miR-9、let-7b和let-7g调控Cthrc1基因影响胃癌增殖转移的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃癌是最常见的肿瘤之一,亚洲发病率最高,尤其是韩国、日本和中国。胃癌在全世界肿瘤发病率中居第四位,导致的死亡中列第2位。据统计,2008年全球新发生的胃癌病例大约是989,000例,死亡738,000例。幽门螺杆菌(H.pylori, HP)被归为是胃癌的Ⅰ类致癌原。
     微小RNA (miRNA, microRNA)是一类20-22碱基大小的小分子非编码RNA,在转录后水平调节目的基因的表达。MiRNA参与细胞生长、分化、凋亡和增殖的调控。越来越多的证据表明,miRNAs的差异表达在肿瘤的发生发展过程中发挥着重要的作用,一些表现为癌基因的作用,一些类似抑癌基因。
     胶原三股螺旋重复蛋白1(collagen triple helix repeat containing1, Cthrc1)基因最早是在动脉损伤过程中筛选出的一种过表达基因,Cthrc1可减少胶原沉积,并促进细胞迁移。最近发现Cthrc1在人类癌症如乳腺癌和黑素瘤中过度表达,参与肿瘤的侵袭和转移过程,但是具体机制仍不明确。
     本实验目的在于通过miRNA表达谱芯片技术,筛选胃癌组织中差异表达的miRNAs,并分析其和HP的相关性,为胃癌的诊断和治疗提供理论基础,然后进一步研究这些miRNAs调控胃癌细胞增殖转移的机制。
     方法:
     胃癌中miRNAs表达谱的筛选和验证
     1、采用TaqMan microarray芯片技术筛选胃癌组织中384个miRNAs的表达情况,挑选出明显差异表达的miRNAs,在47对胃癌及对应正常胃粘膜组织采用real-time PCR验证芯片结果;
     2、以HP为相关因素分析miRNAs的差异表达,通过HP刺激细胞来观察miRNAs的表达差异。
     miR-9、let-7b、let-7g调控Cthrc1基因影响胃癌的增殖转移
     1、生物信息学预测iR-9、let-7b、let-7g的靶基因,免疫组化、western-blot以及qRT-PCR检测靶基因在胃癌中的表达,分析靶基因表达与临床病理学参数之间的关系。
     2、体外转染miR-9、let-7b、let-7g模拟物及抑制物,荧光素酶报告基因实验检验这三个miRNAs与Cthrcl3'-UTR的直接靶向关系,western blot检测其对Cthrc1蛋白水平的影响。
     3、构建Cthrc1过表达/干扰的慢病毒载体,转染至胃癌细胞中,利用MTT研究Cthrc1对胃癌细胞增殖的影响,Transwell法检测Cthrc1对胃癌细胞迁移侵袭能力的影响。
     结果:
     胃癌中miRNAs表达谱的筛选和验证
     1、芯片结果显示let-7b、let-7g、miR-9、miR-133a、miR-133b、miR-139-5p、 miR-141、miR-145、miR-204及miR-212在胃癌组织中低表达;
     2、qRT-PCR进一步验证显示let-7b、let-7g、miR-9和miR-204在胃癌组织中显著下调,并且let-7b、let-7g、miR-9在HP阳性的组织中表达更低;
     3、胃癌细胞SGC-7901中let-7b、let-7g和miR-9的表达较GES-1明显下调,HP刺激后下降更明显。
     miR-9、let-7b、let-7g调控Cthrc1基因影响胃癌的增殖转移
     1、生物信息学预测Cthrc1是miR-9、let-7b、let-7g的共同靶基因,免疫组化结果显示Cthrcl在胃癌组织中高表达,且与胃癌的淋巴结转移相关。Western-blot及qRT-PCR检测胃癌细胞株中Cthrc1的表达,发现胃癌细胞中Cthrc1表达升高,以SGC-7901最明显。
     2、通过转染]miR-9、let-7b、let-7g的模拟物、抑制物以及荧光素酶报告基因实验,证实Cthrc1是miR-9、let-7b、let-7g共同的特异性靶基因之一
     3、过表达Cthrc1的GES-1细胞增殖侵袭和迁移能力加强,干扰表达Cthrc1的SGC-7901细胞增殖侵袭和迁移能力减弱。
     结论:
     1、miR-9、let-7b和let-7g在胃癌组织中低表达,且HP阳性的胃癌组织和细胞表达更低。
     2、Cthrc1是miR-9、let-7b和let-7g共同的特异性靶基因之一。
     3、miR-9、let-7b和let-7g在胃癌组织和胃癌细胞株中低表达,导致对Cthrc1的抑制作用减弱,Cthrc1的表达升高,促进胃癌细胞的增殖、侵袭和迁移能力。
Gastric cancer is one of the most common cancer, especilly in Asia included Korea,Japan and China.And gastric cancer is the second leading cause of cancer-related death worldside,which is the first in China.In2008, the number of new cases of stomach cancer was989,000and the estimated death reached738,000worldside.H.pylori (HP) is condsided as the I class carcinogen of gastric cancer.
     MicroRNAs (miRNAs) are small non-coding RNAs of20-22nucleotides that regulate expression of target mRNAs at post transcriptional level. MiRNAs are involved in crucial biological processes, including development, differentiation, apoptosis and proliferation.Accumulating evidence suggests that alterations of miRNAs expression may play various roles in the pathogenesis of many human cancers. Some miRNAs have been shown to possess oncogenic or tumor suppressor activity.
     Collagen triple helix repeat protein (collagen triple helix repeat containing1,Cthrc1) gene was first found highexpresion in the process of arterial injury. Cthrcl can reduce the deposition of collagen and promote cell migration. Recently,Cthrc1was revealed overexpression in human cancers such as breast cancer and melanoma, involved in tumor invasion and metastasis, but the exact mechanism remains unclear.
     In the current study, we screened the miRNAs expression profile in gastric cancer using Taqman Low Density Array (TLDA) chips followed by individual quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays in tissues and cells respectivelly.We further invesgated the mechanism of these miRNAs regulating the proliferation and metastasis of gastric cancer cell.
     Methods:
     Aberrant miRNAs in gastric cancer
     1.384miRNAs expression profiles in8pairs of gastric cancer tissues were analyzed using microarray assay,the obviously dyregulation miRNAs were confirmed by real-time RT PCR in the gastric cancer tissues in47cases which29HP(+) cases and18HP(-) cases.
     2. The expression levelsin SGC-7901and GES-1cells were further analyzed by real-time PCR,which in cells after HPstimulated were also examined.
     miR-9, let-7b and let-7g suppress Cthrcl expression as tumor-suppressor gene in gastric cancer
     1. We used three microRNA (miRNA) target prediction programs, and information from the existing literature to predict the target genes of miR-9, let-7b and let-7g. To test the Cthrcl expression in gastric cancer and adjacent normal tissues, immunohistochemistry was performed in47pairs of gastric tissue samples, and then we analyzed the clinicopathological characteristics in47gastric tumors;Then we investigated Cthrcl expression by qRT-PCR and western blot in gastric cancer cell lines.
     2. Transfection in vitro with mimics or inhibitors of miR-9, let-7b and let-7gwas used to observe the binding relationship of the miRNAs with Cthrc13'-UTR via luciferase reporter assay test, western blot was detected Cthrcl protein levels.
     3. After constructingCthrc1over-expression/RNA interference lentiviral vectors, we screened the stable Cthrcl-overexpressing and Cthrcl-knockdown gastric cancer cell lines.The cellular growth activity was measured by MTT assay.The cellular migration and invasion ability were detected by transwell assay.
     Results:
     Aberrant miRNAs in gastric cancer
     1. Ten miRNAs were down regulated in gastric cancer(>2folds),included let-7b,let-7g,miR-9,miR-133a,miR-133b,miR-139-5p,miR-141,miR-145, miR-204and miR-212.
     2. The miRNAs (miR-9, let-7b,let-7g and miR-204) were identified and consistently validated to be significantly down-regulatedin47paires of gastric cancer tissues. Meanwhile, we also found that the expression levels of miR-9,let-7b and let-7gwere decreased in H.pylori infection samples.
     3. The levels of miR-9,let-7b and let-7g were also siginificantly decreased in SGC-7901cells,which were especially after being infected with HP.
     miR-9, let-7b and let-7g suppress Cthrcl expression as tumor-suppressor gene in gastric cancer
     1. Using bioinformatic tools, we predicted that Cthrc1might be the most potent target gene of themiR-9, let-7b and let-7g. In addition, we found that Cthrcl expression is dramatically increased both in gastric cancer tissues and cell lines, and is also related with lymph node metastasis.
     2. Cthrc1was the direct target gene of miR-9, let-7b and let-7g via transfecting the miRNAs mimics, inhibitor and luciferase reporter assay.
     3. Cthrcl knockdown and overexpression markedly affected the proliferative ability of gastriccancer cell lines.Overexpression of Cthrcl promoted the migration and invasion abilities of GES-1cells. Whereas knockdown of Cthrcl attenuated the migration and invasion ability ofSGC-7901cells.
     Conclusion:
     1. miR-9,let-7b and let-7gwere down expressed in gastric cancer tissuesandSGC-7901cells.ThesemiRNAswere low-regulated in HP infectionsamples providing a new direction to study the relationship between HPinfection and gastric cancer.
     2. Cthrc1was the direct target of miR-9, let-7b and let-7g.
     3. Down-regulated miR-9, let-7b and let-7g reduced the inhibition of Cthrcl,which inducedthe expression of Cthrcl and promoted themigration and invasion abilities of gastric cancer cells.
引文
1. Calin, G.A. and C.M. Croce. MicroRNA-cancer connection:the beginning of a new tale. Cancer Res,2006.66(15):p.7390-4.
    2. Pfeffer, S. and O. Voinnet. Viruses, microRNAs and cancer. Oncogene,2006. 25(46):p.6211-9.
    3. Lee, R.C., R.L. Feinbaum, and V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993.75(5):p.843-54.
    4. Lee, Y., et al.. The nuclear RNase III Drosha initiates microRNA processing. Nature,2003.425(6956):p.415-9.
    5. Yi, R., et al.. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev,2003.17(24):p.3011-6.
    6. Bernstein, E., et al.. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001.409(6818):p.363-6.
    7. Zeng, Y. and B.R. Cμllen. Sequence requirements for micro RNA processing and function in human cells. RNA,2003.9(1):p.112-23.
    8. Calin, G.A., et al.. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004.101(9):p.2999-3004.
    9. Calin, G.A., et al.. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A,2002.99(24):p.15524-9.
    10. Lagos-Quintana, M., et al.. Identification of tissue-specific microRNAs from mouse. Curr Biol,2002.12(9):p.735-9.
    11. Metzler, M., et al.. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer,2004.39(2):p. 167-9.
    12. Cummins, J.M., et al.. The colorectal microRNAome. Proc Natl Acad Sci U S A,2006.103(10):p.3687-92.
    13. Asangani, I.A., et al.. MicroRNA-21 (miR-21) post-transcriptionally down-regulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene,2008.27(15):p.2128-36.
    14. Dillhoff, M., et al.. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg,2008.12(12):p.2171-6.
    15. Chan, S.H., et al.. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res,2008.28(2A):p.907-11.
    16. Liu, T., et al.. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett,2009.273(2):p.233-42.
    17. Petrocca, F., et al.. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell,2008.13(3):p. 272-86.
    18. Hayashita, Y., et al.. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res,2005.65(21):p.9628-32.
    19. Michael, M.Z., et al.. Reduced accumμlation of specific microRNAs in colorectal neoplasia. Mol Cancer Res,2003.1(12):p.882-91.
    20. Du, Y., et al.. Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol,2009.44(6):p.556-61.
    21. Johnson, S.M., et al.. RAS is regulated by the let-7 microRNA family. Cell, 2005.120(5):p.635-47.
    22. Takamizawa, J., et al.. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 2004.64(11):p.3753-6.
    23. Jemal, A., et al.Global cancer statistics,2011. CA Cancer J Clin,2011.62(2): p.69-90.
    24. Sempere, L.F., et al.. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol,2004.5(3):p. R13.
    25. Varallyay, E., J. Burgyan, and Z. Havelda, Detection of microRNAs by Northern blot analyses using LNA probes. Methods,2007.43(2):p.140-5.
    26. Castoldi, M., et al.. miChip:a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods,2007.43(2):p.146-52.
    27. Kubota, K., et al.. Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Appl Environ Microbiol,2006. 72(8):p.5311-7.
    28. Stenvang, J., et al.. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol,2008.18(2):p.89-102.
    29. Varallyay, E., J. Burgyan, and Z. Havelda, MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc,2008.3(2):p.190-6.
    30. Shi, R. and V.L. Chiang, Facile means for quantifying microRNA expression by real-time PCR. Biotechniques,2005.39(4):p.519-25.
    31. Raymond, C.K., et al.. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA,2005. 11(11):p.1737-44.
    32. Chen, C., et al.. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005.33(20):p. e179.
    33. Liu, C.G., et al.. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA,2004. 101(26):p.9740-4.
    34. Rathjen, T., et al.. High throughput sequencing of microRNAs in chicken somites. FEBS Lett,2009.583(9):p.1422-6.
    35. Morozova, O. and M.A. Marra, Applications of next-generation sequencing technologies in functional genomics. Genomics,2008.92(5):p.255-64.
    36. Chen, J., et al.. Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res,2008.36(14):p. e87.
    37. Morin, R.D., et al.. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res,2008.18(4):p.610-21.
    38. Volinia, S., et al.. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A,2006.103(7):p. 2257-61.
    39. Guo, J., et al.. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol,2009.24(4):p. 652-7.
    40. Ueda, T., et al.. Relation between microRNA expression and progression and prognosis of gastric cancer:a microRNA expression analysis. Lancet Oncol, 2010.11(2):p.136-46.
    41. Cho, W.J., et al.. miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells,2009. 28(6):p.521-7.
    42. Takagi, T., et al.. Decreased expression of microRNA-143 and-145 in human gastric cancers. Oncology,2009.77(1):p.12-21.
    43. Zhang, Y., et al.. Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Med Oncol,2010.27(3):p.685-9.
    44. Ji, Q., et al.. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer,2008.8:p.266.
    45. Mi, S., et al.. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA,2007.104(50):p.19971-6.
    46. Li, Y., et al.. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res,2009.69(16):p.6704-12.
    47. Motoyama, K., et al.. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res,2008.14(8):p.2334-40.
    48. Ji, J., et al.. Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellμlar carcinoma. J Hepatol,2010.52(5):p.690-7.
    49. Jeong, S.H., H.G. Wu, and W.Y. Park, LIN28B confers radio-resistance through the posttranscriptional control of KRAS. Exp Mol Med,2009.41(12): p.912-8.
    50. Nakajima, G., et al.. Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics,2006.3(5):p.317-324.
    51. Kumar, M.S., et al.. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA,2008.105(10):p. 3903-8.
    52. Shimizu, S., et al.. The let-7 family of microRNAs inhibits Bcl-xL expression and potentiates sorafenib-induced apoptosis in human hepatocellμlar carcinoma. J Hepatol,2010.52(5):p.698-704.
    53. Wu, X.M., et al.. Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells. Acta Pharmacol Sin,2011.32(2):p.259-69.
    54. Lehmann, U., et al.. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol,2008.214(1):p.17-24.
    55. Ma, L., et al.. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol,2010.12(3):p.247-56.
    56. Hu, X., et al.. A microRNA expression signature for cervical cancer prognosis. Cancer Res,2010.70(4):p.1441-8.
    57. Bandres, E., et al.. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer,2006.5:p.29.
    58. Bandres, E., et al.. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer,2009.125(11):p.2737-43.
    59. Mascaux, C., et al.. Evolution of microRNA expression during human bronchial squamous carcinogenesis. Eur Respir J,2009.33(2):p.352-9.
    60. Onnis, A., et al.. Alteration of microRNAs regulated by c-Myc in Burkitt lymphoma. PLoS One,2010.5(9).
    61. Guo, L.M., et al.. MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J,2009.276(19):p.5537-46.
    62. Wan, H.Y., et al..Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer,2010.9:p.16.
    63. Luo, H., et al.. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res,2009.28:p.82.
    64. Chiyomaru, T., et al.. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer,2010. 102(5):p.883-91.
    65. Ichimi, T., et al.. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer,2009.125(2):p. 345-52.
    66. Wong, T.S., et al.. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer,2008.123(2):p.251-7.
    67. Kano, M., et al.. miR-145, miR-133a and miR-133b:Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer, 2010.127(12):p.2804-14.
    68. Crawford, M., et al.. MicroRNA 133B targets pro-survival molecμles MCL-1 and BCL2L2 in lung cancer. Biochem Biophys Res Commun,2009.388(3):p. 483-9.
    69. Saba, R., et al.. A miRNA signature of prion induced neurodegeneration. PLoS One,2008.3(11):p. e3652.
    70. Hiroki, E., et al.. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci,2010.101(1):p.241-9.
    71. Cheng, H., et al.. Circμlating Plasma MiR-141 Is a Novel Biomarker for Metastatic Colon Cancer and Predicts Poor Prognosis. PLoS One,2011.6(3): p. e17745.
    72. Lee, J.W., et al.. The expression of the miRNA-200 family in endometrial endometrioid carcinoma. Gynecol Oncol,2011.120(1):p.56-62.
    73. Iorio, M.V., et al.. MicroRNA signatures in human ovarian cancer. Cancer Res,2007.67(18):p.8699-707.
    74. Yaman Agaoglu, F., et al.. Investigation of miR-21, miR-141, and miR-221 in blood circμlation of patients with prostate cancer. Tumour Biol,2011. Jan 28
    75. Nakada, C., et al.. Genome-wide microRNA expression profiling in renal cell carcinoma:significant down-regulation of miR-141 and miR-200c. J Pathol, 2008.216(4):p.418-27.
    76. Arndt, G.M., et al.. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer, 2009.9:p.374.
    77. Szczyrba, J., et al.. The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res,2010.8(4):p.529-38.
    78. Chen, H.C., et al.. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer,2009.100(6):p.1002-11.
    79. Chen, L., et al.. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol,2009.50(2):p.358-69.
    80. Lam, E.K., et al.. A microRNA contribution to aberrant Ras activation in gastric cancer. Am J Transl Res,2011.3(2):p.209-18.
    81. Garzon, R., et al.. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A,2008. 105(10):p.3945-50.
    82. Lee, Y., et al.. Network modeling identifies molecμlar functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS Comput Biol, 2010.6(4):p. e1000730.
    83. Wada, R., et al.. miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int J Cancer, 2010.127(5):p.1106-14.
    84. Tang, Y., et al.. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin Exp Res,2008.32(2):p.355-64.
    85. Remenyi,J., et al..Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochem J,2010.428(2):p.281-91.
    86. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet,1983.1(8336):p.1273-5.
    87. Watanabe, T., et al.. Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology,1998.115(3):p.642-8.
    88. Fuccio, L., et al.. Meta-analysis:can Helicobacter pylori eradication treatment reduce the risk for gastric cancer? Ann Intern Med,2009.151(2):p.121-8.
    89. Shiotani, A., et al.. Predictive factors for metachronous gastric cancer in high-risk patients after successfμl Helicobacter pylori eradication. Digestion, 2008.78(2-3):p.113-9.
    90. Wong, B.C., et al.. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China:a randomized controlled trial. JAMA,2004. 291(2):p.187-94.
    91. Zhou, L., et al.. A five-year follow-up study on the pathological changes of gastric mucosa after H. pylori eradication. Chin Med J (Engl),2003.116(1):p. 11-4.
    92. Malfertheiner, P., et al.. Current concepts in the management of Helicobacter pylori infection:the Maastricht III Consensus Report. Gut,2007.56(6):p. 772-81.
    93. Fock, K.M., et al.. Asia-Pacific consensus guidelines on gastric cancer prevention. J Gastroenterol Hepatol,2008.23(3):p.351-65.
    94. Censini, S., et al.. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A,1996.93(25):p.14648-53.
    95. Held, M., et al.. Is the association between Helicobacter pylori and gastric cancer confined to CagA-positive strains? Helicobacter,2004.9(3):p.271-7.
    96. Galmiche, A., et al.. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J,2000.19(23):p.6361-70.
    97. Yuan, J.P., et al.. Deletion of Helicobacter pylori vacuolating cytotoxin gene by introduction of directed mutagenesis. World J Gastroenterol,2003.9(10):p. 2251-7.
    98. Xiao, B., et al.. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis,2009.200(6):p.916-25.
    99. Gao, C., et al.. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer,2010.116(1):p. 41-9.
    100. Zhang, Z., et al.. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest,2008.88(12):p.1358-66.
    101. Leclair RJ, et al.. Intracellular localization of Cthrc1 characterizes differentiated smooth muscle. Arterioscler Thromb Vasc Biol,2008,28(7):p. 1332-8..
    102. Tang L, et al.. Aberrant expression of collagentriple helix repeat containing 1 in human solid cancers. ClinCancer Res,2006,12(12):p.3716-22.
    103. Pyagay P, et al..Collagen triple helixrepeat containing 1, a novel secreted protein in injured anddiseased arteries, inhibits collagen expression and promotescell migration. Circ Res,2005,96(2):p.261-8.
    104. LeClair RJ, et al..Cthrc1 is a novelinhibitor of transforming growth factor-signaling andneointimal lesion formation. Circ Res,2007,100(6):p. 826-33.
    105. LeClair RJ, et al..The role of collagen triple helix repeatcontaining 1 in injured arteries, collagen expression, andtransforming growth factor signaling. Trends CardiovascMed,2007,17(6):p.202-5.
    106. Polakis P. The many ways of Wnt in cancer. Curr OpinGenet Dev,2007, 17(1):p.45-51.
    107. Klaus A, et al.Wnt signaling and its impact ondevelopment and cancer. Nat Rev Cancer,2008,8(5):p.387-98.
    108. Yamamoto S, et al..Cthrcl selectivelyactivates the planar cell polarity pathway of Wntsignaling by stabilizing the Wnt-receptor complex. Dev Cell,2008,15(1):p.23-36.
    109. Dvorak HF. Tumors:wounds that do not heal. Similaritiesbetween tumor stroma generation and wound healing. N EnglJ med,1986,315(26):p. 1650-9.
    110. Beachy PA, et al..Tissue repair andstem cell renewal in carcinogenesis. Nature, 2004,432(7015):p.324-31.
    111. Coussens LM, et al..Inflammation and cancer. Nature,2002,420(6917):p. 860-7.
    112. Micke P, et al.Tumour-stroma interaction:cancerassociatedfibroblasts as novel targets in anticancer therapy?Lung Cancer,2004,45(Suppl 2):p. S163-75.
    113. Kataoka H, et al.. Role of cancer cellstromainteraction in invasive growth of cancer cells. HumCell,2003,16(1):p.1-14.
    114. Bhowmick NA, et al..Stromal fibroblastsin cancer initiation and progression. Nature,2004,432(7015):p.332-7.
    115. Allinen M, et al.. Molecular characterizationof the tumor microenvironment in breast cancer.Cancer Cell,2004,6(1):p.17-32.
    116. Turashvili G, et al.. Novel markersfor differentiation of lobular and ductal invasive breast carcinomasby laser microdissection and microarray analysis.BMC Cancer,2007,7:p.55.
    117.万晓桢,等..CTHRC1基因在人肝癌中高表达并促进MHCC97L肝癌细胞的转移.肿瘤,2007,6:p.476-9
    118.刘伟,等..ITGA6.CTHRC1在食管鳞癌中的表达及临床意义.南京医科大学学报:自然科学版,2009,4:p.508-11
    119.李靖涛,等..CTHRC1和VEGF-C在直肠癌组织中的表达及相关性.世界华人消化杂志,2009,17(13):p.1318-23
    120. Fei Tan, et al..CTHRC1 is associated with peritoneal carcinomatosis in colorectal cancer:a new predictor for prognosis. Med Oncol,2013,30(1):p. 473.
    121. Ping Wang, et al..CTHRC1 is upregulated by promoter demethylationand transforming growth factor-bl and may beassociated with metastasis in human gastric cancer. Cancer Sci,2012,103(7):p.1327-33.
    122. Park EH, et al..Collagen triple helix repeat containing-1 promotes pancreaticcancer progression byregulating migration and adhesion of tumor cells. Carcinogenesis,2013,34(3):p.694-702.
    1. Bushati, N. and S.M. Cohen. microRNA functions. Annu Rev Cell Dev Biol, 2007.23:p.175-205.
    2. Lee, R.C., R.L. Feinbaum, and V. Ambros. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993. 75(5):p.843-54.
    3. Reinhart, B.J., et al.. The 21-nucleotide let-7 RNA regulates developmental timing in CaenoThabditis elegans. Nature,2000.403(6772):p.901-6.
    4. Brennecke, J., et al..bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell,2003.113(1):p.25-36.
    5. Chen, X.. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science,2004.303(5666):p.2022-5.
    6. Xu, P., et al.. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol,2003.13(9):p.790-5.
    7. Yang, L.. Incidence and mortality of gastric cancer in China. World J Gastroenterol,2006.12(1):p.17-20.
    8. Rodriguez, A., et al.. Identification of mammalian microRNA host genes and transcription units. Genome Res,2004.14(10A):p.1902-10.
    9. Lee, Y., et al.. MicroRNA genes are transcribed by RNA polymerase II. EMBO J, 2004.23(20):p.4051-60.
    10. Lee, Y., et al.. The nuclear RNase III Drosha initiates microRNA processing. Nature,2003.425(6956):p.415-9.
    11. Lee, Y. and V.N. Kim. Preparation and analysis of Drosha. Methods Mol Biol, 2005.309:p.17-28.
    12. Joshua-Tor, L.. The Argonautes. Cold Spring Harb Symp Quant Biol,2006.71:p. 67-72.
    13. Bohnsack, M.T., K. Czaplinski, and D. Gorlich. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA,2004.10(2):p.185-91.
    14. Lund, E., et al.. Nuclear export of microRNA precursors. Science,2004. 303(5654):p.95-8.
    15. Morita, S., et al.. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics, 2007.89(6):p.687-96.
    16. Khvorova, A., A. Reynolds, and S.D. Jayasena. Functional siRNAs and miRNAs exhibit strand bias. Cell,2003.115(2):p.209-16.
    17. Tomari, Y. and P.D. Zamore. Perspective:machines for RNAi. Genes Dev,2005. 19(5):p.517-29.
    18. Lai, E.C., Micro RNAs are complementary to 3'UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet,2002.30(4):p. 363-4.
    19. Wu, L., J. Fan, and J.G. Belasco. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A,2006.103(11):p.4034-9.
    20. Lagos-Quintana, M., et al.. Identification of novel genes coding for small expressed RNAs. Science,2001.294(5543):p.853-8.
    21. Ambros, V., et al.. A uniform system for microRNA annotation. RNA,2003.9(3): p.277-9.
    22. Sempere, L.F., et al.. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol,2004.5(3):p. R13.
    23. Varallyay, E., J. Burgyan, and Z. Havelda. Detection of microRNAs by Northern blot analyses using LNA probes. Methods,2007.43(2):p.140-5.
    24. Varallyay, E., J. Burgyan, and Z. Havelda. MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc,2008.3(2):p.190-6.
    25. Castoldi, M., et al.miChip:a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods,2007.43(2):p.146-52.
    26. Kubota, K., et al.. Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Appl Environ Microbiol,2006. 72(8):p.5311-7.
    27. Stenvang, J., et al.. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol,2008.18(2):p.89-102.
    28. Shi, R. and V.L. Chiang. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques,2005.39(4):p.519-25.
    29. Raymond, C.K., et al.. Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA,2005.11(11): p.1737-44.
    30. Chen, C., et al.. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005.33(20):p. e179.
    31. Liu, C.G., et al.. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A,2004.101(26): p.9740-4.
    32. Rathjen, T., et al.. High throughput sequencing of microRNAs in chicken somites. FEBS Lett,2009.583(9):p.1422-6.
    33. Morozova, O. and M.A. Marra. Applications of next-generation sequencing technologies in functional genomics. Genomics,2008.92(5):p.255-64.
    34. Chen, J., et al.. Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res,2008.36(14):p. e87.
    35. Morin, R.D., et al.. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res,2008. 18(4):p.610-21.
    36. Volinia, S., et al.. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A,2006.103(7):p.2257-61.
    37. Zhu, S., et al.. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem,2007.282(19):p.14328-36.
    38. Dillhoff, M., et al.. MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg,2008.12(12):p.2171-6.
    39. Cimmino, A., et al..miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A,2005.102(39):p.13944-9.
    40. Johnson, S.M., et al..RAS is regulated by the let-7 microRNA family. Cell,2005. 120(5):p.635-47.
    41. Takamizawa, J., et al.. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 2004.64(11):p.3753-6.
    42. Tazawa, H., et al.. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A,2007.104(39):p.15472-7.
    43. Chang, T.C., et al.. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell,2007.26(5):p.745-52.
    44. Bommer, G.T., et al..p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol,2007.17(15):p.1298-307.
    45. Guo, J., et al.. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol,2009.24(4):p. 652-7.
    46. Ueda, T., et al.. Relation between microRNA expression and progression and prognosis of gastric cancer:a microRNA expression analysis. Lancet Oncol. 11(2):p.136-46.
    47. Liu, T., et al.. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett,2009.273(2):p.233-42.
    48. Takagi, T., et al.. Decreased expression of microRNA-143 and-145 in human gastric cancers. Oncology,2009.77(1):p.12-21.
    49. Motoyama, K., et al.. Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family. Clin Cancer Res, 2008.14(8):p.2334-40.
    50. Li, Z., et al.. Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun,2006.348(1):p.229-37.
    51. Cho, W.J., et al..miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2. Mol Cells,2009.28(6):p. 521-7.
    52. Chan, S.H., et al..miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res,2008.28(2A):p.907-11.
    53. Xiao, B., et al.. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta,2009.400(1-2):p.97-102.
    54. Tie, J., et al.. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robol receptor. PLoS Genet.6(3):p. e1000879.
    55. Tsujiura, M., et al.. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer.102(7):p.1174-9.
    56. Xia, L., et al..miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer,2008.123(2):p.372-9.
    57. Zhu, W., et al..miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer.127(11):p.2520-9.
    58. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet,1983.1(8336):p.1273-5.
    59. Fuccio, L., et al.. Meta-analysis:can Helicobacter pylori eradication treatment reduce the risk for gastric cancer? Ann Intern Med,2009.151(2):p.121-8.
    60. Shiotani, A., et al.. Predictive factors for metachronous gastric cancer in high-risk patients after successful Helicobacter pylori eradication. Digestion,2008.78(2-3): p.113-9.
    61. Wong, B.C., et al.. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China:a randomized controlled trial. JAMA,2004.291(2):p. 187-94.
    62. Zhou, L., et al.. A five-year follow-up study on the pathological changes of gastric mucosa after H. pylori eradication. Chin Med J (Engl),2003.116(1):p. 11-4.
    63. Malfertheiner, P., et al.. Current concepts in the management of Helicobacter pylori infection:the Maastricht III Consensus Report. Gut,2007.56(6):p. 772-81.
    64. Fock, K.M., et al.. Asia-Pacific consensus guidelines on gastric cancer prevention. J Gastroenterol Hepatol,2008.23(3):p.351-65.
    65. Censini, S., et al.. Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A,1996.93(25):p.14648-53.
    66. Held, M., et al.. Is the association between Helicobacter pylori and gastric cancer confined to CagA-positive strains? Helicobacter,2004.9(3):p.271-7.
    67. Galmiche, A., et al.. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J,2000.19(23):p.6361-70.
    68. Yuan, J.P., et al.. Deletion of Helicobacter pylori vacuolating cytotoxin gene by introduction of directed mutagenesis. World J Gastroenterol,2003.9(10):p. 2251-7.
    69. Xiao, B., et al.. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis,2009. 200(6):p.916-25.
    70. Gao, C., et al.. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer.116(1):p.41-9.
    71. Zhang, Z., et al..miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest,2008.88(12):p.1358-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700