volumetrically determined growth rates based on CT evaluation [J]. Radiology 2000;217(1):251-256.
    83. Revel MP, Merlin A, Peyrard S, et al. Software volumetric evaluation of doubling times for differentiating benign versus malignant pulmonary nodules [J]. Am J Roentgenol 2006; 187(1):135-142.
    84. Swensen SJ, Viggiano RW, Midthun DE, et al. Lung nodule enhancement at CT: multicenter study [J]. Radiology 2000;214(1):73-80.
    85. Yamashita K, Matsunobe S, Tsuda T, et al. Solitary pulmonary nodule:preliminary study of evaluation with incremental dynamic CT [J]. Radiology 1995;194: 399-405.
    86. Zhang M, Kono M. Solitary pulmonary nodules:evaluation of blood flow patterns with dynamic CT[J]. Radiology 1997;205(2):471-478.
    87. Shah SK, McNitt-Gray MF, Rogers SR, et al. Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features [J]. Accad Radiol 2005;12(10):1310-1319.
    88. Lowe VJ, Hoffman JM, DeLong DM, et al. Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities [J]. J Nucl Med 1994; 35:1771-1776.
    89. Gould MK, Maclean CC, Kuschner WG, et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions:a meta-analysis [J]. JAMA 2001;285(7):914-924.
    90.Tan BB, Flaherty KR, Kazerooni EA, et al. American College of Chest Physicians. The solitary pulmonary nodule [J]. Chest 2003;123(1 Suppl):89S-96S.
    91. Gould MK, Ananth L, Barnett PG, et al. Veterans Affairs SNAP Cooperative Study Group. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules [J]. Chest 2007;131(2):383-388.
    92. Nomori H, Watanabe K, Ohtsuka T, et al. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images [J]. Lung Cancer 2004;45(1):19-27.
    93. Lowe VJ, Fletcher JW, Gobar L, et al. Prospective investigation of PET in lung nodules (PIOPILN) [J]. J Clin Oncol 1998;16:1075-1084.
    94. Herder GJ, Golding RP, Hoekstra OS, et al. The performance of (18)F-fluorodeoxyglucose positron emission tomography in small solitary pulmonary nodules [J]. Eur J Nucl Med Mol Imaging 2004;31:1231-1236.
    95. Erasmus JJ, McAdams HP, Patz EF Jr, et al. Evaluation of primary pulmonary carcinoid tumors using FDG PET[J]. Am J Roentgenol 1998;170:1369-1373.
    96. Higashi K, Ueda Y, Seki H, et al. Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung carcinoma [J]. J Nucl Med 1998;39(6):1016-1020.
    97. Sabloff BS, Truong MT, Wistuba II, et al. Bronchioalveolar cell carcinoma: radiologic appearance and dilemmas in the assessment of response [J]. Clin Lung Cancer 2004;6(2):108-112.
    98. Yi CA, Lee KS, Kim BT, et al.Tissue characterization of solitary pulmonary nodule:comparative study between helical dynamic CT and integrated PET/CT [J]. J Nucl Med 2006; 47(3):443-450.
    99. Cook GJR, Wegner EA, Fogelman I. Pitfalls and artifacts in 18FDG PET and PET/CT oncologic imaging [J]. Semin Nucl Med 2004;34(2):122-133.
    100.Beyer T, Antoch G, Blodgett T, et al. Dual-modality PET/CT imaging:the effect of respiratory motion on combined image quality in clinical oncology [J]. Eur J Nucl Med Mol Imaging 2003;30(4):588-596.
    101.Osman MM, Cohade C, Nakamoto Y, et al. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT [J]. Eur J Nucl Med Mol Imaging 2003;30(4):603-606.
    102.Goerres GW, Kamel E, Heidelberg TN, et al. PET-CT image co-registration in the thorax:influence of respiration [J]. Eur J Nucl Med Mol Imaging 2002;29(3): 351-360.
    103.Goerres GW, Burger C, Kamel E, et al. Respiration-induced attenuation artifact at PET/CT:technical considerations [J]. Radiology 2003;226(3):906-910.
    104.Pan T, Mawlawi O, Nehmeh SA, et al. Attenuation correction of PET images with respiration-averaged CT images in PET/CT [J].J Nucl Med 2005;46(9): 1481-1487.
    105.Truong MT, Pan T, Erasmus JJ. Pitfalls in integrated CT-PET of the thorax: implications in oncologic imaging [J]. J Thorac Imaging 2006;21(2):111-122.
    106.MacMahon H, Austin JH, Gamsu G, et al. Fleischner Society. Guidelines for management of small pulmonary nodules detected on CT scans:a statement from the Fleischner Society [J]. Radiology 2005;237(2):395-400.
    107.Gould MK, Fletcher J, Iannettoni MD, et al. American College of Chest Physicians. Evaluation of patients with pulmonary nodules:when is it lung cancer?:ACCP evidence-based clinical practice guidelines (2nd edition) [J]. Chest 2007;132 (3 Suppl):108S-130S.
    108.Iwano S, Makino N, Ikeda M, et al. Solitary pulmonary nodules:Optimal slice thickness of high-resolution CT in differentiating malignant from benign [J].Clinical Imaging,2004,28(5):322-328.
    109.Dewan NA, Gupta NC, Redepenning LS, et al. Diagnostic efficacy of PET-FDG imaging in solitary pulmonary nodules:Potential role in evaluation and management [J]. Chest,1993,104(4):997-1002.
    110.Gould MK, Maclean CC, Kuschner WG, et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions:a meta-analysis [J]. JAMA,2001,285(7):914-924.
    111.Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG-PET literature [J]. J Nucl Med,2001,42(5 suppl):1s-93s.
    112.Strauss LG, Conti PS. The application of PET in clinical oncology [J]. J Nucl Med,1991,22(5):623-648.
    113.Bakheet SM, Saleem M, Povue J, et al. F-18 fluorodeoxyglucose chest uptake in lung inflammation and infection [J]. Clin Nucl Med,2000,25(4):273-278.
    114.Dewan NA, Shehan CJ, Reed SD, et al. Likelihood of malignancy in a solitary pulmonary nodule:Comparision of Bayesian analysis and results of FDG-PET scan [J]. Chest,1997,112(2):416-422.
    115.汪涛,孙玉鹗,田嘉禾,等.肺肉芽肿性炎症FDG摄取特点初步研究[J].中华胸心血管外科杂志,2003,19(2):95-97.
    116.Marom EM, Sarvis S, Herndon JE 2nd, et al. T1 lung cancers:sensitivity of diagnosis with fluorodeoxyglucose PET [J]. Radiology,2002,223(2):453-459.
    117.李少林主编.核医学(第五版)[M].北京:人民卫生出版社,2002:321-322.
    118.Kuzucu M, Martin WH, Delbeke D. Lung tumors in:Delbeke D, Martin WH, eds. Practical FDG imaging:a teaching file [M]. New York:springer,2001,151.
    119.Carreras-Delgado JL. Positron emission tomography (PET) in solitary pulmonary nodule [J]. An R Acad Nac Med,2001,118(2):405-419.
    120.Coleman RE. PET in lung cancer [J]. J Nucl Med,1999,40(5):814-820.
    121.Lowe VJ, Hoffman JM, Delong DM, et al. Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities [J]. J Nucl Med,1994,35(11): 1771-1776.
    122.Nomori H, Watenabe K, Ohtsuka T, et al. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images [J]. Lung Cancer,2004,45(1):19-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700