基因芯片联合组织芯片探讨原发性肝癌发生发展的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制全貌,为临床诊治提供新的潜在靶点。
     材料与方法:1、收集10例施行正位肝移植的HCC患者的癌、癌旁和正常肝组织,应用H&E染色确认相关组织的病理类型,应用Trizol一步法抽提配对组织的总RNA;2、应用1%琼脂糖凝胶电泳和芯片实验室(Lab-on-chip)进行RNA质量检测;3、按QIAGENRNeasy(?) Mini Kit说明,进行总RNA纯化、逆转录cRNA合成、荧光标记和纯化;4、将癌组织和正常肝组织、癌组织和癌旁肝组织的cRNA探针分别与Agilent寡核苷酸芯片(21,073探针)进行杂交,洗涤后应用Aailent Scanner获取图像,应用Feature Extraction软件进行定量分析处理,应用cluster分析软件进行聚类分析,通过Treeview软件以树状图形式显示;5、挑选明显差异表达的代表基因4个,其中包括上调和下调基因各2个,以β-actin为内对照基因,由上海生工生物公司设计合成目的基因引物前导链和后随链,按Invitrogen RT-PCR kit说明进行SYBR Green Ⅰ染料掺入的荧光real time RT-PCR绝对定量验证分析;6、挑选差异表达的代表基因6个,其中包括5个上调基因和1个下调基因,在高通量肝癌特异性组织芯片(产品批号:OD-CT-DgLiv01-001)上应用S-P法验证代表基因在蛋白水平的表达,采用SPSS10.0软件包分析相关基因的表达与HCC临床病理参数之间以及基因相互之间的相关性。
     结果:1、H&E染色结果显示癌、癌旁以及正常肝组织呈现典型的组织病理变化,1%琼脂糖凝胶电泳和Lab-on-chip电泳结果均提示提示配对组织总RNA的质量高,无降解现象。2、高通量Agilent寡核苷酸芯片扫描发现在癌和癌旁组织的差异基因表达谱中,2倍上调的的差异表达基因(differentially expressed genes,DEGs)共1295个,而癌与正常肝组织的数目为1074个,综合两者的共同DEGs,共420个;相应的,在癌和癌旁组织2倍下调的DEGs共1320个,而癌与正常肝组织的数目为1107个,共同下调的DEGs为552个。3、Cluster聚类分析显示HCC的发生发展过程涉及癌基因与抑癌基因、编码离子通道和蛋白转运相关的基因、编码细胞周期相关蛋白的基因、与细胞应激相关的基因、细胞骨架和运动相关的基因、细胞凋亡相关的基因、调节DNA合成、修复和重排相关的基因、细胞因子受体相关基因、免疫蛋白相关基因、细胞代谢相关基因、信号转导相关基因、调节转录的基因、与生长发育相关的基因等,尚有部分基因不能分类或为表达序列标签(expression sequence tags,ESTs)。4、差异基因表达谱中,包含12个5倍以上上调表达的基因,分别是CTHRC1、UCHL1、PPP1R9A、CTSL2、POSTN、NQO1、DKK1、AGR2、MMP-12、SULT1C1、LAPTM4B和PEG10;7个10倍以上下调表达的基因,分别是3个细胞色素P450基因(CYP2C9、CYP2A7和CYP2C8)、
Background and objective: Hepatocellular carcinoma(HCC), an aggressive malignancy with poor prognosis and one of the most common tumors in human beings, has become a leading cause of cancer-related death in adults from Asia and sub-Saharan-Africa. Although advances have been achieved in the diagnosis and treatment of HCC, the prognosis of patients with HCC remains dismal. The 5-year survival rate is less than 25% in the subgroups of patients who have the most favorable characteristics and are eligible for surgical resection. The poor prognosis of HCC has been associated with recurrence and metastasis. Therefore, a better understanding of molecular mechanisms involved in HCC development and metastasis should be investigated urgently.
    HCC is associated with multiple risk factors and is believed to arise from preneoplastic lesions, usually in the background of cirrhosis. Extensive studies on HCC and its precursors have demonstrated complex and heterogeneous genetic or chromosomal abnormalities along the way from preneoplastic lesions to HCCs. These genetic abnormalities include loss of heterozygosity, microsatellite instability, gene alterations, and aberrant global gene expression profiles. Although some genetic alterations involving the p53 family, Rb family, and Wnt pathways are particularly important in the development of HCCs, the molecular pathogenesis of HCC differs with etiology in some extent. Recent studies using DNA microarray technique have identified some unique gene expression profiles in hepatitis B virus (HBV)- and hepatitis C virus (HCV)- associated HCCs. Gene expression profiling also allows people to distinguish HCCs from normal tissue or preneoplastic lesions and to evaluate metastatic or recurrent potentials. These unique genes or gene products associated with malignant transformation and recurrent or metastatic potentials may serve as molecular markers for early diagnosis, prediction of prognosis, and responsiveness to therapy. To date, information that has accumulated for the past several decades is still incomplete, and we still are faced with a great challenge in deciphering the molecular mechanisms of HCCs.
    The development of microarray technologies, which allow us to undertake parallel analyses of many genes, has led to a new era in medical science. New genomic high-throughput technologies, such as DNA microarrays, may facilitate considerably the molecular profiling of
引文
1. Schena M, Shalon D, Heller R, et al. Parallel human genome analysis: microarray based expression monitoring of 1000 genes. Proc Natl Acad Sci USA. 1996, 93(20): 10614-10619.
    2. Iqbal S, Shergill NK, Shergill M, et al. Tissue microarray: A current medical research tool. Current Medical Research and Opinion. 2004, 20(5): 707-712.
    3. Barlund M, Monni O, Weaver JD, et al. Cloning of BCAS3 (17q23) and BCAS4 (20q13) genes that undergo amplification, overexpression, and fusion in breast cancer. Genes Chromosomes Cancer. 2002, 35(4): 311-317.
    4. Moch H. Early and late genetic changes in clear cell renal carcinoma. Urologe A. 2004, 43(Suppl3): 121.
    5. Bubendorf L, Mousses S, Wagner U, et al. Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res. 2002, 62(5): 1256-1260.
    6. Arief Suriawinata, Ruliang Xu. An Update on the Molecular Genetics of Hepatocellular Carcinoma. Seminars in Liver Disease. 2004, 24(1): 77-87.
    7. Thorgeirsson SS, Grisham JW, et al. Molecular pathogenesis of human hepatocellular carcinoma. Nature Genet. 2002, 31(4): 339-346.
    8.刘凯,何煦,赵建,等.利用组织芯片研究Rb基因在原发性肝癌中的表达.中国普外基础与临床杂志.2002,9(3):177-179.
    9.朱争艳,高英堂,孙铭,等.p16基因对大鼠肝癌生长抑制作用的研究.中华肝胆外科杂志.2004,10(3):181-183.
    10. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005, 55(2): 74-108.
    11. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol. 2001, 2(9): 533-543.
    12. Ercolani G, Grazi GL, Ravaioli M, et al. Liver resection for hepatocellular carcinoma on cirrhosis: univariate and multivariate analysis of risk factors for intrahepatic recurrence. Ann Surg. 2003, 237: 536-543.
    13.吴孟超,吴东.原发性肝癌综合治疗的现状与展望.癌症进展杂志.2005,3(5):410-412.
    14. Imamura H, Matsuyama Y, Tanaka E, et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol. 2003, 38: 200-207.
    15. Qin LX, Tang ZY. Recent progress in predictive biomarkers for metastatic recurrence of human hepatocellular carcinoma: A review ofthe literature. J Cancer Res Clin Oncol. 2004, 130(9):497-513.
    16.Zhou XD, Tang ZY, Yang BH, et al. Experience of 1000 patients who underwent hepatocellular for small hepatocellular carcinoma. Cancer. 2001,91:1479-1486.
    17.Kopper L, Timar J. Gene expression profiles in the diagnosis and prognosis of cancer. Magy Onkol. 2002, 46(1):3-9.
    
    18.刘秀峰,施瑞华,秦叔逵.基因芯片技术在原发性肝癌中的研究进展. 国际肿瘤学杂志 .2006,33(1):45-48.
    19.Shergill IS, Shergill NK, Arya M, et al. Tissue microarrays: a current medical research tool. Curr Med Res Opin. 2004, 20(5):707-712
    20.Kononen J, Bubendorf L, Kallionieni A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med. 1998, 4(7): 844-847.
    21. Wang Y, Wu MC, Sham JS,et al. Different expression of hepatitis B surface antigen between hepatocellular carcinoma and its surrounding liver tissue, studied using a tissue microarray. J Pathol. 2002,197 (5):610-616.
    22.Zhu MH, Ni CR, Zhu Z, et al. Determination of expression of eight p53-related genes in hepatocellular carcinoma with tissue microarrays. Ai Zheng. 2003, 22(7):680-685.
    23.Hu L, Lau SH, Tzang CH, et al. Association of Vimentin overexpression and hepatocellular carcinoma metastasis. Oncogene. 2004, 23(1):298-302.
    
    24. Wang Y, Wu MC, Sham JS, et al. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer. 2002, 95(11): 2346-2352.
    25.Fields AC, Cotsonis G, Sexton D, et al. Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. Mod Pathol. 2004, 17(11):1378-1385.
    26.Welsh JB, Sapinoso LM, Kern SG, et al. Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci USA. 2003,100:3410-3415.
    27.Peter Pyagay, Me'lanie Heroult, Qiaozeng Wang, et al. Collagen triple helix repeat containing 1, a novel secreted protein in injured and diseased arteries, inhibits collagen expression and promotes cell migration. Circ Res. 2005, 96:1-8.
    28.Breitkopf K, Godoy P, Ciuclan L, et al. TGF-beta/Smad signaling in the injured liver. Z Gastroenterol. 2006, 44(1):57-66.
    29.T.Otsuki, K.Yata, A.Takata-Tomokuni,et al. Expression of protein gene product 9.5(PGP9.5)/ubiquitin-C-terminal hydrolase 1 (UCHL-1) in human myeloma cells. British Journal of Haematology. 127, 292-298.
    30.Adams, J. The proteasome: structure, function, and role in the cell. Cancer Treatment Reviews. 2003,29:3-9.
    31.Morison IM, Reeve AE. A catalogue of imprinted genes and parent- of-origin effects in humans and animals. Hum Mol Genet. 1998, 7:1599-1609.
    32.Weinstein LS. The role of tissue-specific imprinting as a source of phenotypic heterogeneity in human disease. Biol Psychiatry. 2001,50:927-931.
    33.Scherer SW, Cheung J, MacDonald JR,et al. Human chromosome 7: DNA sequence and biology. Science. 2003, 300:767-772.
    34.Nakanishi H, Obaishi H, Satoh A, et al. Neurabin: a novel neural tissue-specific actin filament-binding protein involved in neurite formation. J Cell Biol. 1997,139:951-961.
    35.Oliver CJ, Terry-Lorenzo RT, Elliott E, et al. Targeting protein phosphatase 1 (PP1) to the actin cytoskeleton: the neurabin I/PP1 complex regulates cell morphology. Mol Cell Biol. 2002,22: 4690-4701.
    36.Stephens DJ, Banting G. Direct interaction of the trans-Golgi network membrane protein TGN38 with the F-actin binding protein neurabin. J Biol Chem. 1999,274:30080-30086.
    37.PM. Smooker, JC. Whisstock, JA, Irving, et al. A single amino acid substitution affects substratespecificity in cysteine proteinases from Fasciola hepatica. Protein Science. 2000, 9:2567-2572.
    38.Ravanko K, Ja¨rvinen K, Helin J, et al. Cysteine cathepsins are central contributors of invasion by cultured adenosylmethionine decarboxylase-transformed rodent fibroblasts. Cancer Research. 2004,64,8831-8838.
    39.Takeshita S, Kikuno R, Tezuka K, et al. Osteoblast-specific factor 2: Cloning of a putative bone adhesion protein with homology with theinsect protein fasciclin I. Biochem J. 1993, 294:271-278.
    40.Hidefumi S, Chih-Yi Yu, Meiru Dai, et al. Elevated serum periostin levels in patients with bone metastases from breast but not lung cancer.Breast Cancer Research and Treatment. 2003,77:245-252.
    41.Ahlke S, Christian PS, Michael PM, et al. Differential gene expression of NAD(P)H:quinone oxidoreductase and NRH:quinone oxidoreductase in human hepatocellular and biliary tissue. Mol Pharmacol.2002,61:320-325.
    
    42.Daniel WN, Amy LR, Susan EV, et al. NAD(P)H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predisposition to disease: A HuGE review. Genet Med. 2002, 4(2): 62-70.
    43.Atsushi N, Takatoshi H, Mana K, et al. DKK1, a negative regulator of Wnt signaling, is a target of the β -catenin/TCF pathway. Oncogene.2004,23:8520-8526.
    44.Erming Tian, Fenghuang Zhan, Ronald Walker, et al. The Role of the Wnt-Signaling Antagonist DKK1 in the Development of Osteolytic Lesions in Multiple Myeloma. N Engl J Med. 2003, 349(26): 2483- 2494.
    45.Polakis P. Wnt signaling and cancer. Genes Dev. 2000, 14(15): 1837- 1851.
    46.Kuang WW, Thompson DA, Hoch RV, et al. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line. Nucl Acids Res. 1998, 26:1116-1123.
    47.Innes HE, Liu D, Barraclough R, et al. Significance of the metastasis- inducing protein AGR2 for outcome in hormonally treated breast cancer patients. Br J Cancer. 2006, 94(7): 1057-1065.
    48.Zhang JS, Gong A, Cheville JC,et al. AGR2, an androgen-inducible secretory protein overexpressed in prostate cancer. Genes Chromosomes Cancer. 2005, 43(3):249-259 .
    49.Cui J, Dong BW, Liang P, et al. Construction and clinical significance of a predictive system for prognosis of hepatocellular carcinoma. World J Gastroenterol. 2005,11(20):3027-3033.
    50.Ogasawara S, Yano H, Momosaki S, et al. Expression of matrix metalloproteinases (MMPs) in cultured hepatocellular carcinoma (HCC) cells and surgically resected HCC tissues. Oncol Rep. 2005,13(6):1043-1048.
    51.Kim S, Park HS, Son HJ, et al. The role of angiostatin, vascular endothelial growth factor, matrix metalloproteinase 9 and 12 in the angiogenesis of hepatocellular carcinoma.Korean J Hepatol. 2004,10 (1):62-72.
    
    52.Hiro-omi Tamura, Kazunori Taniguchi, Eriko Hayashi, et al. Expression profiling of sulfotransferases in human cell lines derived from extra-hepatic tissues. Biol Pharm Bull. 2001,24(11): 1258-1262.
    53.Weinshilboum RM, Otterness DM, Aksoy IA, et al. Sulfotransferase molecular biology: cDNAs and genes. FASEB J. 1997,11:3-14.
    54.Her C, Kaur GP, Athwal RS, et al. Human sulfotransferase SULT1C1: cDNA cloning, tissue-specific expression, and chromosomallocalization. Genomics. 1997,41:467-470.
    55.Robert RF, Bruce E, Eric D,et al. Human sulfotransferase SULT1C1 pharmacogenetics: gene resequencing and functional genomic studies. Pharmacogenetics. 2001,11:747-756.
    
    
    56. 何静,邵根泽,周柔丽.肝癌中高表达的新基因 LAPTM4B 对细胞增殖及成瘤性的影响. 北京大学学报(医学版). 2003,35:348-352.
    57.Gen-Ze Shao, Rou-Li Zhou, Qing-Yun Zhang, et al.Molecular cloning and characterization of LAPTM4B, a novel gene upregulated inhepatocellular carcinoma. Oncogene. 2003, 22, 5060-5069.
    58.Ryuichi Ono, Shin Kobayashi, Hirotaka Wagatsuma,et al. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics. 2001,73: 232-237.
    59.Hiroshi Okabe, Seiji Satoh, Yoichi Furukawa, et al. Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Research. 2003, 63: 3043-3048.
    60.Ann-Ping Tsou, Yu-Chi Chuang, Jin-Yuan Su, et al. Overexpression of a novel imprinted gene, PEG10, in human hepatocellular carcinoma and in regenerating mouse livers. J Biomed Sci. 2003,10:625-635.
    61.Jose A.G. Agundez. Cytochrome P450 Gene Polymorphism and Cancer. Current Drug Metabolism. 2004, 5:211-224.
    62.Agundez JAG, Lidesma MC, Benitez PJ, et al. CYP2D6 genes and risk of liver cancer. Lancet. 1995, 345(8953): 830-831.
    63.Brennan P. Gene-environment interactions and aetiology of cancer: what does it mean and how can we measure it. Carcinogenesis. 2002, 23(3):381-387.
    64.Ingelman-Sundberg M. Polymorphism of cytochrome P450 and xenobiotic toxicity. Toxicology. 2002,181-182:447-452.
    65.Kamataki T, Fujita K, Nakayama K, et al. Role of human cytochrome P450 (CYP) in the metabolic activation of nitrosamine derivatives: application of genetically engineered Salmonella expressing human CYP. Drug Metab Rev. 2002, 34(3): 667-676.
    66.JA Williams. Single nucleotide polymorphisms, metabolic activation and environmental carcinogenesis: why molecular epidemiologists should think about enzyme expression. Carcinogenesis. 2001,22(2): 209-214.
    67.Graham RM.4-Hydroxyphenylpyruvate dioxygenase. Archives of Biochemistry and Biophysics. 2005,433:117-128.
    68.S0ren N, Lene A, Ditte T, et al. Tissue distribution, intracellular localization and proteolytic processing of rat 4-hydroxy- phenylpyruvate dioxygenase. Cell Biology International. 2003,27: 611-624.
    69.Julia V, Susana E, Sergio P, et al. Expression, localization and potential physiological significance of alcohol dehydrogenase in the gastrointestinal tract. Eur J Biochem. 2003, 270:2652-2662.
    70.Aritoshi I, Susumu S, Akihiro S, et al. Thirteen single-nucleotide polymorphisms (SNPs) in the alcohol dehydrogenase 4 (ADH4) gene locus. J Hum Genet. 2002, 47:74-76.
    71.Shih-Jiun Yin, Chu-Fang Chou, Ching-Long Lai, et al. Human class IV alcohol dehydrogenase: kinetic mechanism, functional roles and medical relevance. Chemico-Biological Interactions. 2003, 143-144: 219-227.
    72. Abigail TURNER and John D. McGIVAN. Glutaminase isoform expression in cell lines derived from human colorectal adenomas and carcinomas. Biochem J. 2003, 370: 403-408.
    73. Martin-Rufian M, Segura JA, Lobo C, et al. Identification of genes down regulated in tumor cells expressing antisense glutaminase mRNA by differential display. Cancer Biol Ther. 2006, 5(1): 54-58.
    74. Moritoshi Kinoshita and Masahiko Miyata. Underexpression of mRNA in human hepatocellular carcinoma focusing on eight loci. Hepatology. 2002, 36: 433-438.
    75. Sela B. Survivin: anti-apoptosis protein and a prognostic marker for tumor progression and recurrence. Harefuah. 2002, 141: 103-107.
    76. Liston P, Roy N, Tamai K et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature. 1996, 379: 349-353.
    77.常宏,吴泰璜,穆庆岭等.凋亡抑制蛋白Survivin的表达与肝细胞肝癌预后的关系.中华普通外科杂志.2004,19(12):755-757.
    78.彭利,左连富,齐凤英等.凋亡抑制基因survivin在肝癌细胞中的表达及其与PTEN、cyclin D1蛋白表达的关系.中国肿瘤临床.2005,32(1):29-33.
    79. Angela CF, George C, Debbie S, et al. Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. Modern Pathology. 2004, 17: 1378-1385.
    80. Hong Zhu, Xiao-Ping Chen, Wan-Guang Zhang, et al. Expression and significance of new inhibitor of apoptosis protein survivin in hepatocellular carcinoma. World J Gastroenterol. 2005, 11(25): 3855-3859.
    81. Li F, Ambrosini G, Chu EY, et al. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature. 1998, 396(6711): 580-584.
    82. Suzuki A, Ito T, Kawano H, et al. Survivin initiates procaspas3/p21 complex formation as a result of interaction with CDK4 to resist Fas-mediated cell death. Oncogene. 2000, 19(10): 1346-1353.
    83. Denhardt DT, Giachelli CM, Rittling SR, et al. Role of osteopontin in cellular signaling and toxicant injury. Annu Rev Pharmacol Toxicol. 2001, 41: 723-749.
    84. Sodek J, Zhu B, Huynh MH, et al. Novel functions of the matricellular proteins osteopontin and osteonectin/SPARC. Connect Tissue Res. 2002, 43(223): 308-319.
    85. Gotoh M, Sakamoto M, Kanetaka K, et al. Over expression of osteopontin in hepatocellular carcinoma. Pathol Int. 2002, 52(1): 19-24.
    86. Pan HW, Ou YH, Peng SY, et al. Over expression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer.2003, 98(1): 119-127.
    87. El-Tanani M, Barraclough R, Wilkinson MC, et al. Metastasisinducing DNA regulates the expression of the osteopontin gene by binding the transcription factor Tcf-4.Cancer Res. 2001, 61(14): 5619-5629.
    88. Denhardt DT, Mistretta D, Chambers AF, et al. Transcriptional regulation of osteopontin and the metastatic phenotype: evidence for a Ras-activated enhancer in the human OPN promoter. Clin Exp Metastasis. 2003, 20(1): 77-84.
    89. Takano S, Tsuboi K, Tomono Y, et al. Tissue factor, osteopontin, alphavbeta3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression. Br J Cancer. 2000, 82(12): 1967-1973.
    90. Guo-Xin Zhang, Zhi-Quan Zhao, Hong-Di Wang, et al. Enhancement of osteopontin expression in HepG2 cells by epidermal growth factor via phosphatidylinositol 3-kinase signaling pathway. World J Gastroenterol. 2004, 10(2): 205-208.
    91.丁磊,陈孝平,王海平.肝癌和癌旁组织中HIF-1α基因蛋白的表达及其临床意义.肝胆外科杂志.2004,12(1):32-35.
    92.王海平,陈孝平,丁磊等.缺氧诱导因子-1α与血管内皮生长因子在肝硬化、肝癌组织中的相关性研究.中华实验外科杂志.2004,21(3):303-304
    93. Le Roux E, Gormally E, Hainaut P. Somatic mutations in human cancer: applications in molecular epidemiology. Rev Epidemiol Sante Publique. 2005, 53(3): 257-266.
    94. Suriawinata A, Xu R. An update on the molecular genetics of hepatocellular carcinoma. Semin Liver Dis. 2004, 24(1): 77-88.
    95. Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000, 60(4): 1306-1311.
    96. Tong Wu. Cyclooxygenase-2 in hepatocellular carcinoma. Cancer Treatment Reviews. 2006, 32: 28-44
    97. Departamento de Bioquimica, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, et al. Specific structural features of syndecans and heparan sulfate chains are needed for cell signaling. Brazilian Journal of Medical and Biological Research. 2006, 39: 157-167.
    98.李新燕,张学光.Syndecan-1分子研究进展.国外医学分子生物学分册.2001,23(1):30-33.
    99. Chittur SV. DNA microarrays: tools for the 21st Century. Comb Chem High Throughput Screen. 2004, 7(6): 531-537.
    100. Shergill IS, Shergill NK, Arya M, et al. Tissue microarrays: a currentmedical research tool. Curr Med Res Opin. 2004, 20(5): 707-712.
    101.Shinji KOIZUMI. Application of DNA microarrays in occupational health research. J Occup Health. 2004, 46: 20-25.
    1. Schena M, Shalon D, Heller R, et al. Parallel human genome analysis: microarray based expression monitoring of 1000 genes. Proc Natl Acad Sci USA, 1996, 93 (20): 10614-10619.
    2. Kopper L, Timar J. Gene expression profiles in the diagnosis and prognosis of cancer. Magy Onkol, 2002, 46(1): 3-9.
    3. Geissler M, Mohr L, Ali MY, et al. Immunobiology and gene-based immunotherapy of hepatocellular carcinoma. Z Gastroenterol, 2003, 41(11): 1101-1110.
    4. Suriawinata A, Xu R. An update on the molecular genetics of hepatocellular carcinoma. Semin Liver Dis, 2004, 24(1): 77-88.
    5. Li Y, Wan DF, Su JJ, et al. Differential expression of genes during aflatoxin B(1)-induced hepatocarcinogenesis in tree shrew.World J Gastroenterol, 2004, 10(4): 497-504.
    6. Moennikes O, Loeppen S, Buchmann A, et al. A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res, 2004, 64(14): 4707-4710.
    7. Iizuka N, Oka M, Yamada-Okabe H, et al. Differential gene expression in distinct virologic types of hepatocellular carcinoma: association with liver cirrhosis. Oncogene, 2003, 22(19):3007-3714.
    8. Otsuka M, Aizaki H, Kato N, et al. Differential cellular gene expression induced by hepatitis B and C viruses. Biochem Biophys Res Commun, 2003, 300(2): 443-447.
    9. Girard S, Vossman E, Misek DE, et al.Hepatitis C virus NS5A-regulated gene expression and signaling revealed via microarray and comparative promoter analyses. Hepatology, 2004, 40(3):708-718.
    10. Tang ZY, Ye SL, Liu YK, et al. A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol, 2004, 130(4): 187-196.
    11. Li Y, Tang Z, Ye S, et al. Gene expression profile of human hepatocellular carcinoma cell lines with different metastatic potentials. Zhonghua Zhong Liu Za Zhi, 2002, 24(6):533-536.
    12. Hu L, Lau SH, Tzang CH, et al. Association of Vimentin overexpression and hepatocellular carcinoma metastasis. Oncogene, 2004, 23(1):298-302.
    13. Sung YK, Hwang SY, Park MK, et al. Glypican-3 is overexpressed in human hepatocellular carcinoma. Cancer Sci, 2003, 94(3):259-262.
    14. Okabe H, Satoh S, Furukawa Y, et al. Involvement of PEG10 in human hepatocellular carcinogenesis through interaction with SIAH1. Cancer Res, 2003, 63(12):3043-3048.
    15. Yagyu R, Hamamoto R, Furukawa Y, et al. Isolation and characterization of a novel human gene, VANGL1, as a therapeutic target for hepatocellular carcinoma. Int J Oncol, 2002, 20(6):1173-1178.
    16. Liu LX, Jiang HC, Liu ZH, et al . Expression of cell cycle/growth regulator genes in human hepatocellular carcinoma and adjacent normal liver tissues. Oncol Rep, 2003, 10(6):1771-1775.
    17. Qiu W, David D, Zhou B, et al. Down-regulation of growth arrest DNA damage-inducible gene 45beta expression is associated with human hepatocellular carcinoma. Am J Pathol, 2003, 162(6):1961-1974.
    18. Xie L, Qin WX, He XH, et al. Differential gene expression in human hepatocellular carcinoma Hep3B cells induced by apoptosis-related gene BNIPL-2. World J Gastroenterol, 2004,10(9): 1286-1291.
    19. Dong-Dong L, Xi-Ran Z. Inhibition mechanism of a newly cloned candidate tumor suppressor gene JST during hepatocarcinogenesis and its abnormal expression in human hepatocellular carcinoma from Qidong liver cancer risk area, China. Hepatogastroenterology, 2004, 51(56): 515-525.
    20. Wang W, Yang LY, Huang GW, et al. Genomic analysis reveals RhoC as a potential marker in hepatocellular carcinoma with poor prognosis. Br J Cancer, 2004, 90(12): 2349-2355.
    21. Iizuka N, Oka M, Yamada-Okabe H, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet, 2003, 361 (9361): 923-929.
    22. Moriyama M, Hoshida Y, Otsuka M, et al. Relevance network between chemosensitivity and transcriptome in human hepatoma cells. Mol Cancer Ther, 2003, 2(2): 199-205.
    23. Hoshida Y, Moriyama M, Otsuka M, et al. Identification of genes associated with sensitivity to 5-fluorouracil and cisplatin in hepatoma cells. J Gastroenterol, 2002, 37(14s): 92-95.
    24. Breuhahn K, Vreden S, Haddad R, et al. Molecular profiling of human hepatocellular carcinoma defines mutually exclusive interferon regulation and insulin-like growth factor Ⅱ overexpression. Cancer Res, 2004, 64(17): 6058-6064.
    25. Lee SM, Li ML, Tse YC, et al. Paeoniae Radix, a Chinese herbal extract, inhibit hepatoma cells growth by inducing apoptosis in a p53 independent pathway. Life Sci, 2002, 71(19): 2267-2277.
    26. Lu T, Liu J, LeCluyse EL, et al. Application of cDNA microarray to the study of arsenic-induced liver diseases in the population of Guizhou, China. Toxicol Sci, 2001, 59(1): 185-192.
    27. Chittur SV. DNA microarrays: tools for the 21st Century. Comb Chem High Throughput Screen, 2004, 7(6): 531-537.
    28. Shinji KOIZUMI. Application of DNA microarrays in occupational health research. J Occup Health, 2004, 46: 20-25.
    1、Shergill IS, Shergill NK, Arya M, et al. Tissue microarrays: a current medical research tool. Curr Med Res Opin. 2004, 20(5): 707-712.
    2、Kononen J, Bubendorf L, Kallionieni A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nature Med, 1998, 4(7): 844-847.
    3、Wang Y, Wu MC, Sham JS, et al. Different expression of hepatitis B surface antigen between hepatocellular carcinoma and its surrounding liver tissue, studied using a tissue microarray. J Pathol. 2002, 197(5): 610-616.
    4、Zhu MH, Ni CR, Zhu Z, et al. Determination of expression of eight p53-related genes in hepatocellular carcinoma with tissue microarrays.Ai Zheng. 2003, 22(7):680-685.
    5、 Hu L, Lau SH, Tzang CH, et al. Association of Vimentin overexpression and hepatocellular carcinoma metastasis. Oncogene. 2004, 23(1):298-302.
    6、 Wang Y, Wu MC, Sham JS,et al. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer. 2002 , 95(11):2346-2352.
    7、 Fields AC, Cotsonis G, Sexton D, et al. Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. Mod Pathol. 2004 , 17(11): 1378-1385.
    8、 Koopmann J, Thuluvath PJ, Zahurak ML,et al.Mac-2-binding protein is a diagnostic marker for biliary tract carcinoma. Cancer. 2004, 101(7): 1609-1615.
    9、 Maitra A, Adsay NV, Argani P,et al.Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol. 2003, 16(9): 902-912.
    10、 Al-Aynati MM, Radulovich N, Ho J, et al. Overexpression of G1-S cyclins and cyclin- dependent kinases during multistage human pancreatic duct cell carcinogenesis. Clin Cancer Res. 2004, 10(19): 6598-6605.
    11、 Koopmann J, Fedarko NS, Jain A, et al. Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev. 2004,13(3):487-491.
    
    12、 Yu G, Zhu MH, Zhu Z, et al. Expression of ATM protein and its relationship with p53 in pancreatic carcinoma with tissue array. Pancreas. 2004,8(4):421-426.
    13、 Gray PJ Jr, Bearss DJ, Han H, et al. Identification of human polo-like kinase 1 as a potential therapeutic target in pancreatic cancer. Mol Cancer Ther. 2004, 3(5):641-646.
    14、 Al-Aynati MM, Radulovich N, Riddell RH, et al. Epithelial-cadherin and beta-catenin expression changes in pancreatic intraepithelial neoplasia. Clin Cancer Res. 2004 , 10(4): 1235-1240.
    15、 Maitra A, Hansel DE, Argani P, et al. Global expression analysis of well-differentiated pancreatic endocrine neoplasms using oligo-nucleotide microarrays. Clin Cancer Res. 2003, 9(16Pt 1): 5988-5995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700