K562细胞中Wnt5a介导不同受体途径激活经典或非经典Wnt信号通路及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     已有大量研究显示,Wnt家族成员Wnt5a与许多实体肿瘤的发生、发展密切相关,但其与白血病发生的关系,以及作用机制迄今不明。我们前期的研究发现,Wnt5a在髓系和淋巴系白血病病例、白血病细胞株中表达降低或缺失,但在治疗缓解的病例中显示Wnt5a表达恢复。并且在白血病细胞株K562、HL-60和U937中发现Wnt5a基因启动子甲基化,在多发性骨髓瘤、髓系和淋巴系白血病病例中,同样也存在甲基化的现象,但正常人和已经缓解的病例中却没有发现甲基化。此外,外源性Wnt5a可诱导K562细胞发生分化,并观察到个别向单核细胞分化的现象。以上均提示,Wnt5a表达缺失或降低可能是白血病发生的机制之一。本研究旨在前期研究的基础上,以本实验室已成功构建的稳定过表达Wnt5a的K562细胞株(K562-Wnt5a)和对照细胞株(K562-vector)为模型,更加深入的探讨Wnt5a在K562细胞中发挥其作用的机制。结果表明Wnt5a介导不同受体组合,可激活非经典通路并抑制经典Wnt信号通路;亦可激活经典Wnt信号通路。由此我们认为,这种不同信号通路的相互转化,可能导致Wnt5a在白血病的发生中起不同作用,为今后有望以Wnt5a为靶点的的白血病分子靶向治疗和诊断提供理论依据。
     方法:
     1.在K562细胞中Wnt5a调控Ror2、Frz4、LRP5受体表达及定位的研究。
     1.1 Western blotting、免疫荧光染色、免疫细胞化学染色、激光共聚焦三维重构的方法,分别检测在K562细胞中,Wnt5a对Ror2、Frz4、LRP5受体的表达和定位的影响。
     1.2免疫荧光染色检测Ror2分别在293、HepG2、L02细胞中的表达定位,并对比分析。
     1.3免疫电镜检测,在K562细胞中Wnt5a是否诱导Ror2受体内吞。
     2.在K562细胞中Wnt5a通过不同受体途径激活经典或非经典Wnt信号通路的研究。
     2.1在K562细胞中,Wnt5a通过Ror2/Frz4受体途径激活非经典通路,并抑制经典Wnt信号通路的检测及分析。
     2.1.1 Western blotting、免疫共沉淀的方法,检测Wnt5a是否通过Ror2/Frz4复合受体发挥作用。
     2.1.2 Western blotting、免疫荧光染色分别检测,β-catenin在K562细胞的总细胞、细胞核和细胞浆中的表达水平,及其在细胞内分布定位的情况。
     2.1.3 Western blotting、双荧光素酶报告基因,检测β-catenin磷酸化水平及β-catenin/TCF转录活性的变化,以及对下游靶基因cyclinD1表达的影响。
     2.2在K562细胞中,Wnt5a通过Frz4/LRP5受体途径,激活经典Wnt信号通路的检测及分析。
     2.2.1运用Ror2特异性抗体孵育K562细胞,以达到阻断非经典Wnt5a/Ror2/Frz4通路转导的目的。
     2.2.2 Western blotting、免疫共沉淀的方法,验证非经典Wnt5a/Ror2/Frz4信号通路的转导是否被阻断。
     2.2.3 Western blotting、免疫共沉淀检测,阻断非经典Wnt5a/Ror2/Frz4通路后,Wnt5a是否通过Frz4/LRP5复合受体发挥作用。
     2.2.4 Western blotting分别检测,阻断非经典Wnt5a/Ror2/Frz4通路后,β-catenin,磷酸化β-catenin,以及cyclinD1表达水平的变化。
     2.2.5阻断非经典Wnt5a/Ror2/Frz4通路后,细胞增殖试验、流式细胞术,分别检测K562细胞增殖及细胞周期的变化。
     结果:
     1.过表达Wnt5a导致Ror2、Frz4受体表达显著高于对照细胞,LRP5表达无明显变化。此外,发现Ror2受体聚集表达于细胞核凹陷的胞浆区域,而Frz4、LRP5受体则主要定位于细胞膜及细胞浆中。
     2.免疫电子显微镜进一步检测,在细胞超微结构下显示,Wnt5a-K562细胞中具有Ror2免疫原性的颗粒物质(表现为电子密度显著增高)通过细胞膜内陷进入细胞浆,并最终定位于细胞核凹陷处的胞浆区域。
     3.与对照细胞相比,在Wnt5a-K562细胞中,显示Wnt5a与Ror2共表达、且相互作用增强。此外,Ror2与Frz4受体的结合亦增强。推断Wnt5a可能通过Ror2/Frz4复合受体发挥作用。
     4.Wnt5a没有影响β-catenin在总细胞和细胞浆中的表达水平,但改变了其在细胞核中的分布,即减少了β-catenin入核。
     5.Wnt5a过表达导致β-catenin出现磷酸化,使β-catenin/TCF的转录活性显著降低,最终导致下游靶基因cyclinD1表达下调。推测Wnt5a通过Ror2/Frz4受体途径激活非经典通路,并抑制经典Wnt信号通路。
     6.Ror2抗体通过与细胞中Ror2受体的特异性结合,阻断了非经典Wnt5a/Ror2/Frz4信号通路的转导。显示Wnt5a诱导Frz4高表达,且Frz4与LRP5受体相互作用增强,推断在Ror2受体表达减少或缺失时,Wnt5a即通过Frz4/LRP5复合受体发挥作用。
     7.阻断非经典Wnt5a/Ror2/Frz4信号通路后,发现β-catenin、cyclinD1均表达上调,并且β-catenin未出现磷酸化。推断此时在K562细胞中,Wnt5a介导Frz4/LRP5受体途径激活了经典Wnt信号通路。
     8.激活了经典Wnt5a/Frz4/LRP5信号通路,使K562细胞的G1期下降,S期增高,变化明显,表明细胞处于增殖旺盛的状态,促进了细胞增殖,与细胞增殖试验的结果一致。
     结论:
     1.在K562细胞中,过表达Wnt5a诱导Ror2和Frz4受体表达增高,并在Frz4的协同下,介导Ror2受体内吞,激活非经典通路并抑制经典Wnt信号通路:从而抑制了β-catenin的核转移,促进其磷酸化,使β-catenin/TCF转录活性降低,下调下游靶基因cyclinD1的表达。此时Wnt5a可能起抑癌因子的作用。
     2.在K562细胞中,当Ror2表达减少或缺失时,Wnt5a介导Frz4/LRP5受体途径激活经典Wnt信号通路,上调β-catenin及cyclinD1的表达,并促进K562细胞增殖。其中Frz4分别与Ror2或LRP5受体结合成为不同的复合受体,协同Wnt5a转导经典或非经典Wnt信号通路。由此可见Frz4受体在此过程中起重要的枢纽作用。
     3.Wnt5a发挥抑癌基因或是癌基因的作用可能与细胞的种类,即细胞表面所表达的受体有关。由于Wnt5a可通过不同的受体激活不同的信号通路,转导活化不同的下游靶基因表达,从而产生不同的调节作用。由此可见,Wnt5a在白血病中发挥的作用也与其相关分子的复杂性密切相关。
Objective:
     Wnt5a, one member of the Wnt family, has been found to be correlated with tumorigenesis, but the specific relations and the mechanism are still not clear, especially concerning with leukemia. Our previous studies reported that Wnt5a was doesn’t expressed or down-regulated in myeloid and lymphoid leukemia, and myeloid leukemia cell lines. However, Wnt5a was found to be expressed in leukemias cases of complete remission. Wnt5a gene promoter region methylation in K562, HL-60 and U937 cell lines, also in multiple myeloma, myeloid and lymphoid leukemia cases, but was not found in normal and patients with complete remission. In addition, we have demonstrated that exogenous Wnt5a inhibits the proliferation of K562 cells and induces differentiation. We hypothesis that Wnt5a may be associated with leukemia. The K562 cells that stably overexpress Wnt5a protein were constructed successfully, and our current study shows that Wnt5a activate noncanonical or canonical Wnt signaling pathways in K562 cells through specific coupling of different receptor. Thus, we think that Wnt5a may play different role in the progression of leukemia.This study established the foundation for wnt5a as a tumor marker and a gene therapy target for leukemia.
     Methods:
     1. Wnt5a regulation Ror2, Frz4, LRP5 receptor expression.
     1.1 Western blotting, immunofluorescence, immunocytochemistry were used for detecting Wnt5a regulating Ror2, Frz4, LRP5 receptor expression and localization in K562 cells.
     1.2 K562、293、HepG2、L02 cells were analyzed for the localization of Ror2 by immunofluorescence.
     1.3 Wnt5a induction Ror2 receptor internalization was observed by Immune electron microscopy in K562 cells.
     2. Wnt5a activates noncanonical or canonical Wnt signaling pathways through specific coupling of related coreceptors.
     2.1 Wnt5a mediated Ror2/Frz4 co-receptor to activate noncanonical pathway and inhibi classical Wnt signaling pathway.
     2.1.1 Western blotting, immunoprecipitation were used to observe that Wnt5a carrying out diverse roles via Ror2/Frz4 co-receptor.
     2.1.2 Western blotting, immunofluorescence were used for analyzing the expression and distribution ofβ-catenin in total cells, nuclei and cytoplasm of K562 cells.
     2.1.3 Western blotting were used for observing the expression ofβ-catenin phosphorylation and cyclinD1, andβ-catenin transcriptional activity was used for detecting by dual-luciferase assay.
     2.2 Wnt5a activates classical Wnt signaling pathway through Frz4/LRP5 co-receptor.
     2.2.1 Ror2 receptor leads to blocking the Wnt5a/Ror2/Frz4 nonclassical pathway through specific coupling of Ror2 antibody in K562 cells.
     2.2.2 To make it clear whether the Wnt5a/Ror2/Frz4 signal blocked was evaluated by Western blotting, immunoprecipitation.
     2.2.3 We assessed whether Wnt5a carrying out its diverse roles via Frz4/LRP5 co-receptor was detected by Western blotting, immunoprecipitation.
     2.2.4 Western blotting was used for detecting changes ofβ-catenin, p-β-catenin and cyclinD1 expression.
     2.2.5 MTT cell proliferation assay, flow cytometry were used for observing the proliferation and growth cycle of K562 cells.
     Results:
     1.Ror2 and Frz4 were found strongly expresseing more strongly in K562-Wnt5a than in control cells, but no change of the expression of LRP5 occurred. Furthermore, Ror2 localized in foci of the nuclear invagination area in K562-Wnt5a. Frz4, LRP5 localized in the cell membrane and cytoplasm.
     2. Immune electron microscopy showed that immunoreactive particulate matter occurred on the plasmalemma of K562-Wnt5a cells, which was internalized into the cytoplasm, and localized in the nuclear invagination cytoplasmic area.
     3. Compared with the control cells, Wnt5a and Ror2 co-expressed, and enhanced binding of each other in K562-Wnt5a cells. Wnt5a also enhanced binding to Frz4. Wnt5a played its roles via Ror2/Frz4 co-receptor.
     4. Wnt5a has no effect on total and cytoplasmicβ-catenin expression, but can decrease expression ofβ-catenin in the nucleus.
     5. Phosphotyrosine ofβ-catenin was detected in K562-Wnt5a cells, and TOPflash reporter assay demonstrated significant down-regulation ofβ-catenin transcriptional activity and leaded to downregulation cyclinD1.
     6. Ror2 receptor blocked the Wnt5a/Ror2/Frz4 nonclassical pathway through specific coupling of Ror2 antibody. Subsequently, Wnt5a induced increased expression of Frz4, and enhanced interaction between Frz4 and LRP5 proteins. We think that Wnt5a play a role through Frz4/LRP5 co-receptors when Ror2 expression was absenced or reduced.
     7. Wnt5a induced Increased expression ofβ-catenin and cyclin D1, and P-β-catenin was not detected in K562-Wnt5a cells. We think that Wnt5a carry out its roles by classical Wnt signaling pathway via Frz4/LRP5 co-receptor.
     8. MTT and flow cytometry assay results indicate that compared with control, overexpression Wnt5a promoted the proliferation of K562 cells.
     Conclusion:
     1. Overexpression Wnt5a resulted in increasing expression of Ror2 and Frz4. Wnt5a activates nonclassical signaling and inhibit the classical Wnt pathway by Frz4 synergistic through Ror2 internalization. Tyrosine phosphorylation ofβ-catenin was detected in Wnt5a-K562 cells. Results show thatβ-catenin transcriptional activity was negatively regulated by Wnt5a through decreasing the localization and expression ofβ-catenin in the nucleus, and leaded to decreasing cyclinD1 expression levels.
     2. Wnt5a activated canonical signaling pathways through Ror2/Frz4 co-receptor when Ror2 expression was absence or reduced. We think that Frz4 is required for Wnt5a coupling Frz4 to LRP5 or Ror2 co-receptors, to induce noncanonical or canonical Wnt signaling pathways.
     3. Wnt5a proteins can lead to different outcomes in tumorigenesis. Wnt5a carry out diverse roles by different signaling pathways via specific to coupling different receptor in different cells. which is also the mechanism for Wnt5a in leukemia genesis.
引文
1. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006.127:469-80
    2. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nature Reviews 2008.8:12
    3. Semenov MV, Habas R, Macdonald BT,. et al. SnapShot: noncanonical. Wnt signaling pathways. Cell 2007. 131:1378
    4. MacDonald BT, Tamai K, He X .Wnt/beta-catenin signalling: components, mechanisms, and diseases. Dev Cell 2009.17: 9-26
    5. Polakis P. Wnt signaling and cancer. Genes Dev 2000.14:1837-51
    6. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004.20: 781-810
    7. He T-C, Sparks AB, Rago C, et al: Identification of c-myc as a target of the APC pathway. Science 1998.281: 1509-1512
    8. Lin S-Y, Xia W, Wang JC, et al:β-Catenin, a novel prognostic marker for breast cancer:its role in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA 2000.97: 4262-4266
    9. Torisu Y, Watanabe A, Nonaka A, et al: Human homolog of NOTUM, overexpressed in hepatocellular carcinoma, is regulated transcriptionally by beta-catenin/TCF. Cancer Sci 2008.99: 1139-1146
    10. Austinat M, Dunsch R, Wittekind C, et al: Correlation betweenβ-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma. Mol Cancer 2008. 7: 21
    11. Renard CA, Labalette C, Armengol C, et al: Tbx3 is a downstream target of the Wnt/β-catenin pathway and a critical mediator ofβ-catenin survival functions in liver cancer. Cancer Res 2007.67: 901-910
    12. Lustig B, Jerchow B, Sachs M, et al: Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 2002. 22: 1184-1193
    13. Ovejero C, Cavard C, Perianin A, et al: Identification of the leukocyte cell-derivedchemotaxin 2 as a direct target gene ofβ-catenin in the liver. Hepatology 2004.40: 167-176
    14. Yamashita T, Forgues M, Wang W, et al: EpCAM andα-fetoprotein expression defines novel prognostic subtypes of hepacellular carcinoma. Cancer Res 2008.68: 1451-1461
    15. Kerstin R?nsch, Marcel J?ger, Anja Sch?pflin et al: Class I and III HDACs and loss of active chromatin features contribute to epigenetic silencing of CDX1 and EPHB tumor suppressor genes in colorectal cancer. Research Paper 2011.6:
    16. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, et al: Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 2003.162: 899-908
    17. Estela E. Medrano.Wnt5a and PKC, a deadly partnership involved in melanoma invasion. Pigment Cell Res. 2007.20; 258-259
    18. Oishi I, Suzuki H, Onishi N, Takada R, Kani S, et al: The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 2003. 8: 645-654
    19. Yoda A, Oishi I, Minami Y .Expression and function of the Ror-family receptor tyrosine kinases during development: lessons from genetic analyses of nematodes, mice, and humans. J Recept Signal Transduct Res 2003.23: 1-15
    20. Green, J.L., T. Inoue, and P.W. Sternberg. Opposing Wnt pathways orient cell polarity during organogenesis. Cell 2008. 134:646-656
    21. Philip D. Da Forno, J. Howard Pringle, Peter Hutchinson, et al: WNT5A Expression Increases during Melanoma Progression and Correlates with Outcome. Clin Cancer Res 2008.14: 5825-5832
    22. Waleerat Sukarawan, Darrin Simmons, Cynthia Suqqs, et al: WNT5A Expression in Ameloblastoma and Its Roles in Regulating Enamel Epithelium Tumorigenic Behaviors.The American Journal of Pathology 2010.17:461-471
    23. Cheng-long Huang, Dage Liu, Jun Nakano, et al: Wnt5a Expression Is Associated With the Tumor Proliferation and the Stromal Vascular Endothelial Growth Factor—An Expression in Non–Small-Cell Lung Cancer. Journal of Clinical Oncology 2005. 23: 8765-8773
    24. Leris AC, Roberts TR, Jiang WG, et al: WNT5A expression in human breast cancer.Anticancer Res. 2005. 2A:731-4
    25. Jianming Ying ,Hongyu Li, Jun Yu, et al: WNT5A Exhibits Tumor-Suppressive Activity through Antagonizing the Wnt/β-Catenin Signaling, and Is Frequently Methylated in Colorectal Cancer. Clin Cancer Res 2008. 14; 55
    26. Huiling Liang,1 Qin Chen,4 Andrew H. Coles, et al: Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 2003. 5:349-360
    27.袁媛,司维柯,李招权等.Wnt5a与髓细胞白血病发生关系的研究.第三军医大学学报.2007;21:2056-2059
    28.邓刚,司维柯,潘静等.Wnt5a基因在淋巴系恶性肿瘤中的表达分析.第三军医大学学报.2008; 19:1832-35
    29.袁媛,司维柯,李招权等.外源性Wnt5a诱导K562细胞分化表型的实验研究.中国实验血液学杂志.2007;5:946-949
    30. Xu YK, Nusse R.The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr Biol 1998. 8: R405-R406
    31. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature 2005. 434:843-850
    32. Scheller M, Huelsken J, Rosenbauer F, et al:Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. NatImmunol 2006.7:1037-1047
    33. Fleming HE, Janzen V, Lo Celso C, et al: Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008. 2:274-283
    34. Wang Y, Krivtsov AV, Sinha AU, et al: The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010. 327:1650–1653
    35. AJ Mikels, R Nusse. Purified Wnt5a Protein Activates or Inhibitsβ-Catenin-TCF Signaling Dependingon Receptor Context. PLoS Biol 2006. 4:570-582
    36. Nelson WJ, Nusse R. Convergence of Wnt,β-catenin, and cadherin pathways.Science 2004.303:1483-1487
    37. van Es JH, Barker N ,Clevers H.You Wnt some,you lose some:oncogenes in the Wnt signaling pathway.Curr Opin Genet Dev 2003.1:28-33
    38. Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm:Wnt signaling in cancer.Biochim Biophys Acta 2003. 1:1-24
    39. Mark A. Lemmon, Joseph Schlessinger, Cell Signaling by Receptor Tyrosine Kinases.Cell 2010.141:1117-1134
    40. O'Connell MP, Fiori JL, Xu M, et al: The orphan tyrosine kinase receptor, ROR2, mediates Wnt5a signaling in metastatic melanoma. Oncogene 2010.29: 34-44
    41. Maria Loscertales1, Amanda J. Mikels, Jimmy Kuang-Hsein Hu, et al: Chick pulmonary Wnt5a directs airway and vascular tubulogenesis. Development 2008.135: 1365-1376
    42. Shengda Lin, Lisa M. Baye, Trudi A. Westfall, et al:Wnt5b-Ryk pathway provides directional signals to regulate gastrulation movement. J Cell Biol. 2010 2:263-78
    43. Wange Lu, Vicky Yamamoto, Blanca Ortega, et al: Mammalian Ryk Is a Wnt Coreceptor Required for Stimulation of Neurite Outgrowth. Cell 2004.119:97-108
    44. G.-H. Kim, J.-H. Her, J.-K. Han. Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J. Cell Biol 2008.182:1073-1082
    45. Takao Inoue, Helieh S. Oz, Debra Wiland, et al: C. elegans LIN-18 Is a Ryk Ortholog and Functions in Parallel to LIN-17/Frizzled in Wnt Signaling.Cell 2004.118:795-806
    46. Alexander Fotin, Yifan Cheng, Nikolaus Grigorieff, et al: Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 2004.432, 649-653
    47.郝佳瑛.β-Arrestin 2调控Wnt5a-Ror2信号通路的研究.2009
    48. Loeppen S, Koehle C , Buchmann A, et al: A beta-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors Carcinogenesis, 2005, 26:239-248
    49. H aramis AP, H url st one A, van der Velden Y, et al: Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia. EMBO Rep. 2006,4:444-449
    50. Gang Zeng, Udayan Apte, Benjamin Cieply, et al: siRNA-Mediated B-Catenin Knockdown in Human Hepatoma Cells Results in Decreased Growth and Survival.RESEARCH ARTICLE 2007.9:951-959
    51.王启明,贾连群,周鸿鹰.Wnt/β-catenin信号因子在HepG2以及L02细胞中的表达.细胞分子与免疫学杂志. 2007;10:73-78
    52. Luca Grumolato, Guizhong Liu, Phyllus Mong, et al: Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev.2010.24: 2517-2530
    53. Miller JR. The Wnts. USA Genome Biology, 2001.1: 3001.1-3001.15
    54. Ginny G. Faría, Iva′n E. Alfaro,Waldo Cerpa, et al: Wnt-5a/JNK Signaling Promotes the Clustering of PSD-95 in Hippocampal Neurons.THE JOURNAL OF BIOLOGICAL CHEMISTRY.2009. 284: 15857–15866
    55. Akira Kikuchi, Hideki Yamamoto, Akira Sato. Selective activation mechanisms of Wnt signaling pathways. Trends in Cell Biology, 2009. 19: 119-129
    56. Saitoh,-T; Katoh,-M. et al: Expression and regulation of WNT5A and WNT5B in human cancer: up-regulation of WNT5A by TNFαin MKN45 cells and up-regulation of WNT5B byβ-estradiol in MCF-7 cells. Int J Mol Med. 2002.3: 345-349
    57. Saitoh T, Mine T, Katoh M . Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int J Mol Med. 2002. 5: 515-519
    58. Ying J, Li H, Chen YW, et al: WNT5A is epigenetically silenced in hematologic malignancies and inhibits leukemia cell growth as a tumor suppressor. Blood 110: 4130-4131, 2007
    59. Nishita, M., S. K. Yoo, A. Nomachi, et al: Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J. Cell Biol 2006. 175: 555-562
    60. Malini Sen,Gourisankar Ghosh. Transcriptional Outcome of Wnt-Frizzled Signal Transduction in Inflammation: Evolving Concepts. The Journal of Immunology, 2008.181: 4441-4445
    61. Yamamoto, S., O. Nishimura, K. Misaki, et al: Cthrc1 selectively activates the planarcell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex Dev. Cell 2008. 15:23-36
    62. Renée van Amerongen,Roel Nusse.Towards an integrated view of Wnt signaling in development. Development 2009.136:3205-3214
    63. Song S, Zhang B, Sun H, et al: A Wnt-Frz/Ror-Dsh Pathway Regulates Neurite Outgrowth in Caenorhabditis elegans. PLoS Genet 2010.8: e1001056
    64. Michiru Nishita, Sumiyo Itsukushima, Akira Nomachi, et al: Ror2/Frizzled Complex Mediates Wnt5a-Induced AP-1 Activation by Regulating Dishevelled Polymerization. MOLECΜLAR AND CELLΜLAR BIOLOGY, 2010, 30:3610–3619
    65.李招权,司维柯,邹全明等.外源性Wnt5a激活K562细胞非经典Wnt5a /Ca2 +信号途径研究。第三军医大学学报.2008;10:924-927
    66. Haluk Yuzugullu, Khemais Benhaj, Nuri Ozturk et al: Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Molecular Cancer 2009. 8:90
    67. Nemeth MJ, Topol L, Anderson SM, et al: Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA 2007.104: 15436-15441
    68. MacLeod RJ, Hayes M and Pacheco I: Wnt5a secretion stimulated by the extracellular calcium-sensing receptor inhibits defective Wnt signaling in colon cancer cells. Am J Physiol Gastrointest Liver Physiol 2007. 293: G403-G411
    69. Nishita M, Enomoto M, Yamagata K, Minami Y. Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol 2010.20: 346-354.
    70. Folkert Verkaar , Guido J.R. Zaman.A model for signaling specificity of Wnt/Frizzled combinations through co-receptor recruitment. FEBS Letters 2010.584:3850-3854
    71. Sato, A., Yamamoto, H., Sakane, H., Koyama, et al: Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J. 2009. 29:41-54
    72. Bourhis, E., Tam, C., Franke, Y., et al: Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J. Biol. Chem. 2010. 285:9172-9179
    73. Angers, S. and Moon, R.T. Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol. 2009 .10:468-477
    74. Tohru Ishitani, Satoshi Kishida, Junko Hyodo-Miura,et al:TheTAK1-NLK Mitogen Activated Protein Kinase Cascade Functions in the Wnt5a/Ca2+ Pathway To Antagonize Wnt/β-catenin signaling.Molecular and Cellular Biology 2003. 1:131-139
    75. Dejmek, J, Safholm, A, Kamp, N.C,et al:Wnt-5a/Ca2+-induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Mol. Cell Biol. 2006. 26: 6024-6036
    76. Ma, L. and Wang, H.Y. Suppression of cyclic GMP-dependent protein kinase is essential to the Wnt/cGMP/Ca2+ pathway. J. Biol. Chem. 2006. 281:30990-31001.
    77. Szalay, J, Bruno, P, Bhati, R, Adjodha, J. et al: Associations of PKC isoforms with thecytoskeleton B16F10 melanoma cells. J. Histochem. Cytochem. 2001.49:49-66
    78. Austin TW, Solar GP, Ziegler FC, et al: A Role for the Wnt gene Family in Hematopoiesis: Expansion of M tilineage Progenitor Cell. Blood 1997.10:3624-3635
    79. Willert J, Epping M, Pollack JR, et al: A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2002.1:8
    80.赵宸,杨宗林,司维柯等. Wnt5a基因在急性髓细胞白血病病例中的表达分析.第三军医大学学报.2010;10:1034-1037
    81. Gang Deng, Zhaoquan Li, Chen Zhao, et al: WNT5A expression is regulated by the status of its promoter methylation in leukemia and can inhibit leukemic cell malignant proliferation. Oncology Reports. 2011.2:367-376
    1. Clevers, H. Wnt/?-catenin signaling in development and disease. Cell 2006.127: 469-480.
    2. Akiri G, Cherian MM, Vijayakumar S, et al. Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene. 2009.28: 2163–2172.
    3. Philip D. Da Forno, J. Howard Pringle, Peter Hutchinson, et al: WNT5A Expression Increases during Melanoma Progression and Correlates with Outcome. Clin Cancer Res 2008.14: 5825-5832.
    4. O'Connell MP, Fiori JL, Xu M, et al: The orphan tyrosine kinase receptor, ROR2, mediates Wnt5a signaling in metastatic melanoma. Oncogene. 2010.29: 34-44.
    5. Leris AC, Roberts TR, Jiang WG, et al: WNT5A expression in human breast cancer. Anticancer Res. 2005. 2A:731-4.
    6. Huiling Liang, Qin Chen, Andrew H. Coles, et al: Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue.Cancer Cell.2003. 5:349-360.
    7. Tannishtha Reya,Hans Clevers.Wnt signalling in stem cells and cancer. Nature 2005. 434:843–850.
    8. Scheller M, Huelsken J, Rosenbauer F, et al:Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. NatImmunol 2006.7:1037–1047
    9. Fleming HE, Janzen V, Lo Celso C, et al: Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008. 2:274–283.
    10. Peter Wend, Jane D. Holland, Ulrike Ziebold, et al:Wnt signaling in stem and cancer stem cells. Seminars in Cell & Developmental Biology 2010.21: 855–863.
    11. Wang Y, Krivtsov AV, Sinha AU, et al: The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010. 327:1650–1653.
    12. Angers, S., and R. T. Moon. Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell. Biol. 2009.10:468–477.
    13. He T-C, Sparks AB, Rago C, et al: Identification of c-myc as a target of the APC pathway. Science.1998.281: 1509-1512.
    14. Lin S-Y, Xia W, Wang JC, et al:β-Catenin, a novel prognostic marker for breast cancer:its role in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA, 2000,97: 4262-4266.
    15. Torisu Y, Watanabe A, Nonaka A, et al: Human homolog of NOTUM, overexpressed in hepatocellular carcinoma, is regulated transcriptionally by beta-catenin/TCF. Cancer Sci. 2008.99:1139-1146.
    16. Austinat M, Dunsch R, Wittekind C, et al: Correlation between-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma. Mol Cancer. 2008.7: 21.
    17. Renard CA, Labalette C, Armengol C, et al: Tbx3 is a downstream target of the Wnt/β-catenin pathway and a critical mediator ofβ-catenin survival functions in liver cancer. Cancer Res.2007.67: 901-910.
    18. Yook JI, Li XY, Ota I, et al: A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nature cell biology. 2006.12 : 1398-1406.
    19. Ovejero C, Cavard C, Perianin A, et al: Identification of the leukocyte cell-derived chemotaxin 2 as a direct target gene of-catenin in the liver. Hepatology.2004.40: 167-176.
    20. Yamashita T, Forgues M, Wang W, et al: EpCAM and·-fetoprotein expression defines novel prognostic subtypes of hepacellular carcinoma. Cancer Res. 2008.68: 1451-1461.
    21. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004.20: 781–810.
    22. Huiling Liang, Andrew H. Coles, Zhiqing Zhu, et al. Noncanonical Wnt signaling promotes apoptosis in thymocyte development. BRIEF DEFINITIVE REPORT. 2007.204:3077-3084.
    23. Schambony, A., and D. Wedlich. Wnt-5A/Ror2 regulate expression of XPAPC through an alternative noncanonical signaling pathway. Dev. Cell.2007.12:779–792.
    24. Ginny G. Faría, Iva′n E. Alfaro, Waldo Cerpa, et al: Wnt-5a/JNK Signaling Promotes the Clustering of PSD-95 in Hippocampal Neurons.THE JOURNAL OF BIOLOGICAL CHEMISTRY.2009. 284: 15857–15866.
    25. Minami, Y, I. Oishi, M. Endo, et al: Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases.Dev. Dyn. 2010.239:1–15.
    26. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nature Reviews. 2008.8:12.
    27. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signalling: components, mechanisms, and diseases. Dev Cell. 2009.17: 9–26.
    28. P-M Chiang, R-H Yuan, H-C Hsu, et al: Frequent nuclear expression ofβ-catenin protein but rareβ-catenin mutation in pulmonary sclerosing haemangioma, J Clin Pathol 2008.61:268-271.
    29. V oeller H J, Truica C I, Gelmann EP. Beta-catenin mutations in human prostate cancer Cancer R es. 1998. 58: 2520-2523.
    30. Elisha Nathan and Eldad Tzahor. sFRPs: a declaration of (Wnt) independence, news and views. 2009.11:13-14.
    31. Leris AC, Roberts TR, Jiang WG, et al: WNT5A expression in human breast cancer. Anticancer Res. 2005. 2A:731-4.
    32. Jianming Ying ,Hongyu Li, Jun Yu, et al: WNT5A Exhibits Tumor-Suppressive Activity through Antagonizing the Wnt/β-Catenin Signaling, and Is Frequently Methylated in Colorectal Cancer. Clin Cancer Res . 2008. 14:55.
    33. Huiling Liang, Qin Chen, Andrew H. Coles, et al: Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue.Cancer Cell,2003. 5:349-360.
    34. Joesting M S Joesting MS, Perrin S, Elenbaas B,et a1: Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res.2005.65:10423-30.
    35. Takayuki Fukui, Masashi Kondo, Genshi Ito et a1: Transcriptional silencing of secreted frizzled related protein 1 (SFRP1) by promoter hypermethylation in non-small-cell lung cancer. Oncogene. 2005. 24: 6323–6327.
    36. Clevers H. Wnt/b-catenin signaling in development and disease. Cell. 2006. 127: 469–480.
    37. J.M. Gonzalez-Sancho, O. Aguilera, J.M. Garcia, N. et al: Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-atenin/TCF and is downregulated in human colon cancer, Oncogene .2005.24:1098–1103.
    38. J. Mao, J. Wang, B. Liu, W. Pan, et al: Low-density lipoprotein receptor-related protein-5binds to Axin and regulates the canonical Wnt signaling pathway, Mol. Cell. 2001.7:801–809.
    39. M.V. Semenov, K. Tamai, B.K. Brott, et al: Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6, Curr. Biol.2001.11:951–961.
    40. T. Brabletz, A. Jung, S. Reu, M. et al: Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment, Proc. Natl Acad. Sci. USA.2001.98:10356–10361.
    41. Sha Peng , Chenglin Miao , Jing Li, et al: Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling, Biochemical and Biophysical Research Communications.2006 .350:641–647.
    42. Ren D, Minami Y, Nishita M. Critical role of Wnt5a-Ror2 signaling in motility and invasiveness of carcinoma cells following Snail-mediated epithelial-mesenchymal transition. Genes Cells. 2011.16:304-15.
    43. Folkert Verkaar, Guido J.R. Zaman.A model for signaling specificity of Wnt/Frizzled combinations through co-receptor recruitment. FEBS Letters 2010. 584:3850–3854.
    44. Sato, A., Yamamoto, H., Sakane, et al: Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J. 2009. 29:41–54.
    45. Bourhis, E., Tam, C., Franke, Y., et al: Reconstitution of a frizzled8.Wnt3a.LRP6 signaling complex reveals multiple Wnt and Dkk1 binding sites on LRP6. J Biol Chem. 2010. 285:9172–9179.
    46. Yamamoto, S., Nishimura, O., Misaki, K., et al: Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex.Dev. Cell 2008.15:23–36.
    47. Mikels AJ and Nusse R: Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biology.2006.4: e115.
    48. Shengda Lin, Lisa M. Baye, Trudi A. Westfall, et al: Wnt5b-Ryk pathway provides directional signals to regulate gastrulation movement. J Cell Biol. 2010 2:263-78.
    49. Wange Lu, Vicky Yamamoto, Blanca Ortega, et al: Mammalian Ryk Is a Wnt Coreceptor Required for Stimulation of Neurite Outgrowth. Cell 2004.119:97-108.
    50. G.-H. Kim, J.-H. Her, J.-K. Han. Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extensionmovements. J. Cell Biol 2008.182:1073-1082.
    51. Takao Inoue, Helieh S. Oz, Debra Wiland, et al: C. elegans LIN-18 is a Ryk Ortholog and Functions in Parallel to LIN-17/Frizzled in Wnt Signaling. Cell 2004.118:795-806.
    52. Renée van Amerongen,Roel Nusse.Towards an integrated view of Wnt signaling in development. Development 2009.136:3205-3214.
    53. Akira Sato, Hideki Yamamoto,Hiroshi Sakane,et al: Wnt5a regulates distinct signalling pathways by binding to Frizzled2.The EMBO Journal.2010.29, 41–54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700