硒化物纳米材料的制备及其在生物传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文使用水热合成法,制备了Ag_2Se、PbSe与ZnSe三种硒化物纳米粒子。在制备过程中对纳米粒子的表面进行修饰,使其在水体系中具有很好的分散性和生物相容性。使用TEM、SEM、XRD、EDS、XPS、UV-Vis、FT-IR等对产物进行了表征,探讨了它们的形成机理,并对制备的硒化物纳米粒子在生物传感器方面的应用进行了初步探究。
     (1)以AgNO_3,KI,PVP形成的配合物[PVP(Ag_mI_n)]~((n-m)-)(n≧m)为前驱体与Na_2SeSO_3在180℃条件下水热反应20小时,制备了单分散Ag_2Se纳米粒子。透射电镜和扫描电镜测试显示制备的Ag_2Se为大米粒状,长约为60-80nm,宽约为30-40nm。配合物[PVP(Ag_mI_n)]~((n-m)-)对控制Ag_2Se晶核的生成速度和生长方向起到了至关重要的作用,使得在高浓度PVP条件下可以制备出尺寸均一、大米粒状的Ag_2Se纳米粒子。通过XPS和FT-IR的检测证实PVP与Ag_2Se纳米粒子间以配位键形式的结合,并表明在Ag_2Se纳米粒子表面有大量PVP存在。利用PVP中C=O与DNA分子中-NH2易于形成氢键,将制备的PVP修饰的Ag_2Se纳米粒子作为DNA探针的标记物用于电化学溶出检测DNA。用该方法对对互补序列、三碱基错配及非互补序列DNA的控制表明,PVP修饰的Ag_2Se对互补的20碱基PEP基因片段具有很好的选择性,其检测的线性范围为1.0×10~(-12)~1.0×10~(-8) mol·L~(-1),检测限为2.3×10~(-13) mol·L~(-1)。
     (2)在表面活性剂CTAB存在的条件下,Pb(CH3COO)2与NaHSe在去离子水中于150℃条件下水热反应24小时制备了PbSe纳米粒子。XRD显示制备的PbSe为立方晶型,TEM显示PbSe纳米粒子粒径大约40nm。FT-IR检测证实了CTAB在PbSe纳米粒子表面的存在。PbSe-CTA~+使得PbSe纳米粒子表面带正电性,通过与DNA中的-COO-的负电性的静电作用,将制备的PbSe纳米粒子标记寡核苷酸制成了新型的DNA探针。用该方法对对互补序列、三碱基错配及非互补序列DNA的控制表明,CTAB修饰的PbSe对互补的18碱基CaMV35S基因片段具有很好的选择性,其检测的线性范围为5.0×10-12 mol·L~(-1)到5.0×10~(-7) mol·L~(-1),检测限为6.1×10~(-13) mol·L~(-1)。
     (3)以生物分子L-谷氨酸辅助水热法合成了ZnSe纳米粒子。XRD检测显示制备的ZnSe为立方晶型,TEM图像表明制备的ZnSe为尺寸在100纳米左右的球形粒子。制备过程中,生物分子L-谷氨酸,起到了配位剂和生物分子模板的作用。FT-IR检测表明,ZnSe纳米粒子表面吸附有L-谷氨酸,谷氨酸作为ZnSe纳米粒子与DNA分子的连接物,使ZnSe纳米粒子标记于DNA分子上。将ZnSe纳米粒子标记于合成的5'端氨基修饰的寡聚核苷酸片段上,制成具有电化学活性的ZnSe纳米粒子标记DNA探针。测定目标DNA的线性范围为1.0×10~(-11)至1.0×10~(-7) mol/L,检测限为4.7×10~(-12) mol·L~(-1)。
Three kinds of selenide nanoparticals have been synthesized through hydrothermal route. The synthesized nanoparticles are well dispersed and have biology consistent ability as their surfaces are modified in the process of synthesis. The morphology and characteristic were characterized by TEM、SEM、XRD、EDS、XPS、UV-Vis、FT-IR respectively, and the possible growth mechanisms were elucidated based on our experimental results. The application of nanoparticles-based novel electrochemical DNA biosensor was studied and discussed.
     (1) Monodispersed silver selenide (Ag_2Se) nanoparticles have been prepared successfully by a hydrothermal reaction of Na2SeSO3 with [PVP(AgmIn)](n-m)- which is formed by AgNO3,KI and PVP. TEM revealed that the nanoparticles are much like husked rice with length of about 60~80 nm and width of about 30~40nm. [PVP(AgmIn)](n-m)- acted an important role in the reaction. The formation rate of Ag_2Se crystal cores and the growth direction could be well controlled as the protection effect of PVP. Husked rice-like Ag_2Se nanoparticles with uniform size were obtained in the condition of high concentration of PVP. The XPS and FT-IR test indicted that there was a great number of PVP modified on the surface of Ag_2Se nanoparticles. The modification effect was not only a physical adsorption but also a chemical coordination. Ag_2Se was bound to the probe DNA via the formation of the hydrogen bond between–C=O of PVP in the modified Ag_2Se and–NH2 in the probe DNA. The proposed method showed a good and distinguishable ability to the three-base mismatch or non-complementary sequences with the complementary sequences. DNA specific-sequence related to PEP promoter gene in the transgenic plants was determined with a detection range from 1.0×10~(-12) to 1.0×10~(-8) mol L~(-1) and a detection limit of 2.3×10~(-13) mol L~(-1)(3σ).
     (2) Lead selenide (PbSe) nanoparticles were synthesized by the reaction between Pb(CH3COO)2 and NaHSe under hydrothermal conditions in the presence of CTAB at 150℃for 24h. The X-ray diffraction (XRD) pattern indicated that the product was cubic PbSe. Transmission electron microscopy (TEM) revealed that the nanoparticales are about 40 nm in diameter. The FT-IR test indicted the adsorption of CTAB on the surface of PbSe nanoparticles. The ionization of CTAB produced cation CTA+ on the surface of PbSe nanoparticles and made the nanoparticles with positive charge. As the -COO- of DNA made the DNA with negative charge, the PbSe nanoparticles can adsorbed the negative charged oligonucleotides by electrostatic interaction to form a nanoparticle labeled oligonucleotides probe. The PbSe nanoparticles showed a good distinguishable ability to the two-base mismatch or non-complementary sequences with the complementary sequences. DNA specific-sequence related to CaMV35S promoter gene in the transgenic plants was determined with a detection range from 5.0×10~(-12) to 5.0×10~(-7) mol/L and a detection limit of 6.1×10~(-13) mol/L (3σ).
     (3) A simple biomolecule-assisted hydrothermal approach was developed to synthesize zinc selenide (ZnSe) nanoparticles. The X-ray diffraction (XRD) pattern indicated that the as-prepared product was cubic ZnSe. The TEM images showed the size of the ZnSe nanosphere was 100nm in diameter. The L-glutamic acid acted as complexing agent and biomolecule templet to combine with Zn2+ in the process of the reaction. The FT-IR studies of the as-prepared ZnSe provide preliminary proof for confirming the adsorption between ZnSe nanoparticles and glutamic acid. Glutamic acid was the bridging agent between DNA molecule and zinc selenide nanospheres. So the ZnSe nanoshperes could be used for the detection of the DNA hybridization. DNA specific-sequence related to PAT gene in the transgenic plants was determined with a detection range from 1.0×10-11 to 1.0×10~(-7) mol L~(-1) and a detection limit of 4.7×10~(-12) mol L~(-1) (3σ).
引文
[1] Korgel B. A., Nanosprings take shape[J], Science, 2005, 309: 1683-1684
    [2] Valiev R., Nanomaterial advantage[J], Nature, 2002, 419: 887-888
    [3] Arico A. S., Bruce P., Scrosati B., et. al, Nanostructured materials for advanced energy conversion and storage devices[J], Nature Materials, 2005,4: 366-377
    [4] Medintz I. L., Uyeda H.T., Goldman E. R., et. al, Quantum Dot Bioconjugates for Imaging, Labelling and Sensing[J], Nature Materials, 2005, 4: 435-447
    [5] Parak W.J., Gerionl D., Pellegrino T., et. al, Biological applications of colloidal nanocrystals[J], Nanotechnology, 2003, 14: R15-R27
    [6] Mcdonald S. A., Konstantatos G., Zhang S., et. al, Solution-Processed PbS Quantum Dot Infrared Photodetectors and Photovoltaics[J], Nature Materials, 2005, 4: 138-143
    [7] Doh Y. J., Dam J. A. V., Roest A. L., et. al, Tunable Supercurrent through Semiconductor Nanowires[J], Science, 2005, 309: 272-275
    [8]陈名海,低维硒化物纳米晶的液相化学控制合成与表征,中国科学院上海硅酸盐研究所,博士论文
    [9] Burda C., Chen X., Narayanan R., et. al, Chemistry and Properties of Nanocrystals of Difeernt Shapes[J], Chem. Rev, 2005, 105(4): 1025-1102
    [10] Xia Y., Yang P., Sun Y., et. al, One-Dimensional Nanostructures: Synthesis, Characterization, and Applications[J], Adv. Mater., 2003, 15(5): 353-389
    [11] Huang M. H., Wu Y., Feick H., et. al, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport[J], Adv. Mater., 2001, 13(2): 113-116
    [12] Huynh W. U., Dittmer J. J., Alivisatos A. P., Hybrid Nanorod-Polymer Solar Cells[J], Science, 2002, 295: 2425-2427
    [13] El-Sayed M. A., Some Interesting Properties of Metals Confined in Time and Nanometer Space of Diferent Shapes[J], Acc. Chem. Res., 2001, 34(4): 25 7-264
    [14] Mohamed M. B., Volkov V., Link S., et. al, The‘lightning’gold nanorods: fluorescence enhancement of over a million compared to the gold metal[J], Chem. Phys. Lett., 2000, 317(6): 517-523
    [15] Zhang Z., Blom D. A., Gai Z., et. al, High-Yield Solvothermal Formation of Magnetic Copt Alloy Nanowires[J], J. Am. Chem. Soc, 2003, 125(25): 7528-7529
    [16] Park S. J., Kim S., Lee S., et. al, Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres[J], J. Am. Chem. Soc., 2000, 122(35): 8581-8582
    [17] Cao H. Q., Xu Z., Sang H., et. al, Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules[J], Adv. Mater, 2001, 13(2): 121-123
    [18] Lu L., Sui M. L., Lu K., Superplastic extensibility of nanocrystalline copper at room temperature[J], Science, 2000, 287: 1463-1466
    [19] Lu L., Shen Y., Chen X., et. al, Ultrahigh Strength and High Elecrtical Conductivity in Copper[J], Science, 2004, 304: 422-426
    [20] Wong E. W., Sheehan P. E., Lieber C. M., Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes[J], Science, 1997, 277: 1971-197
    [21] Sheldon B. W., Curtin W. A., Nanoceramic Composites Tough To Test[J], Nature Materials,2004, 3: 505-506
    [22] Zhou X. T., Zhang R. Q., Peng H. Y., et. al, Highly Efficient and Stable Photoluminescence from Silicon Nanowires Coated with SiC[J], Chem. Phys. Lett., 2000, 332(3-4): 215-218
    [23] Lee C. J., Lee T. J., Lyu S. C., et. al, Field Emission from Well-Aligned Zinc Oxide Nanowires Grownat Low Temperature[J], Appl. Phys. Lett., 2002, 81(19 ): 3648-3650
    [24] Mayers B. T., Liu K., Sunderland D., et. al, Sonochemical Synthesis of Trigonal Selenium Nanowires[J], Chem. Mater., 2003, 15(20): 3852-3858
    [25] Gates B., Yin Y., Xia Y., A Solution-Phase Approach To the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30nm[J], J. Am. Chem. Soc. 2000, 122(50): 12582-12583
    [26] Xie G., Qiao Z. P., Zeng M. H., et. al, A Single-Source Approach To Bi2S3 and Sb2S3 Nanorods via a Hydrothermal Treatment[J], Cryst. Growth Des., 2004, 4(3): 513-516
    [27] Yang J., Liu Y. C., Lin H. M., et. al, A Chain-Structure Nanotube: Growth and Characterization of Single-crystal Sb253 Nanotubes via a Chemical Vapor Transport Reaction[J], Adv. Mater., 2004, 16(8): 713-716
    [28] Li C., Yang X., Liu Y., et. al, Growth of Crystalline Sb2S3 Nanorods by Hydrothermal Method[J], J. Cryst. Growth, 2003, 255(3-4): 342-347
    [29] Shao M. W., Zhang W., Wu Z. C., et. al, A Template-Free Route To Bi2S3 Nanoribbons[J], J. Cryst. Growth, 2004, 265: 318-321
    [30] Ye C., Meng G., Jiang Z., et. al, Growth of Bi2S3 Nanotubes from Quasi-Two-Dimensional Precursors[J], J. Am. Chem. Soc., 2002, 124(51): 15180-15181
    [31] Liu Z., Peng S., Xie Q., et. al, Large-Scale Synthesis of Ultralong Bi2S3 Nanoribbons via a Solvothermal Porcess[J], Adv. Mater., 2003, 15(11): 936- 940
    [32] Shen G. Z., Chen D., Tang K. B., et. al, A Rapid Ethylenediamine-Assisted Polyol Route To Synthesize Sb2E3 (E =S, Se) Nanowires[J], J. Cryst. Growth, 2003, 252(1-3): 350- 354
    [33] Duan X., Lieber C. M., General Synthesis of Compound Semiconductor Nanowires[J], Adv. Mater., 2000, 12, 298-302
    [34] Selvam P., Bhatia S. K., Sonwane C. G., Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves[J], Ind. Eng. Chem. Res., 2001,40 (15): 3237-3261
    [35] Yang Z. L., Niu Z. W., Cao X. Y., et. al, Template Synthesis of Uniform 1D Mesostructured Silica Materials and Their Arrays in Anodic Alumina Membranes[J], Angew. Chem. Int. Ed, 2003, 42: 4201-4203
    [36] Wang D. H., Luo H. M., Kou R., et. al, A General Route To Macroscopic Hierarchical 3D Nanowire Networks[J], Angew. Chem. Int. Ed., 2004, 43: 6169-6173
    [37] Yang Z. Z., Niu Z. W., Lu Y. F., et. al, Templated Synthesis of Inorganic Hollow Spheres with a Tunable Cavity Size on to Core-Shell Gel Particles[J], Angew. Chem. Int. Ed., 2003, 42: 1943-1945
    [38] Haremza J. M., Hahn M. A., Krauss T. D., et. al, Attachment of Single CdSe Nanocrystals To Individual Single-Walled Carbon Nanotubes[J], Nano Lett., 2002, 2(11): 1253-1258
    [39] Gates B., Wu Y., Xia Y., et. al, Single-Crystalline Nanowires of Ag2Se Can be Synthesized by Templating Against Nanowires of Trigonal Se[J], J. Am. Chem. Soc., 2001, 123(46): 11500-11501
    [40] Jiang X., Mayers B., Xia Y., Direct Synthesis of Se@CdSe Nanocables And CdSe Nanotubesby Reacting Cadmium Salts with Se Nanowires[J], Adv. Mater., 2003, 15(20): 1740-1743
    [41] Mayers B., Jiang X., Xia Y., et. al, Hollow Nanostructures of Platinum with Controllable Dimensions Can Be Synthesized by Templating against Selenium Nanowires and Colloids[J], J. Am. Chem. Soc., 2003, 125(44): 13364-13365
    [42] Wang X., Gao P., Li J., et. al, Rectangular Porous ZnO-ZnS Nanocables and ZnS Nanotubes[J], Adv. Mater., 2002, 14(23): 1732-1735
    [43] Sun Y., Xia Y., Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction[J], Nano Lett., 2003, 3(11): 1569-1572
    [44] Chen J., Wiley B., Xia Y., Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions[J], Nano Lett., 2005, 5(10): 2058-2062
    [45] Sun Y., Mayers B. T., Xia Y., Template-Engaged Replacement Reaction: a One-Step Approach To the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors[J], Nano Lett., 2002, 2(5): 481-485
    [46] Sun Y., Xia Y., Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acidin Aqueous Medium[J], J. Am. Chem. Soc., 2004, 126(12): 3892-3901
    [47] Lisiecki I., Pileni M. P., Synthesis of Well-Defined and Low Size Distribution Cobalt Nanocrystals: the Limited Influence of Reverse Micelles[J], Langmuir, 2003, 19(22): 9486-9489
    [48] Quinlan F. T., Kuther J., W. Tremel, Synthesis and Characterization of ZnSe Nanoparticles[J], Langmuir, 2000, 16(8): 4049-4051
    [49] Bunker C. E., Harruff B. Pathak A., P., et. al, Formation of Cadmium Sulfide Nanoparticles in Reverse Micelles: Extreme Sensitivity TOP reparation Procedure[J], Langmuir, 2004, 20: 5642-5644
    [50] Lee Y., Lee J., Bae C. J., Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles using Reverse Micellesas Nanoreactors under Reflux Conditions[J], Adv. Funct. Mater., 2005,15(3): 503-509
    [51] Sau T. K., Murphy C. J., Self-Assembly Paterns Formed upon Solvent Evaporation of Aqueous CTAB-Coated Gold Nanoparticles of Various Shapes[J], Langmuir, 2005, 21: 2923-2929
    [52] Murphy C. J., Jana N. R., Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires[J], Adv. Mater., 2002, 14(1): 80-82
    [53] Li Y. D., Li X. L., Deng Z. X., et. al, Surfactant-Inorganic Mesostructures To Tungsten Nanowires[J], Angew. Chem. Int. Ed., 2002, 41(2): 333- 335
    [54] Hopkins D. S., Pekker D., Goldbart P. M., et. al, Quantum Interference Device Made by DNA Templating of Superconducting Nanowires[J], Science, 2005, 308: 1762-1765
    [55] Keren K., Krueger M., Gilad R., et. al, Sequence-Specific Molecular Lithography on Single DNA Molecules[J], Science, 2002, 297: 72-75
    [56] Richter J., Seidel R., Kirsch R., et. al, Nanoscale Palladium Metallization of DNA[J], Adv. Mater., 2000, 12(7): 507-510
    [57] Ford W. E., Harnack O., Yasuda A., et. al, Platinated DNA as Precursors To Templated Chains of Metal Nanoparticles[J], Adv. Mater., 2001, 13(23): 1793-1797
    [58] Alivisatos P., The Use of Nanocrystals in Biological Detection[J], Nature Biotechnology, 2004, 22(1): 47-52
    [59] Edwards H. K., Salyer P. A., Roe M. J. , et. al, Nanowires of Nb3Te4: a Nanostructured Chalcogenide[J], Angew. Chem. Int. Ed., 2005, 44: 3555-3558
    [60] Wen X., Wang S., Ding Y., et. al, Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays of Fe2O3 Nanobeltsand Nanowires[J], J. Phys. Chem. B, 2005, 109(1): 215-220.
    [61] Wen X., Zhang W., Yang S., Synthesis of Cu(OH)2 and CuO Nanoribbon Arrays on a Copper Surface[J], Langmuir, 2003, 19(14): 5898-5903
    [62] Wen X., Wang S., Xie Y., et. al, Low-Temperature Synthesis of Single Crystalline Ag2S Nanowires on Silver Substrates[J], J. Phys. Chem. B, 2005, 109(20): 10100-10106
    [63] Kong X. Y., Ding Y., Yang R. S., et. al, Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar-Nanobelts[J], Science, 2004, 303: 1348-1351
    [64] Wang Z. L., Self-Assembled Nanoarchitectures of Polar Nanobelts/Nanowires[J], J. Mater. Chem., 2005,15: 1021-1024
    [65] Tang K. B., Qian Y. T., Zeng J. H., et. al, Solvothermal Route To Semiconductor Nanowires[J], Adv. Mater., 2003,15(5): 448-450
    [66] Wang D. B., Mo M. S., Yu D. B., et. al, Large-Scale Growth and Shape Evolution of Cu2O Cubes, Cryst. Growth Des., 2004, 4: 717-720
    [67] Xu D., Liu Z., Liang J., et. al, Solvothermal Synthesis of CdS Nanowires in a Mixed Solvent of Ethylenediamine and Dodecanethiol[J], J. Phys. Chem. B, 2005, 109(30): 14344-14349
    [68] Yang J., Cheng G. H., Zeng J. H., et. al, Shape Control and Characterizati on of Transition Metal Diselenides MSe2(M =Ni, Co, Fe)Prepared by a Solvothermal-Reduction Process[J], Chem. Mater., 2001, 13(3): 848-853
    [69] Yu S. H., Wu Y. S., Yang J., et. al, A Novel Solvothermal Synthetic Route To Nanocrystalline CdE(E=S, Se, Te) and Morphological Control[J], Chem. Mater., 1998, 10: 2309-2312
    [70] Deng H., Li X., Peng Q., et. al, Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J], Angew. Chem. Int. Ed., 2005, 44: 2782-2785
    [71] Liu J. F., Li Q. H., Wang T. H., et. al, Metastable Vanadium Dioxide Nanobelts: Hydrothermal Synthesis, Electrical Transport, and Magnetic Properties[J], Angew. Chem. Int. Ed., 2004, 43: 5048-5052
    [72] Wang X., Zhuang J., Peng Q., et. al, A General Stratedy for Nanocrystal Synthesis[J], Nature, 2005, 437: 121-124
    [73] Wang X., Lu J., Xie Y., et. al, A Novel Route To Multiwalled Carbon Nanotubes and Carbon Nanorods at Low Temperature[J], J. Phys. Chem. B, 2002, 106(5): 933-937
    [74] Manna L., Scher E. C., Alivisatos A. P., Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals[J], J. Am. Chem. Soc., 2000,122(51): 12700-12706
    [75] Peng Z. A., Peng X. G., Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes: Nucleation and Growth[J], J. Am. Chem. Sac., 2002, 124(13): 3343-3353
    [76] Peng X. G., Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals[J], Adv. Mater., 2003, 15(5): 459-463
    [77] Sun Y. G., Xia Y. N., Shape-Controlled Synthesis of Goldand Silver Nanoparticles[J], Science, 2002, 298: 2176-2179
    [78] Sun Y., Mayers B., Xia Y., et. al, Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence[J], Nano Lett., 2003, 3(7): 955-960
    [79] Sun Y., Yin Y., Xia Y., et. al, Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone)[J], Chem. Mater., 2002, 14(11): 4736-4745
    [80] Herricks T., Chen J., Xia Y., Polyol Synthesis of Platinum Nanoparticles: Control of Morphology with Sodium Nitrate[J], Nano Lett., 2004: 4(12), 2367-2371
    [81] Wang Y., Jiang X., Herricks T., et. al, Single Crystalline Nanowires of Lead: Large-Sca Synthesis, Mechanistic Studies, and Transport Measurements[J], J. Phys. Chem. B, 2004; 108(25): 8631-8640
    [82] Sau T. K., Murphy C. J., Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution[J], J. Am. Chem. Soc., 2004,126(28): 8648-8649
    [83]楼迪民,方荣恩,十二烷基苯磺酸钠性能改进的研究[J],精细化工,1990 7(4): 71-74
    [84]胡金华,王伟宁,新型氢氧化镁阻燃剂的应用研究[J],工程塑料应用,1990(4): 15-17
    [85]杨咏来,宁桂玲,液相法制备纳米粉体时防团聚方法概述[J],材料导报,1998 b12(2): 11-13
    [86]曾戎,容敏智,章明秋等,纳米银粒子/有机溶剂的界面作用、分散性及光学性能[J],材料研究学报,2000, 14 (5): 475-480
    [87]邱孙青,董浚修,陈国需,分散介质对铜纳米粒子润滑油添加剂摩擦学性能的影响[J],润滑与密封,1999, (3 ): 14-16
    [88]何峰,张正义,汪武祥等,超细粉润滑剂的稳定性[J],北京科技大学学报,2000, 22(3): 263-269
    [89]傅洵,胡正水,王德宝等,萃取体系第三相的生成,微观结构与应用研究:三相萃取体系研究进展[J],化学通报,2000, 63(4): 13-17
    [90] Song X., Sun S., Zhang W, A method for the synthesis of spherical coppernano-particles inthe organic phase[J], Journal of Colloid and Interface Science, 2004, 273: 463
    [91]张绍玲,石华强,傅洵,胡正水,含萃取剂修饰的纳米Bi2S3有机流体的制备与表征[J],《稀有金属材料与工程》,2005,6,192-195
    [92] Shi H. Q., Fu X., Zhou X. D., Hu Z. S., Preparation of organic fluid containing Ag nano-particles with extractant Cyanex 301[J], J. Disp. Sci. Tech., 2005, 26: 315-318
    [93] Shi H. Q., Fu X., Zhou X. D., Hu Z. S., Preparation of organic fluids with high loading concentration of Ag2S nano-particles using extractant Cyanex 301[J], J. Mater. Chem., 2006, 16 (21) 2097-2101.
    [94] Wang X., Lu J., Xie Y., et. al, A novel route to multiwalled carbon nanotubes and carbon nanorods at low temperature[J], J. Phys. Chem. B, 2002, 106(5): 933-937
    [95] Peng X. G., Manna L., Yang W. D., et. al, Shape control of CdSe nanocrystals[J], Nature, 2000, 404: 59-61
    [96] Manna L., Scher E. C., Alivisatos A. P., Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals[J], J. Am. Chem. Soc., 2000, 122(51): 12700-12706
    [97] Peng X. G., Wickham J., Alivisatos A. P., Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions[J], J. Am. Chem. Soc., 1998, 120(21): 5343-5344
    [98] Peng X. G., Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals[J], Adv. Mater., 2003, 15(5): 459-463
    [99] Li Y. D., Liao H. W., Ding Y., et. al, Nonaqueous synthesis of CdS nanorod semiconductor[J], Chem. Mater., 1998, 10(9): 2301-2303
    [100] Yang J., Cheng G. H., Zeng J. H., et. al, Shape control and characterization of transition metal diselenides MSe2 (M=Ni, Co, Fe) prepared by a solvothermal-reduction process[J], Chem. Mater., 2001, 13(3): 848-853
    [101] Wang W., Geng Y., Yan P., et. al, A novel mild route to nanocrystalline selenides at room temperature[J], J. Am. Chem. Soc., 1999, 121(16): 4062-4063
    [102] Liu Y., Cao J., Li C., et. al, Hydrazine route to one-dimensional structural metal selenides crystals[J], J. Cryst. Growth, 2004, 261(4):508-513
    [103] Zhang W., Zhang X., Zhang L., et. al, A redox reaction to synthesize nanocrystalline Cu2-xSe in aqueous solution[J], Inorg. Chem., 2000, 39(9):1838-1839
    [104] Zhang W., Wang C., Zhang L., et. al, Room temperature synthesis of cubic nanocrystalline CdSe in aqueous solution[J], J. Solid State Chem. 2000, 151(2):241-244
    [105] Gorer S., Albu Y. A., Hodes G., Quantum size effects in chemically deposited, nanocrystalline lead selenide films[J], J. Phys. Chem., 1995, 99(44):16442-16448
    [106] Gorer S., Hodes G., Quantum size effects in the study of chemical solution deposition, mechanisms of semiconductor films[J], J. Phys. Chem., 1994, 98(20):5338-5346
    [107] Wang J., Liu G. D., Polsky R., et. al, Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags[J], Electrochem. Commun., 2002, 4: 722-726
    [108] Zhu N., Zhang A., Fang Y. Z., et. al, Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization[J], Analyst, 2003, 128(3):260-264
    [109] Wang J., Liu G., Merko?i A., Electrochemical coding technology for simultaneous detection of multiple DNA targets[J], J. Am. Chem. Soc., 2003, 125:3214-3215
    [110] Kobayashi M., Review on structural and dynamical properties of silver chalcogenides[J], Solid State Ionics, 1990, 39: 121-149
    [111] Ferhat M., Nagao J., Thermoelectric and transport properties ofβ-Ag2Se compounds[J], J. Appl. Phys., 2000, 88: 813-816
    [112] Das V. D., Karunakaran D., Thermoelectric power of annealedβ-Ag2Se alloy thin films: Temperature and size effects—possibility of a new (β2) phase at low temperatures[J], J. Appl. Phys., 1990, 67: 878-883
    [113] Okabe T., Ura K., High-resolution electron-microscopic studies of the polymorphs in Ag2±δSe films[J], J. Appl. Crystallogr., 1994, 27, 140-145
    [114] Sáfrán G., Geszti O., Radnóczi G., et. al, TEM study of Ag2Se developed by the reaction of polycrystalline silver films and selenium[J], Thin Solid Films, 1998, 317: 72-76
    [115] Pejova B., Najdoski M., Grozdanov I., et. al, Chemical bath deposition of nanocrystalline (111) textured Ag2Se thin films[J], Mater. Lett., 2000, 43: 269-273
    [116] Batabyal S. K., Basu C., Das A. R., et. al, Micropatterns of Ag2Se Nanocrystals[J], Cryst. Growth Des., 2004, 4, 509-511
    [117] Zhan J. H., Yang X. G., Li S. D., et. al, Synthesis of Ag2Se by sonochemical reaction of Se with AgNO3 in non-aqueous solvent[J], Int. J. Inorg. Mater., 2001, 3: 47-49
    [118] Tan H., Li S. P., Fan W. Y., Core-Shell and Hollow Nanocrystal Formation via Small Molecule Surface Photodissociation; Ag@Ag2Se as an Example[J], J. Phys. Chem. B, 2006, 110: 15812-15816
    [119] Gates B., Y., Yang P. D., Xia Y. N., et. al, Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se[J], J. Am. Chem. Soc., 2001, 123:11500-11501
    [120] Zhu W., Wang W. Z., Shi J. L., A Reverse Cation-Exchange Route to Hollow PbSe Nanospheres Evolving from Se/Ag2Se Core/Shell Colloids[J], J. Phys. Chem. B, 2006, 110: 9785-9790
    [121] Bruchez M., Moronne M., Gin P., et. al, Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein[J], J. Am. Chem. Soc., 2000, 122: 12142-12150
    [122] Wang J., Liu G. D., Polsky R., Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags[J], Electrochem. Commun., 2002, 4: 722-726
    [123] Wang J., Liu G. D., Merko?i A., Electrochemical Coding Technology for Simultaneous Detection of Multiple DNA Targets[J], J. Am. Chem. Soc., 2003, 125: 3214-3215
    [124] Wang J., Liu G. D., Zhu Q. Y., et. al, Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags[J], Electrochem. Commun., 2003, 5, 1000-1004
    [125] Zhu N. N., Zhang A. P., He P. G., et. al, DNA Hybridization at Magnetic Nanoparticles with Electrochemical Stripping Detection[J], Electroanalysis, 2004, 16: 1925-1930
    [126] Zhu N. N., Zhang A. P., Wang Q. J., et. al, Lead Sulfide Nanoparticle as Oligonucleotides Labels for Electrochemical Stripping Detection of DNA Hybridization[J], Electroanalysis, 2004, 16: 577-582
    [127] Xu Y., Cai H., Fang Y. Z., et. al, Probing DNA Hybridization by Impedance Measurement Based on CdS-Oligonucleotide Nanoconjugates[J], Electroanalysis, 2004, 16: 150-155
    [128] Bakalova R., Zhelev Z., Baba Y., et. al, Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences[J], J. Am. Chem. Soc. 2005, 127: 11328-11335
    [129] http://srdata.nist.gov/xps/main_search_menu.htm.
    [130] Zhang Z. T., Zhao B., Hu L. M., PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes[J], J. Solid State Chem., 1996, 121: 105-110
    [131] Wu J. H., Li P. J., Hao S. C., et. al, A polyblend electrolyte (PVP/PEG+KI+I2) for dye-sensitized nanocrystalline TiO2 solar cells[J], Electrochim. Acta, 2007, 52, 5334-5338
    [132] Dean J. A., Lange's Handbook of Chemistry - 15th edition. McGraw-Hill, 1998, ISBN 0070163847.
    [133] Zhang H. Q., Handbook of Practical Chemistry (in Chinese); the Publication of Science: Beijing, 2001, 488.
    [134]魏永巨,刘翠格,默丽萍,碘、碘离子和碘三离子的紫外吸收光谱[J],光谱学与光谱分析, 2005, 25: 86-88
    [135] El-Sayed M.A., Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals[J], Acc. Chem. Res., 2004, 37: 326-333
    [136] Badr Y., Mahmoud M. A., Size-dependent spectroscopic, optical, and electrical properties of PbSe nanoparticles[J], J. Cryst. Res. Technol., 2006, 41, 658-663
    [137] Alivisatos A.P., Perspectives on the physical chemistry of semiconductor nanocrystals[J], J. Phys. Chem., 1996, 100: 13226-13239
    [138] Fendler J. H., Meldrum F. C., The colloid chemical approach nanostructured materials[J], Adv. Mater., 1995, 7: 607-632
    [139] Chan W. C. W., Nie S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J], Science, 1998, 281: 2016-2018
    [140] Mitchell G. P., Mirkin C. A., Letsinger R. L. Programmed assembly of DNA functionalizedquantum dots[J], J. Am. Chem. Soc., 1999, 121: 8122-8123
    [141] Gautier C., Breton G., Nouaoura M., et. al, Chemical and electrochemical passivation of PbSe thin layers grown by molecular beam epitaxy[J], J. Electrochem. Soc., 1998, 145: 512-517
    [142] Tetyorkin V. V., Sipatov A. Y., Sizov F.F., et. al, (001)-oriented lead selenide films grown on silicon substrates[J], Infrared Phys. Technol., 1996, 37: 379-384
    [143] Beyer T., Tacke M., Antireflection coatings for PbSe diode lasers[J], Appl. Phys. Lett., 1998, 73: 1191-1193
    [144] Wehrenberg B. L. and Guyot-Sionnest P., Electron and hole injection in PbSe quantum dot films[J], J. Am. Chem. Soc., 2003, 125: 7806-7807
    [145] Cho K. S., Talapin D. V., Gaschler W. et. al, Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles[J], J. Am. Chem. Soc., 2005, 127: 7140-7147
    [146] Tong H., Zhu Y. J., Yang L. X., et. al, Lead chalcogenide nanotubes synthesized by biomolecule-assisted self-assembly of nanocrystals at room temperature[J], Angew. Chem., 2006, 118: 7903-7906
    [147] Xu D. S., Shi X. S., Guo G. L., et. al, Electrochemical preparation of CdSe nanowire arrays[J], J. Phys. Chem. B, 2000, 104: 5061-5063
    [148] Zhu J. J., Palchik O., Chen S. G. et. al, Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles[J], J. Phys. Chem. B, 2000, 104: 7344-7347
    [149] Sasha G., Ana A. Y., Gary H., Chemical solution deposition of lead selenide films: a mechanistic and structural study[J], Chem. Mater., 1995, 7: 1243-1256
    [150] Ptatschek V., Schreder B., Herz K., et. al, Sol-gel synthesis and spectroscopic properties of thick nanocrystalline CdSe films[J], J. Phys. Chem. B, 1997, 101: 8898-8906
    [151] Zhao W. B., Zhu J. J., Chen H. Y., Photochemical preparation of rectangular PbSe and CdSe nanoparticles[J], J. Crystal Growth, 2003, 252: 587-592
    [152] Kiriy A., Minko S., Gorodyska G., et. al, Wire-Shaped Nanoparticles from Single Synthetic Polycation Molecules[J], Nano Lett., 2002, 2: 881-885
    [153] Bronstein L. M., Linton C., Karlinsey R., et. al, Synthesis of Metal-Loaded Poly(aminohexyl)(aminopropyl)silsesquioxane Colloids and Their Self-Organization into Dendrites[J], Nano Lett., 2002, 2: 873-876
    [154] Storhoff J. J., Lazarides A. A., Mucic R. C., et. al, What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies[J], J. Am. Chem. Soc., 2000, 122: 4640-4650
    [155] Monson C. F., Woolley A. T., DNA-Templated Construction of Copper Nanowires[J], Nano Lett., 2003, 3: 359-363
    [156] Kanehara M., Oumi Y., Sano T., et. al, Formation of Low-Symmetric 2D Superlattices of Gold Nanoparticles through Surface Modification by Acid-Base Interaction[J], J. Am. Chem. Soc., 2003, 125: 8708-8709
    [157] Zhang B., Ye X. C., Hou W. Y., et. al, Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Bi2S3 Flowerlike Patterns with Well-Aligned Nanorods[J], J. Phys. Chem. B, 2006, 110: 8978-8985
    [158] Chen X. Y., Zhang X. F., Wang Z. H., et. al, Biomolecule-assisted hydrothermal synthesis and one-dimensional self-assembly of copper sulfide nanocrystallites[J], Mater. Chem. and Physis., 2006, 98: 419-421
    [159] Tong H., Zhu Y. J., Yang L. X., et. al, Lead Chalcogenide Nanotubes Synthesized by Biomolecule-Assisted Self-Assembly of Nanocrystals at Room Temperature[J], Angew. Chem.,2006, 118: 7903-7906
    [160] Klein D. L., Roth R., Lim A. K. L., et. al, A single-electron transistor made from a cadmium selenide nanocrystal[J], Nature, 1997, 389: 699-701
    [161] Colvin V. L., Schlamp M. C., Alivisatos A. P., Light-emitting diodes cadmium selenide nanocrystals and a semiconducting polymer[J], Nature, 1994, 370: 354-357
    [162] Chan W. C. W., Nie S., Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J], Science, 1998, 281: 2016-2018
    [163] Bruchez M., Moronne M., Gin P., et. al, Semiconductor nanocrystals as fluorescent biological labels[J], Science, 1998, 281: 2013-2016
    [164] Hines M. A., Guyot-Sionnest P., Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals[J], J. Phys. Chem. B, 1998, 102: 3655-3657
    [165] Murase N.; Gao M. Y., Preparation and photoluminescence of water-dispersible ZnSe nanocrystals[J], Mater. Lett., 2004, 58: 3898-3902
    [166] Zhang J., Zou H. L., Qing Q., et. al, Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes[J], J. Phys. Chem. B, 2003, 107: 3712-3718
    [167] Huang E., Zhou F. M., Deng L., Studies of Surface Coverage and Orientation of DNA Molecules Immobilized onto Preformed Alkanethiol Self-Assembled Monolayers[J], Langmuir, 2000, 16: 3272-3280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700