结缔组织生长因子(CTGF)在BMP9诱导的成骨分化及在肿瘤发生过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题的主要研究目的是揭示结缔组织生长因子(CTGF,又称CCN2)在骨形态发生蛋白(BMP)9诱导的成骨分化,以及CTGF在骨肿瘤发生中的作用。
     CCN蛋白家族含有6个成员,为CCN1到CCN6,它们均为富含半胱氨酸的分泌性小分量蛋白。CCN蛋白是含有四个功能性结构域的modular蛋白。多数CCN蛋白家族的成员受生长因子、细胞因子或细胞压力的诱导调控。CCN蛋白在成体和胚胎组织的表达模式广泛且差异很大。CCN蛋白可以通过参与并调节多种信号分子而发挥作用,如整合素、BMPs、血管内盘生长因子(VEGF)、Wnts和Notch等。其中,整合素介导的CCN信号传递具有组织和细胞特异性,根据细胞外基质不同而作用各异。
     在本课题中,我们首先检测了CCN蛋白家族中最重要的4个成员,CCN1、CCN2、CCN3和CCN4,对BMP9诱导的成骨分化和对骨肉瘤的作用。结果显示CCN2(CTGF)抑制了BMP9诱导的成骨分化,促进了骨肉瘤细胞株143B的增殖和迁移,两个方面均具有显著性差异。于是,我们选择CTGF做进一步深入研究。为了方便表述,本课题大致分为两部分:
     在第一节,我们从孕12.5到13.5天的小鼠胚胎中分离得到了小鼠胚胎成纤维细胞(MEFs)。进而,我们用携带SV40T基因的逆转录病毒感染MEFs,通过抗生素筛选,得到了永生化的MEFs(iMEFs)。iMEFs细胞株的建立为研究CTGF在BMP9诱导的成骨分化和在骨肉瘤细胞中的作用奠定了基础。
     在第二节中,我们评价了4中CCN蛋白,CCN1、CCN2、CCN3和CCN4,对BMP9诱导的成骨分化的影响。处于对数生长期的iMEFs共感染AdBMP9和AdR-CCN1、Ad-CCN2、Ad-CCN3、Ad-CCN4或AdGFP重组腺病毒。在7天后成骨分化早期标志碱性磷酸酶(ALP)用比色发定量测定。结果显示CCN2(CTGF)具有最强的抑制BMP9诱导的骨形成的能力。这一结果促使我们选择CTGF做进一步深入研究。
     由于CTGF是一种含有4个结构域的mosaic蛋白,为进一步研究哪个或哪几个结构域发挥着抑制作用,在第三节里我们构建了CTGF的中间缺失和C末端缺失突变体。利用分子生物学技术,我们构建了一系列克隆,最终制作了6种重组腺病毒,它们分别表达CTGF全长、CTGFCD1(无结构域IV),CTGFCD2(无结构域III和IV),CTGFID1(无结构域II),CTGFID2(无结构域III)和CTGFID3(无结构域II和III)。6种腺病毒经蛋白酶K裂解,以基因组DNA为模板做PCR,鉴定了CTGF全长及其突变体的存在。以抗Flag抗体为一抗做Western blot,证实了6种腺病毒可以成功表达CTGF全长及其突变体(CTGF及其突变体均与3×Flag标签融合表达。CTGF全长和缺失突变体重组腺病毒的成功构建,为进一步解析在成骨分化中发挥功能的结构域奠定了基础。
     在第四节,我们检测了CTGF全长及其缺失突变体对BMP9诱导的成骨分化的体外影响。用AdBMP9和CTGF腺病毒(AdR-CTGF, CTGFCD1, CTGFCD2, CTGFID1, CTGFID2, CTGFID3)联合感染出于对数生长期的iMEFs细胞,以AdBMP9 + AdRFP感染作为对照组。感染7天后检测成骨早期指标ALP的活性(组织染色)。结果显示CTGF全长、CTGFCD1和CTGFCD2能够抑制BMP9诱导的成骨分化,而CTGFID1、CTGFID2和CTGFID3的抑制效果更为显著。
     在第五节中,我们检测了CTGF全长及其突变体对BMP9诱导的骨形成的体内作用。感染BMP9+RFP或BMP9+CTGF突变体腺病毒的iMEFs细胞种植于裸鼠皮下。皮下成骨包块在6周后收获。用Micro-CT、HE染色和Masson’s Trichrome染色分析皮下成骨包块的大体和细节信息结果显示,与BMP9+RFP对照组相比,BMP+CTGFCD2和BMP9+ CTGFCD1感染得到的包块体积明显增大,而BMP+CTGFID1/2/3组得到的包块体积明显小于对照组。BMP9+CTGF全长组似乎对包块体积无明显影响。组织学分析显示,CTGF缺失突变体通过促进或抑制iMEFs细胞的增殖而影响BMP9诱导的成骨作用。然而,CTGF及其突变体并没有影响BMP9诱导的iMEFs分化。
     第二部分:CTGF在肿瘤发生过程中的作用
     在本部分的第一节中,我们利用结晶紫染色和划痕试验,研究了CCN1、CCN2、CCN3和CCN4对骨肉瘤细胞株143B和MG63的生长和迁移作用。结果显示CCN1和CCN2可促进143B细胞的增殖和MG63细胞的迁移,而CCN3和CCN4对这些骨肉瘤细胞株的增殖和迁移没有明显的促进作用,甚至有轻微的抑制作用。考虑到我们在第一部分选择了CCN2(CTGF)做深入研究,在第二部分,我们同样选择CCN2(CTGF)做进一步深入研究,即体内实验。
     在第二节中,我们利用逆转录病毒感染和抗生素筛选的方法,制作了两种稳定整合和表达荧光素酶基因的骨肉瘤细胞株143B-Luc和MG63-Luc,并用荧光素活性测定实验体外测定了两个细胞株的功能。143B-Luc和MG63-Luc细胞的荧光素酶活性均超过1,000,000,而对照组143B和MG63细胞的荧光素酶活性均低于100。143B-Luc和MG63-Luc细胞株的成功构建为研究CTGF的体内功能奠定了基础。
     在第三节,我们检测了CTGF腺病毒直接感染对143B-Luc骨肉瘤细胞体内作用。143B-Luc细胞感染Ad-CTGF或Ad-GFP腺病毒18小时后,注射到裸鼠背部皮下,用Xenogen活体成像技术跟踪肿瘤的生长情况,注射后32天处死裸鼠,收获肿瘤。结果显示,CTGF组的肿瘤包块体积显著大于GFP对照组的包块体积,说明CTGF更够促进骨肉瘤细胞的体内生长。
     在第四节,我们利用iMEFs细胞作为CTGF基因的递送载体,检测了CTGF对MG63-Luc细胞的体内作用。iMEFs分别用Ad-CTGF或Ad-GFP感染18小时,感染后的iMEFs细胞与MG63-Luc细胞按照1:1的细胞比例混合,总细胞数为2×106,注射到裸鼠背部皮下。不与iMEFS细胞混合的单独的MG63-Luc细胞作为对照组。用Xenogen活体成像技术跟踪肿瘤的生长情况,注射后25天处死裸鼠,收获肿瘤包块。结果显示,iMEFs+CTGF组的肿瘤包块体积远远大于iMEFs+GFP对照组。iMEFs+GFP对照组与不与iMEFS细胞混合的单独的MG63-Luc细胞作为对照组相比,所得包块体积无明显差别。说明CTGF可促进骨肉瘤细胞的生长,且iMEFs细胞可作为有效的基因递送载体。
     总之,我们的研究结果显示,CTGF的结构域IV可对BMP9诱导的体内成骨有抑制作用,而结构域I可促进这种成骨。我们的研究结果还显示CTGF能促进骨肉瘤细胞的体内和体外增殖。另外,表达CTGF的iMEFs细胞显著地促进了骨肉瘤的体内生长,提示CTGF的功能与其所处的细胞外微环境密切相关。
     最终,我们的结果将为BMP9和CTGT缺失突变体促进成骨的临床应用,和CTGF作为治疗骨肉瘤靶点的临床应用提供参考。我们的结果也加深了对干细胞分化与增殖理论的认识。
The overall objective of this research is to study the effects of connective tissue growth factor (CTGF, also named as CCN2) on BMP9- induced osteogenesis and on osteosarcomas.
     The CCN proteins contain six members, namely CCN1 to CCN6, which are small secreted cysteine-rich proteins. The CCN proteins are modular proteins, containing up to four functional domains. Many of the CCN members are induced by growth factors, cytokines, or cellular stress. The CCNs show a wide and highly variable expression pattern in adult and in embryonic tissues. The CCN proteins can integrate and modulate the signals of integrins, BMPs, VEGF, Wnts, and Notch. The involvement of integrins in mediating CCN signaling may provide diverse context-dependent responses in distinct cell types.
     In this project, the most important CCN family members, CCN1, CCN2, CCN3 and CCN4, were evaluated in BMP9-induced osteogenesis and osteosarcomas. Of the two aspects, CCN2 (CTGF) showed significant effects both in the inhibition of the BMP9-induced bone formation and in the proliferation and migration of osteosarcoma cell line 143B. Thus, CTGF was chosen for more extensive study. To simplify the depiction, this study was divided into two parts.
     Part 1: The effect of CTGF on BMP9-induced osteogenesis.
     In Chapter 1, we isolated MEFs from mouse embryos, 12.5 to 13.5 days postcoitum. We then established immortalized MEFs (iMEFs) through the immortalization of these MEFs by integration of SV40 T gene mediated by retrovirus vector. The establishment of iMEFs greatly facilitated this study both on BMP9-induced osteogenesis and on osteosarcoma cell lines.
     In Chapter 2, we evaluated the effects of four CCN proteins, CCN1, 2, 3 and 4, on the BMP9-induced bone formation. Subconfluent iMEFs were co-infected with AdBMP9 and AdR-CCN1, Ad-CCN2, Ad-CCN3, Ad-CCN4, or, AdGFP adenoviruses and osteogeinc differentiation early marker alkaline phosphatase (ALP) activity was measured by quantitative colorimetric analysis at day 7. Results showed that CCN2 (CTGF) had the strongest inhibitory effect on BMP9-induced bone formation. These results promoted us to focus on CTGF for further study.
     Since CTGF is a mosaic protein that contains four modules, to further elucidate which module or modules contribute to this inhibitory function, terminal and internal deletions of CTGF were made in Chapter 3. Using molecular biology techniques, we did a series of cloning and finally generated six adenoviruses which could express CTGF full length, CTGFCD1 (no module IV), CTGFCD2 (no module III and IV), CTGFID1 (no module II), CTGFID2 (no module III), CTGFID3 (no module II and III). The presence of CTGF full length or CTGF deletions in these recombinated adenoviruses was confirmed by PCR, and the expression of these CTGF constructs was confirmed by Western blot with anti-Flag antibody, due to the fusion 3×Flag tag in these constructs. These CTGF full length and deletion mutant adenoviruses provided useful tools for dissecting the functional domains of CTGF in bone formation.
     In Chapter 4, we evaluated the effects of CTGF full length and its deletion mutants on the BMP9-induced bone formation in vitro. Subconfluent iMEFs were co-infected with AdBMP9 and AdR-CTGF, CTGFCD1, CTGFCD2, CTGFID1, CTGFID2, CTGFID3, or AdRFP adenoviruses and osteogeinc differentiation early marker alkaline phosphatase (ALP) activity was measured by ALP (histochemical) staining at day 7. Results showed that CTGF full length, CTGFCD1 and CTGFCD2 could inhibit BMP9-induced bone formation, while CTGFID1, CTGFID2, and CTGFID3 had a much more significant inhibitory effect.
     In Chapter 5, we evaluated the effects of CTGF full length and its deletion mutants on the BMP9-induced bone formation in vivo. BMP9+RFP or BMP9+CTGF mutants expressing iMEFs were implanted subcutaneously in nude mice. Ectopic osseous masses were retrieved at 6 weeks. Micro-CT, H & E staining, and Masson’s Trichrome staining were employed to inspect the general and detailed information of the retrieved bone masses. Results showed that compared with BMP9+RFP control, BMP+CTGFCD2 and BMP9+CTGFCD1 yielded much larger bone masses, while the bone masses of BMP+CTGFID1/2/3 are much smaller. BMP9+CTGF full length didn’t change the bone mass volume. Histological studies showed that CTGF deletions affect the BMP9-induced bone formation by the promotion or inhibition of iMEFs proliferation. However, CTGF and its deletions didn’t affect the BMP9-induced iMEFs differentiation. These results suggest that CTGF module IV inhibited the BMP9-induced bone formation, while module I may promote this effect.
     Part 2: The effect of CTGF on osteosarcoma. In Chapter 1, using crystal violet staining and wound healing assay, we studied the effects of CCN1, 2, 3, and 4 on osteosarcoma cell line 143B and MG63. Results showed that CCN1 and CCN2 promoted the proliferation of 143B cells and promoted the migration of MG63 cells, while CCN3 and CCN4 had no effect or only had slightly inhibitory effect on the proliferation and migration of these osteosarcoma cell lines. Considering we had focused on CCN2 (CTGF) for detailed study in Part One, we also chose CCN2 (CTGF) for further study in Part Two.
     In Chapter 2, we generated two osteosarcoma cell lines, 143B-Luc and MG63-Luc by retrovirus-mediated firefly luciferase gene integration. The constitutively express of luciferase of the two cell lines were confirmed by luciferase assay in vitro. The luciferase activities of 143B-Luc and MG63-Luc cells were more than 1,000,000, while the values of the controls, 143B and MG63 cells were lower than 100. The establishment of 143B-Luc and MG63-Luc provided a useful tool for our in vivo study of CTGF.
     In Chapter 3, we tested the effect of CTGF on 143B-Luc cells in vivo by direct CTGF adenovirus infection. 143B-Luc cells were infected with Ad-CTGF and Ad-GFP for 18 h, and injected subcutaneously into the back of nude mice. Injected mice were tracked by Xenogen imaging, and tumors were harvested at day 32. Results showed that the volumes of tumors of CTGF group were much larger than those of the GFP group, suggested that CTGF could promote the growth of osteosarcoma cells.
     In chapter 4, we tested the effect of CTGF on MG63-Luc cells in vivo, using iMEFs as CTGF gene delivery vehicle. iMEFs were infected with either Ad-CTGF or Ad-GFP for 18 h. Infected iMEFs were mixed with MG63-Luc (1:1 ratio), to a total number of 2×106, and injected subcutaneously into the back of nude mice. MG63-Luc cells, without mix with iMEFs, were injected as control. Injected mice were tracked by Xenogen imaging, and tumors were harvested at day 25. Results showed that the volumes of tumors of iMEFs+CTGF group were much larger than those of the iMEFs+GFP group. There is no significant difference between the iMEFs+GFP group and the MG63-Luc only group. It suggested CTGF promoted osteosarcoma cell growth, and iMEFs was a good gene delivery vector.
     In summary, our studies demonstrated that Module IV could exert an inhibitory effect on the BMP9-induced osteogenesis in vivo, while Module I could promote the bone formation. Our study also demonstrated that CTGF could promote the proliferation of osteosarcoma cell line both in vitro and in vivo. In addition, iMEFs expressing CTGF dramatically increased tumor volume in vivo, indicated that CTGF function was closely related to the context or microenviroment.
     Ultimately, our results could offer the reference for the clinical use of BMP9 combined with CTGF deletions in bone formation, and the use of CTGF as a therapeutic target for osteosarcomas. Our results also enhanced the theory of stem cell differentiation v.s, proliferation.
引文
1. Zuo GW, Kohls CD, He BC, et al. The CCN proteins: important signaling mediators in stem cell differentiation and tumorigenesis [J]. Histol Histopathol. 2010, 25(6):795-806.
    2. Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins [J]. Int J Biochem Cell Biol. 2009, 41(4):771-783.
    3. Riser BL, Najmabadi F, Perbal B, et al. CCN3/CCN2 regulation and the fibrosis of diabetic renal disease [J]. J Cell Commun Signal. 2010, 4(1):39-50.
    4. Leask A. Yin and Yang: CCN3 inhibits the pro-fibrotic effects of CCN2 [J]. J Cell Commun Signal. 2009, 3(2):161-162.
    5. Dhar A, Ray A. The CCN family proteins in carcinogenesis [J]. Exp Oncol. 2010, 32(1):2-9.
    6. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor [J]. FEBS Lett. 1993, 327(2):125-130.
    7. Brigstock DR, Goldschmeding R, Katsube KI, et al. Proposal for a unified CCN nomenclature [J]. Mol Pathol. 2003, 56(2):127-128.
    8. Pennica D, Swanson TA, Welsh JW, et al. WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors [J]. Proc Natl Acad Sci U S A. 1998, 95(25):14717-14722.
    9. Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection [J]. Exp Cell Res. 1999, 248(1):44-57.
    10. Brigstock DR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family [J]. Endocr Rev. 1999, 20(2):189-206.
    11. Perbal B. The CCN family of genes: a brief history [J]. Mol Pathol. 2001, 54(2): 103-104.
    12. Perbal B. CCN proteins: multifunctional signalling regulators [J]. Lancet. 2004,363(9402):62-64.
    13. Brigstock DR. The CCN family: a new stimulus package [J]. J Endocrinol. 2003, 178(2):169-175.
    14. Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment [J]. J Mol Biol. 2000, 302(1):205-217.
    15. Holbourn KP, Perbal B, Ravi Acharya K. Proteins on the catwalk: modelling the structural domains of the CCN family of proteins [J]. J Cell Commun Signal. 2009, 3(1):25-41.
    16. Wolf N, Yang W, Dunk CE, et al. Regulation of the Matricellular Proteins CYR61 (CCN1) and NOV (CCN3) by Hypoxia-Inducible Factor-1{alpha} and Transforming-Growth Factor-{beta}3 in the Human Trophoblast [J]. Endocrinology. 2010, Mar 17. [Epub ahead of print]
    17. Nishida T, Kondo S, Maeda A, et al. CCN family 2/connective tissue growth factor (CCN2/CTGF) regulates the expression of Vegf through Hif-1alpha expression in a chondrocytic cell line, HCS-2/8, under hypoxic condition [J]. Bone. 2009, 44(1): 24-31.
    18. Quan T, Qin Z, Xu Y, et al. Ultraviolet Irradiation Induces CYR61/CCN1, a Mediator of Collagen Homeostasis, through Activation of Transcription Factor AP-1 in Human Skin Fibroblasts [J]. J Invest Dermatol. 2010, Feb 18. [Epub ahead of print]
    19. Nishida T, Maeda A, Kubota S, et al. Role of mechanical-stress inducible protein Hcs24/CTGF/CCN2 in cartilage growth and regeneration: mechanical stress induces expression of Hcs24/CTGF/CCN2 in a human chondrocytic cell line HCS-2/8, rabbit costal chondrocytes and meniscus tissue cells [J]. Biorheology. 2008, 45(3-4): 289-299.
    20. Luo Q, Kang Q, Si W, et al. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells [J]. J Biol Chem. 2004, 279(53):55958-55968.
    21. Brigstock DR. Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61) [J]. Angiogenesis. 2002, 5(3):153-165.
    22. Davies SR, Davies ML, Sanders A, et al. Differential expression of the CCN family member WISP-1, WISP-2 and WISP-3 in human colorectal cancer and the prognostic implications [J]. Int J Oncol. 2010, 36(5):1129-1136.
    23. Abe J, Yan C. CCN notch signaling in vascular smooth muscle cells: good or bad? [J]. Arterioscler Thromb Vasc Biol. 2010, 30(4):667-668.
    24. Minamizato T, Sakamoto K, Liu T, et al. CCN3/NOV inhibits BMP-2-induced osteoblast differentiation by interacting with BMP and Notch signaling pathways [J]. Biochem Biophys Res Commun. 2007, 354(2):567-573.
    1. Olsen BR, Reginato AM, Wang W. Bone development [J]. Annu Rev Cell Dev Biol. 2000, 16:191-220.
    2. Deng ZL, Sharff KA, Tang N, et al. Regulation of osteogenic differentiation during skeletal development [J]. Front Biosci. 2008, 13:2001-2021.
    3. Shi Y, MassaguéJ. Mechanisms of TGF-beta signaling from cell membrane to the nucleus [J]. Cell. 2003, 113(6):685-700.
    4. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily [J]. Science. 2002, 296(5573):1646-1647.
    5. Luu HH, Song WX, Luo X, et al. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells [J]. J Orthop Res. 2007, 25(5):665-677.
    6. Varga AC, Wrana JL. The disparate role of BMP in stem cell biology [J]. Oncogene. 2005, 24(37):5713-5721.
    7. Zhang J, Li L. BMP signaling and stem cell regulation [J]. Dev Biol. 2005, 284(1):1-11.
    8. Hogan BL. Bone morphogenetic proteins: multifunctional regulators of vertebratedevelopment [J]. Genes Dev. 1996, 10(13):1580-1594.
    9. Zhao GQ. Consequences of knocking out BMP signaling in the mouse [J]. Genesis. 2003, 35(1):43-56.
    10. Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs) [J]. J Bone Joint Surg Am. 2003, 85-A(8):1544-1552.
    11. Kang Q, Sun MH, Cheng H, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery [J]. Gene Ther. 2004, 11(17):1312-1320.
    12. Peng Y, Kang Q, Cheng H, et al. Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling [J]. J Cell Biochem. 2003, 90(6):1149-1165.
    13. Peng Y, Kang Q, Luo Q, et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells [J]. J Biol Chem. 2004, 279(31): 32941-32949.
    14. Luo Q, Kang Q, Si W, et al. Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells [J]. J Biol Chem. 2004, 279(53):55958-55968.
    15. Sharff KA, Song WX, Luo X, et al. Hey1 basic helix-loop-helix protein plays an important role in mediating BMP9-induced osteogenic differentiation of mesenchymal progenitor cells [J]. J Biol Chem. 2009, 284(1):649-659.
    16. Song JJ, Celeste AJ, Kong FM, et al. Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation [J]. Endocrinology. 1995, 136(10):4293-4297.
    17. López-Coviella I, Berse B, Krauss R, et al. Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9 [J]. Science. 2000, 289(5477):313-316.
    18. Chen C, Grzegorzewski KJ, Barash S, et al. An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis [J]. Nat Biotechnol. 2003, 21(3):294-301.
    19. Truksa J, Peng H, Lee P, et al. Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6 [J]. Proc Natl Acad Sci U S A. 2006, 103(27):10289-10293.
    20. Brigstock DR, Goldschmeding R, Katsube KI, et al. Proposal for a unified CCN nomenclature [J]. Mol Pathol. 2003, 56(2):127-128.
    21. Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins [J]. Int J Biochem Cell Biol. 2009, 41(4):771-783.
    1. Skottman H, Hovatta O. Culture conditions for human embryonic stem cells [J].Reproduction. 2006, 132(5):691-698.
    2. Steinman HA, Sluss HK, Sands AT, et al. 2004. Absence of p21 partially rescues Mdm4 loss and uncovers an antiproliferative effect of Mdm4 on cell growth [J]. Oncogene 23:303–306.
    3. Lengner CJ, Lepper C, van Wijnen AJ, et al. Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation [J]. J Cell Physiol. 2004, 200(3):327-333.
    4. Rosen ED. The transcriptional basis of adipocyte development [J]. Prostaglandins Leukot Essent Fatty Acids. 2005, 73(1):31-34.
    5. Welstead GG, Brambrink T, Jaenisch R. Generating iPS cells from MEFS through forced expression of Sox-2, Oct-4, c-Myc, and Klf4. J Vis Exp. 2008, (14). pii: 734. doi: 10.3791/734.
    6. Espejel S, Blasco MA. 2002. Identification of telomere-dependent“senescence-like’’arrest in mouse embryonic fibroblasts [J]. Exp Cell Res 276:242–248.
    7. Rossi O, Barbieri O, Frosina G. 2003. Time-course of spontaneous transformation of CD-1 mouse embryonic fibroblasts [J]. Anticancer Res 23:1373–1377.
    8. Xu J. Preparation, culture, and immortalization of mouse embryonic fibroblasts [J]. Curr Protoc Mol Biol. 2005, Chapter 28:Unit 28.1.
    9. Zhu JY, Abate M, Rice PW, et al. The ability of simian virus 40 large T antigen to immortalize primary mouse embryo fibroblasts cosegregates with its ability to bind to p53 [J]. J Virol. 1991, 65(12):6872-6880.
    10. Westerman KA, Leboulch P. Reversible immortalization of mammalian cells mediated by retroviral transfer and sitespecific recombination [J]. Proc Natl Acad Sci USA. 1996, 93: 8971–8976.
    1. Sharff KA, Song WX, Luo X, et al. Hey1 basic helix-loop-helix protein plays an important role in mediating BMP9-induced osteogenic differentiation of mesenchymal progenitor cells [J]. J Biol Chem. 2009, 284(1):649-659.
    2. Kang Q, Song WX, Luo Q, et al. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells [J]. Stem Cells Dev. 2009, 18(4):545-559.
    3. Si W, Kang Q, Luu HH, et al. CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells [J]. Mol Cell Biol. 2006, 26(8):2955-2964.
    4. He TC. Distinct osteogenic activity of BMPs and their orthopaedic applications [J]. Musculoskelet Neuronal Interact. 2005, 5(4):363-366.
    1. Fukazawa T, Matsuoka J, Yamatsuji T, et al. Adenovirus-mediated cancer gene therapy and virotherapy (Review) [J]. Int J Mol Med. 2010, 25(1):3-10.
    2. Shao L, Wu WS. Gene-delivery systems for iPS cell generation [J]. Expert Opin Biol Ther. 2010, 10(2):231-242.
    3. Kranzler J, Tyler MA, Sonabend AM, et al. Stem cells as delivery vehicles for oncolytic adenoviral virotherapy [J]. Curr Gene Ther. 2009, 9(5):389-395.
    4. Wirth T, Samaranayake H, Pikkarainen J, et al. Clinical trials for glioblastoma multiforme using adenoviral vectors [J]. Curr Opin Mol Ther. 2009, 11(5):485-492.
    5. Barry MA, Hofherr SE, Chen CY, et al. Systemic delivery of therapeutic viruses [J]. Curr Opin Mol Ther. 2009, 11(4):411-420.
    6. He TC, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adenoviruses [J]. Proc Natl Acad Sci U S A. 1998, 95(5):2509-2514.
    7. Luo J, Deng ZL, Luo X, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system [J]. Nat Protoc. 2007, 2(5):1236-1247.
    1. Vorwerk P, Hohmann B, Oh Y, et al. Binding properties of insulin-like growth factor binding protein-3 (IGFBP-3), IGFBP-3 N- and C-terminal fragments, and structurally related proteins mac25 and connective tissue growth factor measured using a biosensor [J]. Endocrinology. 2002, 143(5):1677-1685.
    2. Desnoyers L. Structural basis and therapeutic implication of the interaction of CCN proteins with glycoconjugates [J]. Curr Pharm Des. 2004, 10(31):3913-3928.
    3. Bork P. The modular architecture of a new family of growth regulators related to connective tissue growth factor [J]. FEBS Lett. 1993, 327(2):125-130.
    1. Baird GS, Zacharias DA, Tsien RY. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral [J]. Proc Natl Acad Sci U S A. 2000,97(22):11984-11989.
    2. Zagorchev L, Oses P, Zhuang ZW, et al. Micro computed tomography for vascular exploration [J]. J Angiogenes Res. 2010, 2:7.
    3. Young S, Kretlow JD, Nguyen C, et al. Microcomputed tomography characterization of neovascularization in bone tissue engineering applications [J]. Tissue Eng Part B Rev. 2008, 14(3):295-306.
    4. Cowan CM, Aghaloo T, Chou YF, et al. MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects [J]. Tissue Eng. 2007, 13(3):501-512.
    5. Hedberg EL, Kroese-Deutman HC, Shih CK, et al. Methods: a comparative analysis of radiography, microcomputed tomography, and histology for bone tissue engineering [J]. Tissue Eng. 2005, 11(9-10):1356-1367.
    6. Kaigler D, Wang Z, Horger K, et al. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects [J]. J Bone Miner Res. 2006, 21(5):735-744.
    7. Kim SJ, Jang JD, Lee SK. Treatment of long tubular bone defect of rabbit using autologous cultured osteoblasts mixed with fibrin [J]. Cytotechnology. 2007, 54(2):115-120.
    8. Cui Y, Liu Y, Cui Y, et al. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair [J]. Acta Biomater. 2009, 5(7):2680-2692.
    9. Yang YL, Liu YS, Chuang LY, et al. Bone morphogenetic protein-2 antagonizes renal interstitial fibrosis by promoting catabolism of type I transforming growth factor-beta receptors [J]. Endocrinology. 2009, 150(2):727-740.
    1. Damron TA, Ward WG, Stewart A. Osteosarcoma, chondrosarcoma, and Ewing's sarcoma: National Cancer Data Base Report [J]. Clin Orthop Relat Res. 2007, 459: 40-47.
    2. Dorfman HA, Czerniak B. Bone Cancers. Cancer supplement [J]. 1995, 75(1): 203–210.
    3. Gibbs CP Jr, Weber K, Scarborough MT. Malignant bone tumors [J]. Instr Course Lect. 2002, 51:413-428.
    4. KramárováE, Stiller CA. The international classification of childhood cancer [J]. Int J Cancer. 1996, 68(6):759-765.
    5. Fletcher CDM, Unni KK. Pathology and genetics of soft tissue and bone. Lyon, France: IARC Press; 2002. World Health Organization classification of tumours.
    6. Marcove RC, Heelan RT, Huvos AG, et al. Osteoid osteoma. Diagnosis, localization, and treatment [J]. Clin Orthop Relat Res. 1991, (267):197-201.
    7. Bloom D. Congenital telangiectatic erythema resembling lupus erythematosus in dwarfs; probably a syndrome entity [J]. AMA Am J Dis Child. 1954, 88(6):754-758.
    8. Li FP, Fraumeni JF Jr, Mulvihill JJ, et al. A cancer family syndrome in twenty-four kindreds [J]. Cancer Res. 1988, 48(18):5358-62.
    9. Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis [J]. Nat Rev Cancer. 2002, (4):277-288.
    10. Lafleur EA, Koshkina NV, Stewart J, et al. Increased Fas expression reduces the metastatic potential of human osteosarcoma cells [J]. Clin Cancer Res. 2004, 10(23):8114-8119.
    11. Horowitz JM, Park SH, Bogenmann E, et al. Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells [J]. Proc Natl Acad Sci U S A. 1990, 87(7):2775-2779.
    12. Hansen MF, Koufos A, Gallie BL, et al. Osteosarcoma and retinoblastoma: a sharedchromosomal mechanism revealing recessive predisposition [J]. Proc Natl Acad Sci U S A. 1985, 82(18):6216-6220.
    13. Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins [J]. Int J Biochem Cell Biol. 2009, 41(4):771-783.
    14. Kikuchi R, Tsuda H, Kanai Y, et al. Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer [J]. Cancer Res. 2007, 67(15):7095-7105.
    15. Bennewith KL, Huang X, Ham CM, et al. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth [J]. Cancer Res. 2009, 69(3):775-784.
    16. Jiang WG, Watkins G, Fodstad O, et al. Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer [J]. Endocr Relat Cancer. 2004, 11(4):781-791.
    17. Shakunaga T, Ozaki T, Ohara N, et al. Expression of connective tissue growth factor in cartilaginous tumors [J]. Cancer. 2000, 89(7):1466-1473.
    18. Rubenstein J, Shen A, Haqq C, et al. Connective tissue growth factor is expressed in malignant astrocytic tumors and is involved in cell-cycle regulation [J]. Mol. Pathol. 2003, 56, 72.
    1. Eckhardt A, Müller P, Hiller KA, et al. Influence of TEGDMA on the mammalian cell cycle in comparison with chemotherapeutic agents [J]. Dent Mater. 2010, 26(3): 232-241.
    2. Engel JB, Sch?nhals T, H?usler S, et al. Induction of programmed cell death by inhibition of AKT with the alkylphosphocholine perifosine in in vitro models of platinum sensitive and resistant ovarian cancers [J]. Arch Gynecol Obstet. 2010 Apr 20. [Epub ahead of print]
    3. Cao X, Liu M, Tuo J, et al. The effects of quercetin in cultured human RPE cells under oxidative stress and in Ccl2/Cx3cr1 double deficient mice [J]. Exp Eye Res. 2010 Mar 31. [Epub ahead of print]
    4. Wang X, Nagase H, Watanabe T, et al. Inhibition of MMP-9 transcription and suppression of tumor metastasis by pyrrole-imidazole polyamide [J]. Cancer Sci. 2010, 101(3):759-766.
    5. Dasari VR, Kaur K, Velpula KK, et al. Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway [J]. PLoS One. 2010 Apr 26;5(4):e10350.
    6. Wu KJ, Zeng J, Zhu GD, et al. Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression [J]. Acta Pharmacol Sin. 2009, 30(8):1162-1168.
    1. Gambhir SS. Molecular imaging of cancer with positron emission tomography [J]. Nat Rev Cancer 2002; 2(9): 683–693.
    2. Contag PR. Whole-animal cellular and molecular imaging to accelerate drug development [J]. Drug Discov Today. 2002, 7(10): 555-562.
    3. Weissleder R. Scaling down imaging: Molecular mapping of cancer in mice [J]. Nat Rev Cancer. 2002, 2(1): 11–18.
    4. Adams JY, Johnson M, Sato M, et al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging [J]. Nat Med. 2002, 8(8): 891–897.
    5. Contag CH, Jenkins D, Contag PR, et al. Use of reporter genes for optical measurements of neoplastic disease in vivo [J]. Neoplasia. 2000, 2(1-2): 41–52.
    6. Edinger M, Cao YA, Hornig YS, et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging [J]. Eur J Cancer. 2002, 38(16): 2128–2136.
    7. Laxman B, Hall DE, Bhojani MS, et al. Noninvasive real-time imaging of apoptosis [J]. Proc Natl Acad Sci USA. 2002, 99(26): 16551–16555.
    8. Rehemtulla A, Stegman LD, Cardozo SJ, et al. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging [J]. Neoplasia. 2000, 2(6): 491–495.
    9. Vooijs M, Jonkers J, Lyons S, Berns A. Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice [J]. Cancer Res. 2002, 62(6): 1862–1867.
    10. Rehemtulla A, Stegman LD, Cardozo SJ, et al. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging [J]. Neoplasia. 2000, 2(6): 491–495.
    11. Davis HE, Rosinski M, Morgan JR, et al. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation [J]. Biophys J. 2004, 86(2):1234-1242.
    1. Weissleder R. Scaling down imaging: Molecular mapping of cancer in mice [J]. Nat Rev Cancer. 2002, 2:11–18.
    2. Scatena CD, Hepner MA, Oei YA, et al. Imaging of bioluminescent LNCaP-luc-M6 Tumors: A new animal model for the study of metastatic human prostate cancer [J]. Prostate. 2004, 59(3): 292–303.
    3. Perbal B. NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues [J]. Mol Pathol. 2001, 54(2):57-79.
    4. Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection [J]. Exp Cell Res. 1999, 248(1):44-57.
    5. Chang CC, Lin MT, Lin BR, et al. Effect of connective tissue growth factor on hypoxia-inducible factor 1alpha degradation and tumor angiogenesis [J]. J Natl Cancer Inst. 2006, 98(14):984-995.
    6. Deng YZ, Chen PP, Wang Y, et al. Connective tissue growth factor is overexpressed in esophageal squamous cell carcinoma and promotes tumorigenicity through beta-catenin-T-cell factor/Lef signaling [J]. J Biol Chem. 2007, 282(50):36571-81.
    7. Babic AM, Chen CC, Lau LF. Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo [J]. Mol Cell Biol. 1999, 19(4):2958-2966.
    8. Dornh?fer N, Spong S, Bennewith K, et al. Connective tissue growth factor-specific monoclonal antibody therapy inhibits pancreatic tumor growth and metastasis [J]. Cancer Res. 2006, 66(11):5816-5827.
    9. Shimo T, Kubota S, Yoshioka N, et al. Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer [J]. J Bone Miner Res. 2006, 21(7):1045-1059.
    10. Chien W, Yin D, Gui D, et al. Suppression of cell proliferation and signaling transduction by connective tissue growth factor in non-small cell lung cancer cells [J]. Mol Cancer Res. 2006, 4(8):591-598.
    1. Schleef M, Blaesen M. Production of plasmid DNA as a pharmaceutical [J]. Methods Mol Biol. 2009, 542:471-495.
    2. Wells DJ. Gene therapy progress and prospects: electroporation and other physical methods [J]. Gene Ther. 2004, 11(18):1363-1369.
    3. Lundstrom K. Latest development in viral vectors for gene therapy [J]. Trends Biotechnol. 2003, 21:117–122.
    4. Seth P. Vector-mediated cancer gene therapy: an overview [J]. Cancer Biol Ther. 2005, 4:512–517.
    5. Nair V. Retrovirus-induced oncogenesis and safety of retroviral vectors [J]. Curr Opin Mol Ther. 2008, 10(5):431-438.
    6. Heilbronn R, Weger S. Viral vectors for gene transfer: current status of gene therapeutics [J]. Handb Exp Pharmacol. 2010, (197):143-170.
    7. Pauwels K, Gijsbers R, Toelen J, et al. State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations [J]. Curr Gene Ther. 2009, 9(6):459-474.
    8. He TC, Zhou S, da Costa LT, et al. A simplified system for generating recombinant adenoviruses [J]. Proc Natl Acad Sci U S A. 1998, 95(5):2509-2514.
    9. Luo J, Deng ZL, Luo X, et al. A protocol for rapid generation of recombinantadenoviruses using the AdEasy system [J]. Nat Protoc. 2007, 2(5):1236-1247.
    10. Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer [J]. Nat Rev Cancer. 2004, 4(11):839-849.
    11. Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis [J]. Nature. 2007, 449(7162):557-563.
    12. Mitsiades CS, Mitsiades N, Munshi NC, et al. Focus on multiple myeloma [J]. Cancer Cell. 2004, 6(5):439-444.
    13. Grigorieva I, Thomas X, Epstein J. The bone marrow stromal environment is a major factor in myeloma cell resistance to dexamethasone [J]. Exp Hematol. 1998, 26(7):597-603.
    14. Mitsiades CS, Mitsiades N, Munshi NC, et al. Focus on multiple myeloma [J]. Cancer Cell. 2004, 6(5):439-444.
    15. Hurt EM, Wiestner A, Rosenwald A, et al. Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma [J]. Cancer Cell. 2004, 5(2):191-199.
    16. Xin H, Kanehira M, Mizuguchi H, et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells [J]. Stem Cells. 2007, 25(7):1618-1626.
    17. Loebinger MR, Eddaoudi A, Davies D, et al. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer [J]. Cancer Res. 2009, 69(10):4134-4142.
    18. Duan X, Guan H, Cao Y, Kleinerman ES. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors [J]. Cancer. 2009, 115(1):13-22.
    19. Lengner CJ, Lepper C, van Wijnen AJ, et al. Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation [J]. J Cell Physiol. 2004, 200(3):327-333.
    20. Parameswaran R, Morad V, Laronne A, et al. Targeting the bone marrow with activin A-overexpressing embryonic multipotent stromal cells specifically modifies B lymphopoiesis [J]. Stem Cells Dev. 2008, 17(1):93-106.
    21. Pedemonte E, Benvenuto F, Casazza S, et al. The molecular signature of therapeutic mesenchymal stem cells exposes the architecture of the hematopoietic stem cell niche synapse [J]. BMC Genomics. 2007, 8:65.
    Abreu JG, Ketpura NI, Reversade B, et al. (2002). Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat. Cell Biol. 4, 599-604.
    Babic AM, Chen CC and Lau LF (1999). Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol. Cell. Biol. 19, 2958-2966.
    Babic AM, Kireeva ML, Kolesnikova TV, et al. (1998). CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc. Natl. Acad. Sci. U. S. A. 95, 6355-6360.
    Baguma-Nibasheka M and Kablar B. (2008). Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse. Dev. Dyn. 237, 485-493.
    Banerjee S, Dhar G, Haque I, et al. (2008). CCN5/WISP-2 expression in breast adenocarcinoma is associated with less frequent progression of the disease and suppresses the invasive phenotypes of tumor cells. Cancer Res. 68, 7606-7612.
    Benini S, Perbal B, Zambelli D, et al. (2005). In Ewing's sarcoma CCN3(NOV) inhibits proliferation while promoting migration and invasion of the same cell type. Oncogene 24, 4349-4361.
    Bennewith KL, Huang X, Ham CM, et al. (2009). The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth. Cancer Res. 69, 775-784.
    Bork P. (1993). The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS. Lett. 327, 125-130.
    Brigstock DR. (1999). The Connective Tissue Growth Factor/Cysteine-Rich 61/Nephroblastoma Overexpressed (CCN) Family. Endocrine Reviews 20, 189-206.
    Brigstock DR, Goldschmeding R, Katsube KI, et al. (2003). Proposal for a unified CCN nomenclature. Mol. Pathol. 56, 127-128.
    Cervello M, Giannitrapani L, Labbozzetta M, et al. (2004). Expression of WISPs and oftheir novel alternative variants in human hepatocellular carcinoma cells. Ann. N. Y. Acad. Sci. 1028, 432-439.
    Chen CC, Chen N, and Lau LF. (2001). The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J. Biol. Chem. 276, 10443-10452.
    Chen CC, and Lau LF (2009). Functions and mechanisms of action of CCN matricellular proteins. Int. J. Biochem. Cell Biol. 41, 771-783.
    Chen PP, Li WJ, Wang Y, et al. (2007). Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS One 2, e534.
    Chiou MJ, Chao TT, Wu JL, et al. (2006). The physiological role of CTGF/CCN2 in zebrafish notochond development and biological analysis of the proximal promoter region. Biochem. Biophys. Res. Commun. 349, 750-758.
    Cui RR, Huang J, Yi L, et al. (2007). WISP3 suppresses insulin-like growth factor signaling in human chondrocytes. Mol. Cell. Endocrinol. 279, 1-8.
    Davies SR, Watkins G, Mansel RE, et al. (2007). Differential expression and prognostic implications of the CCN family members WISP-1, WISP-2, and WISP-3 in human breast cancer. Ann. Surg. Oncol. 14, 1909-1918.
    Deng ZL, Sharff KA, Tang N, et al. (2008). Regulation of osteogenic differentiation during skeletal development. Front. Biosci. 13, 2001-2021.
    Desnoyers L. (2004). Structural Basis and Therapeutic Implication of the Interaction of CCN Proteins with Glycoconjugates. Curr. Pharm. Des. 10, 3913-3928.
    Dhar G, Banerjee S, Dhar K, et al. (2008). Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2. Cancer Res. 68, 4580-4587.
    Dhar G, Mehta S, Banerjee S, et al. (2007). Loss of WISP-2/CCN5 signaling in human pancreatic cancer: a potential mechanism for epithelial-mesenchymal-transition. Cancer Lett. 254, 63-70.
    Dhar K, Banerjee S, Dhar G, et al. (2007). Insulin-like growth factor-1 (IGF-1) induces WISP-2/CCN5 via multiple molecular cross-talks and is essential for mitogenic switch by IGF-1 axis in estrogen receptor-positive breast tumor cells. Cancer Res. 67, 1520-1526.
    Bradham DM, Igarashi A, Potter RL, et al. (1991). Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to theSRC-induced immediate early gene product CEF-10. J. Cell Biol. 114:1285-1294.
    Erwin WM. (2008). The Notochord, Notochordal cell and CTGF/CCN-2: ongoing activity from development through maturation. J. Cell Commun. Signal. 2, 59-65.
    French DM, Kaul RJ, D'Souza AL, et al. (2004). WISP-1 is an osteoblastic regulator expressed during skeletal development and fracture repair. Am. J. Pathol. 165, 855-867.
    Fritah A, Saucier C, De Wever O, et al. (2008). Role of WISP-2/CCN5 in the maintenance of a differentiated and noninvasive phenotype in human breast cancer cells. Mol. Cell. Biol. 28, 1114-1123.
    Gao R and Brigstock DR. (2003). Low density lipoprotein receptor-related protein (LRP) is a heparin-dependent adhesion receptor for connective tissue growth factor (CTGF) in rat activated hepatic stellate cells. Hepatol. Res. 27, 214-220.
    Glukhova L, Angevin E, Lavialle C, et al. (2001). Patterns of specific genomic alterations associated with poor prognosis in high-grade renal cell carcinomas. Cancer Genet. Cytogenet. 130, 105-110.
    Gray MR, Malmquist JA, Sullivan M, et al. (2007). CCN5 Expression in mammals. II. Adult rodent tissues. J. Cell Commun. Signal. 1, 145-158.
    Gupta N, Wang H, McLeod TL, et al. (2001). Inhibition of glioma cell growth and tumorigenic potential by CCN3 (NOV). Mol. Pathol. 54, 293-299.
    Gupta R, Hong D, Iborra F, et al. (2007). NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science 316, 590-593.
    Hashimoto Y, Shindo-Okada N, Tani M, et al. (1998). Expression of the Elm1 gene, a novel gene of the CCN (connective tissue growth factor, Cyr61/Cef10, and neuroblastoma overexpressed gene) family, suppresses In vivo tumor growth and metastasis of K-1735 murine melanoma cells. J. Exp. Med. 187, 289-296.
    Hashimoto Y, Shindo-Okada N, Tani M, et al. (1996). Identification of genes differentially expressed in association with metastatic potential of K-1735 murine melanoma by messenger RNA differential display. Cancer Res. 56, 5266-5271.
    Heath E, Tahri D, Andermarcher E, et al. (2008). Abnormal skeletal and cardiac development, cardiomyopathy, muscle atrophy and cataracts in mice with a targeted disruption of the Nov (Ccn3) gene. BMC. Dev. Biol. 8, 18.
    Hirschfeld M, zur Hausen A, Bettendorf H, et al. (2009). Alternative splicing of Cyr61 isregulated by hypoxia and significantly changed in breast cancer. Cancer Res. 69, 2082-2090.
    Holbourn KP, Acharya KR and Perbal B. (2008). The CCN family of proteins: structure-function relationships. Trends Biochem. Sci. 33, 461-473.
    Holloway SE, Beck AW, Girard L, et al. (2005). Increased expression of Cyr61 (CCN1) identified in peritoneal metastases from human pancreatic cancer. J. Am. Coll. Surg. 200, 371-377.
    Huang W, Zhang Y, Varambally S, et al. (2008). Inhibition of CCN6 (Wnt-1-induced signaling protein 3) down-regulates E-cadherin in the breast epithelium through induction of snail and ZEB1. Am. J. Pathol. 172, 893-904.
    Hurvitz JR, Suwairi WM, Van Hul W, et al. (1999). Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nat. Genet. 23, 94-98.
    Ihn H. (2002). The role of TGF-beta signaling in the pathogenesis of fibrosis in scleroderma. Arch. Immunol. Ther. Exp. (Warsz) 50, 325-331.
    Inadera H, Shimomura A, and Tachibana S. (2009). Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation. Biochem. Biophys. Res. Commun. 379, 969-974.
    Inkson CA, Ono M, Kuznetsov SA, et al. (2008). TGF-beta1 and WISP-1/CCN-4 can regulate each other's activity to cooperatively control osteoblast function. J. Cell. Biochem. 104, 1865-1878.
    Ivkovic S, Yoon BS, Popoff SN, et al. (2003). Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130, 2779-2791.
    Jiang WG, Watkins G, Fodstad O, et al. (2004). Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr. Relat. Cancer 11, 781-791.
    Joliot V, Martinerie C, Dambrine G, et al. (1992). Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Mol. Cell. Biol. 12, 10-21.
    Jones JA, Gray MR, Oliveira BE, et al. (2007). CCN5 expression in mammals : I. Embryonic and fetal tissues of mouse and human. J. Cell Commun. Signal. 1, 127-143.
    Juric V, Chen CC, and Lau LF. (2009). Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol. Cell. Biol. 29, 3266-3279.
    Kang Y, Siegel PM, Shu W, et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537-549.
    Katsube K, Sakamoto K, Tamamura Y, et al. (2009). Role of CCN, a vertebrate specific gene family, in development. Dev. Growth Differ. 51, 55-67.
    Katsuki Y, Sakamoto K, Minamizato T, et al. (2008). Inhibitory effect of CT domain of CCN3/NOV on proliferation and differentiation of osteogenic mesenchymal stem cells, Kusa-A1. Biochem. Biophys. Res. Commun. 368, 808-814.
    Kawaki H, Kubota S, Suzuki A, et al. (2008). Cooperative regulation of chondrocyte differentiation by CCN2 and CCN3 shown by a comprehensive analysis of the CCN family proteins in cartilage. J. Bone Miner. Res. 23, 1751-1764.
    Kennedy L, Liu S, Shi-Wen X, et al. (2007). CCN2 is necessary for the function of mouse embryonic fibroblasts. Exp. Cell Res. 313, 952-964.
    Kikuchi R, Tsuda H, Kanai Y, et al. (2007). Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer. Cancer Res. 67, 7095-7105.
    Kireeva ML, Lam SC, and Lau LF. (1998). Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J. Biol. Chem. 273, 3090-3096.
    Kleer CG, Zhang Y, Pan Q, et al. (2004). WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia 6, 179-185.
    Kouzu Y, Uzawa K, Kato M, et al. (2006). WISP-2 expression in human salivary gland tumors. Int. J. Mol. Med. 17, 567-573.
    Krishnan V, Bryant HU, and Macdougald OA. (2006). Regulation of bone mass by Wnt signaling. J. Clin. Invest. 116, 1202-1209.
    Kubota S, and Takigawa M. (2007). CCN family proteins and angiogenesis: from embryo to adulthood. Angiogenesis 10, 1-11.
    Kutz WE, Gong Y, and Warman ML. (2005). WISP3, the gene responsible for the human skeletal disease progressive pseudorheumatoid dysplasia, is not essential for skeletal function in mice. Mol. Cell. Biol. 25, 414-421.
    Lake AC, Bialik A, Walsh K, et al. (2003). CCN5 is a growth arrest-specific gene that regulates smooth muscle cell proliferation and motility. Am. J. Pathol. 162, 219-231.
    Lake AC, and Castellot J.J.Jr. (2003). CCN5 modulates the antiproliferative effect of heparin and regulates cell motility in vascular smooth muscle cells. Cell Commun. Signal. 1, 5.
    Latinkic BV, Mercurio S, Bennett B, et al. (2003). Xenopus Cyr61 regulates gastrulation movements and modulates Wnt signalling. Development 130, 2429-2441.
    Lau LF, and Lam SC. (1999). The CCN family of angiogenic regulators: the integrin connection. Exp. Cell Res. 248, 44-57.
    Leu SJ, Chen N, Chen CC, et al. (2004). Targeted mutagenesis of the angiogenic protein CCN1 (CYR61). Selective inactivation of integrin alpha6beta1-heparan sulfate proteoglycan coreceptor-mediated cellular functions. J. Biol. Chem. 279, 44177-44187.
    Lin CG, Leu SJ, Chen N, et al. (2003). CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family. J. Biol. Chem. 278, 24200-24208.
    Luo J, Chen J, Deng ZL, et al. (2007). Wnt signaling and human diseases: what are the therapeutic implications? Lab. Invest. 87, 97-103.
    Luo Q, Kang Q, Si W, et al. (2004). Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J. Biol. Chem. 279, 55958-55968.
    Lv H, Fan E, Sun S, et al. (2009). Cyr61 is up-regulated in prostate cancer and associated with the p53 gene status. J. Cell. Biochem. 106, 738-744.
    Maeda A, Nishida T, Aoyama E, et al. (2009), CCN family 2/connective tissue growth factor modulates BMP signalling as a signal conductor, which action regulates the proliferation and differentiation of chondrocytes. J. Biochem. 145, 207-216.
    Maillard M, Cadot B, Ball RY, et al. (2001). Differential expression of the ccn3 (nov) proto-oncogene in human prostate cell lines and tissues. Mol. Pathol. 54, 275-280.
    Manara MC, Perbal B, Benini S, et al. (2002). The expression of ccn3(nov) gene in musculoskeletal tumors. Am. J. Pathol. 160, 849-859.
    Mason HR, Grove-Strawser D, Rubin BS, et al. (2004). Estrogen induces CCN5 expression in the rat uterus in vivo. Endocrinology 145, 976-982.
    Mason HR, Lake AC, Wubben JE, et al. (2004). The growth arrest-specific gene CCN5 isdeficient in human leiomyomas and inhibits the proliferation and motility of cultured human uterine smooth muscle cells. Mol. Hum. Reprod. 10, 181-187.
    McCallum L, and Irvine AE. (2009). CCN3--a key regulator of the hematopoietic compartment. Blood Rev. 23, 79-85.
    Mercurio S, Latinkic B, Itasaki N, et al. (2004). Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex. Development 131, 2137-2147.
    Miller DS, and Sen M. (2007). Potential role of WISP3 (CCN6) in regulating the accumulation of reactive oxygen species. Biochem. Biophys. Res. Commun. 355, 156-161.
    Mo FE, Muntean AG, Chen CC, et al. (2002). CYR61 (CCN1) is essential for placental development and vascular integrity. Mol. Cell. Biol. 22, 8709-8720.
    Nguyen N, Kuliopulos A, Graham RA, et al. (2006). Tumor-derived Cyr61(CCN1) promotes stromal matrix metalloproteinase-1 production and protease-activated receptor 1-dependent migration of breast cancer cells. Cancer Res. 66, 2658-2665.
    Nguyen TQ, Roestenberg P, van Nieuwenhoven FA, et al. (2008). CTGF inhibits BMP-7 signaling in diabetic nephropathy. J. Am. Soc. Nephrol. 19, 2098-2107.
    O'Brien TP, Yang GP, Sanders L, et al. (1990). Expression of cyr61, a growth factor-inducible immediate-early gene. Mol. Cell. Biol. 10, 3569-3577.
    Pennica D, Swanson TA, Welsh JW, et al. (1998). WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc. Natl. Acad. Sci. U. S. A. 95, 14717-14722.
    Perbal B. (2001). NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol. Pathol. 54, 57-79.
    Rachfal AW, and Brigstock DR. (2005). Structural and functional properties of CCN proteins. Vitam. Horm. 70, 69-103.
    Rubenstein J, Shen A, Haqq C, et al. (2003). Connective tissue growth factor is expressed in malignant astrocytic tumors and is involved in cell-cycle regulation. Mol. Pathol. 56, 72.
    Rydziel S, Stadmeyer L, Zanotti S, et al. (2007). Nephroblastoma overexpressed (Nov) inhibits osteoblastogenesis and causes osteopenia. J. Biol. Chem. 282, 19762-19772.
    Safadi FF, Xu J, Smock SL, et al. (2003). Expression of connective tissue growth factor in bone: its role in osteoblast proliferation and differentiation in vitro and bone formation in vivo. J. Cell. Physiol. 196, 51-62.
    Schutze N, Kunzi-Rapp K, Wagemanns R, et al. (2005). Expression, purification, and functional testing of recombinant CYR61/CCN1. Protein Expr. Purif. 42, 219-225.
    Schutze N, Schenk R, Fiedler J, et al. (2007). CYR61/CCN1 and WISP3/CCN6 are chemoattractive ligands for human multipotent mesenchymal stroma cells. BMC. Cell. Biol. 8, 45.
    Sen M, Cheng YH, Goldring MB, et al. (2004). WISP3-dependent regulation of type II collagen and aggrecan production in chondrocytes. Arthritis Rheum. 50, 488-497.
    Shakunaga T, Ozaki T, Ohara N, et al. (2000). Expression of connective tissue growth factor in cartilaginous tumors. Cancer 89, 1466-1473.
    Si W, Kang Q, Luu HH, et al. (2006). CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells. Mol. Cell. Biol. 26, 2955-2964.
    Soon LL, Yie TA, Shvarts A, et al. (2003). Overexpression of WISP-1 down-regulated motility and invasion of lung cancer cells through inhibition of Rac activation. J. Biol. Chem. 278, 11465-11470.
    Su F, Overholtzer M, Besser D, et al. (2002). WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Genes Dev. 16, 46-57.
    Tanaka S, Sugimachi K, Kameyama T, et al. (2003). Human WISP1v, a member of the CCN family, is associated with invasive cholangiocarcinoma. Hepatology 37, 1122-1129.
    Tanaka S, Sugimachi K, Saeki H, et al. (2001). A novel variant of WISP1 lacking a Von Willebrand type C module overexpressed in scirrhous gastric carcinoma. Oncogene 20, 5525-5532.
    Tang N, Song WX, Luo J, et al. (2008). Osteosarcoma development and stem cell differentiation. Clin. Orthop. Relat. Res. 466, 2114-2130.
    Thibout H, Martinerie C, Creminon C, et al. (2003). Characterization of human NOV in biological fluids: an enzyme immunoassay for the quantification of human NOV in sera from patients with diseases of the adrenal gland and of the nervous system. J. Clin. Endocrinol. Metab. 88, 327-336.
    Thorstensen L, Diep CB, Meling GI, et al. (2001). WNT1 inducible signaling pathway protein 3, WISP-3, a novel target gene in colorectal carcinomas with microsatellite instability. Gastroenterology 121, 1275-1280.
    Tsai MS, Bogart DF, Castaneda JM, et al. (2002). Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene 21, 8178-8185.
    van Golen KL, Davies S, Wu ZF, et al. (1999). A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin. Cancer Res. 5, 2511-2519.
    Vorwerk P, Hohmann B, Oh Y, et al. (2002). Binding properties of insulin-like growth factor binding protein-3 (IGFBP-3), IGFBP-3 N- and C-terminal fragments, and structurally related proteins mac25 and connective tissue growth factor measured using a biosensor. Endocrinology 143, 1677-1685.
    Wang H, Zhang R, Wen S, et al. (2009). Nitric oxide increases Wnt-induced secreted protein-1 (WISP-1/CCN4) expression and function in colitis. J. Mol. Med. 87, 435-445.
    Woods A, Pala D, Kennedy L, et al. (2009). Rac1 signaling regulates CTGF/CCN2 gene expression via TGFbeta/Smad signaling in chondrocytes. Osteoarthritis Cartilage 17, 406-413.
    Xie D, Yin D, Tong X, et al. (2004). Cyr61 is overexpressed in gliomas and involved in integrin-linked kinase-mediated Akt and beta-catenin-TCF/Lef signaling pathways. Cancer Res. 64, 1987-1996.
    Yanagita T, Kubota S, Kawaki H, et al. (2007). Expression and physiological role of CCN4/Wnt-induced secreted protein 1 mRNA splicing variants in chondrocytes. Febs. J. 274, 1655-1665.
    Yang Y, and Liao E. (2007). Mutant WISP3 triggers the phenotype shift of articular chondrocytes by promoting sensitivity to IGF-1 hypothesis of spondyloepiphyseal dysplasia tarda with progressive arthropathy (SEDT-PA). Med. Hypotheses 68, 1406-1410.
    You Z, Saims D, Chen S, et al. (2002). Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. J. Cell. Biol. 157, 429-440.
    Yu Y, Gao Y, Wang H, et al. (2008). The matrix protein CCN1 (CYR61) promotes proliferation, migration and tube formation of endothelial progenitor cells. Exp.Cell Res. 314, 3198-3208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700